CN114133653A - 一种防静电eva及其制备方法 - Google Patents

一种防静电eva及其制备方法 Download PDF

Info

Publication number
CN114133653A
CN114133653A CN202111492006.1A CN202111492006A CN114133653A CN 114133653 A CN114133653 A CN 114133653A CN 202111492006 A CN202111492006 A CN 202111492006A CN 114133653 A CN114133653 A CN 114133653A
Authority
CN
China
Prior art keywords
eva
parts
static
polyaniline
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111492006.1A
Other languages
English (en)
Inventor
崔俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202111492006.1A priority Critical patent/CN114133653A/zh
Publication of CN114133653A publication Critical patent/CN114133653A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0033Use of organic additives containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/009Use of pretreated compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及防静电材料技术领域,具体涉及一种防静电EVA及其制备方法。包括以下质量份数的原料:EVA 80~100份,改性聚苯胺40~50份,改性碳纳米管15~20份,过氧化苯酰胺0.8~1份,甲苯100~150份,N‑甲基吡咯烷酮100~150份,表面改性剂1~3份,发泡剂2~5份,无机填料3~8份;本发明将EVA、改性聚苯胺、改性碳纳米管先混合,后密炼,辅助过氧化苯酰胺、表面改性剂、发泡剂和无机填料制备防静电EVA,制得的防静电EVA中各物质相容性好,结构和性能稳定,防静电效果好。

Description

一种防静电EVA及其制备方法
技术领域
本发明涉及防静电材料技术领域,具体涉及一种防静电EVA及其制备方法。
背景技术
EVA(乙烯-醋酸乙烯共聚物)发泡材料由于质量轻、价格低廉、易于加工等特征,被广泛应用在各行各业,但是,EVA发泡材料仍然属于高分子塑料,具有较高的电阻率,在使用过程中容易因为摩擦等产生静电,静电积累的电荷会积累在表面,且不容易去除,EVA发泡材料的静电积累不仅影响发泡材料的自身性质,制约使用价值,而且存在安全隐患,容易引发安全问题。为拓宽EVA发泡材料的应用范围,更好的服务于电子产品行业、高粉尘工作场所、电磁屏蔽领域、防水电子器件等领域,要求EVA发泡材料具有较好的防静电或抗静电性能。
为此,发明一种价格低廉、性能稳定、防静电效果好且能长时间防静电的EVA发泡材料具有实际的意义。
发明内容
本发明的目的在于提供一种防静电EVA及其制备方法,将EVA、改性聚苯胺、改性碳纳米管先混合,后密炼,辅助过氧化苯酰胺、表面改性剂、发泡剂和无机填料制备防静电EVA,制得的防静电EVA中各物质相容性好,结构和性能稳定,防静电效果好。
为了达到上述目的,本发明提供如下技术方案:
一种防静电EVA,包括以下质量份数的原料:
Figure BDA0003399721900000011
Figure BDA0003399721900000021
所述防静电EVA的制备方法,包括以下步骤:
步骤一:取质量份数的EVA和甲苯,密闭加热到60~80℃,磁力搅拌1~3h,迅速加入质量份数的过氧化苯酰胺和改性碳纳米管,继续搅拌1~2h,得到混合物A;
步骤二:取质量份数的改性聚苯胺和N-甲基吡咯烷酮,超声溶解成乳浊液,加入到步骤一中得到的混合物A中,再加入质量份数的表面改性剂、发泡剂、无机填料,机械搅拌1~2h,使混合均匀,转移到密炼机中,设置温度为120~150℃,密炼1~3h,然后温度不变下压铸成型,得到防静电EVA。
所述改性聚苯胺为:将聚苯胺破碎成粉末状,并过100目筛,加入到反应容器中,加入樟脑磺酸和间甲基苯酚,球磨1h,球磨温度为30~50℃,取出后,进行烘干,得到改性聚苯胺。
所述聚苯胺、樟脑磺酸、间甲基苯酚的质量比例为聚苯胺:樟脑磺酸:间甲基苯酚=5:5~7:4。
所述改性碳纳米管为:取多壁碳纳米管加入到反应容器中,加入无水乙醇,40kHz超声波中超声30min,加入过氧化氢,设置超声功率为400w,温度为50~60℃,超声2h,停止超声,然后搅拌,搅拌速度为80~120r/min,温度为40~70℃,搅拌2h,冷却到室温,离心,然后将固态产物再80~100℃烘箱中干燥5h,得到改性碳纳米管。
所述多壁碳纳米管、无水乙醇、过氧化氢的质量比例为3:30~40:52~60。
所述表面改性剂为硅烷偶联剂或者酞酸酯偶联剂中的一种。
所述发泡剂为偶氮二甲酰胺和氧化锌的混合,质量比为偶氮二甲酰胺:氧化锌=2~3:1。
所述无机填料为二氧化硅或者三氧化二铝中的一种,为亚微米级或纳米级。
本发明的有益效果:
1、本发明将EVA、改性聚苯胺、改性碳纳米管先混合,后密炼,辅助过氧化苯酰胺、表面改性剂、发泡剂和无机填料制备防静电EVA,制得的防静电EVA中各物质相容性好,结构和性能稳定,防静电效果好。
2、本发明对聚苯胺进行改性,采用机械球磨的方法,将樟脑磺酸参杂到聚苯胺分子链上,适当的参杂比例,使得聚苯胺主链上的正电荷密度增加,电荷排斥作用使得聚苯胺的蜷曲的分子链展开,同时樟脑磺酸的加入,使得聚苯胺的共轭导电网络结构变得连续,聚苯胺的导电率大幅提升。改性导电聚苯胺参杂到EVA发泡材料中,使得EVA发泡材料电阻下降,防静电性能增强。
3、本发明采用碳纳米管,为一种优良的导电添加剂,对碳纳米管表面进行活化,引入羟基,制成改性碳纳米管,增强碳纳米管与EVA材料的相容性,再参杂到EVA发泡材料中,与其他材料共同制备防静电的EVA,不仅增加了防静电EVA的防静电性能,而且由于碳纳米管的长条管状结构,增加了防静电EVA的机械强度。
4、本发明表面改性剂的使用,使得无机填料与有机高分子之间通过表面改性剂相连接,连接稳固,避免无机物与有机物之间因不相容、不相连导致的内应力或者导致的机械性能下降,且所使用的无机填料为亚微米或者纳米级颗粒,在防静电EVA分子链间起到骨架支撑作用,能够增加防静电EVA的机械强度。
具体实施方式
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种防静电EVA,包括以下质量份数的原料:EVA80份,改性聚苯胺40份,改性碳纳米管15份,过氧化苯酰胺0.8份,甲苯100份,N-甲基吡咯烷酮100份,表面改性剂1份,发泡剂2份,无机填料3份;
所述防静电EVA的制备方法,包括以下步骤:
步骤一:取质量份数的EVA和甲苯,密闭加热到60℃,磁力搅拌1h,迅速加入质量份数的过氧化苯酰胺和改性碳纳米管,继续搅拌1h,得到混合物A;
步骤二:取质量份数的改性聚苯胺和N-甲基吡咯烷酮,超声溶解成乳浊液,加入到步骤一中得到的混合物A中,再加入质量份数的表面改性剂、发泡剂、无机填料,机械搅拌1h,使混合均匀,转移到密炼机中,设置温度为120℃,密炼1h,然后温度不变下压铸成型,得到防静电EVA。
实施例2
一种防静电EVA,包括以下质量份数的原料:EVA100份,改性聚苯胺50份,改性碳纳米管20份,过氧化苯酰胺1份,甲苯150份,N-甲基吡咯烷酮150份,表面改性剂3份,发泡剂5份,无机填料8份;
所述防静电EVA的制备方法,包括以下步骤:
步骤一:取质量份数的EVA和甲苯,密闭加热到80℃,磁力搅拌3h,迅速加入质量份数的过氧化苯酰胺和改性碳纳米管,继续搅拌2h,得到混合物A;
步骤二:取质量份数的改性聚苯胺和N-甲基吡咯烷酮,超声溶解成乳浊液,加入到步骤一中得到的混合物A中,再加入质量份数的表面改性剂、发泡剂、无机填料,机械搅拌2h,使混合均匀,转移到密炼机中,设置温度为150℃,密炼3h,然后温度不变下压铸成型,得到防静电EVA。
实施例3
一种防静电EVA,包括以下质量份数的原料:EVA90份,改性聚苯胺45份,改性碳纳米管17份,过氧化苯酰胺0.9份,甲苯120份,N-甲基吡咯烷酮120份,表面改性剂2份,发泡剂3份,无机填料5份;
所述防静电EVA的制备方法,包括以下步骤:
步骤一:取质量份数的EVA和甲苯,密闭加热到70℃,磁力搅拌2h,迅速加入质量份数的过氧化苯酰胺和改性碳纳米管,继续搅拌2h,得到混合物A;
步骤二:取质量份数的改性聚苯胺和N-甲基吡咯烷酮,超声溶解成乳浊液,加入到步骤一中得到的混合物A中,再加入质量份数的表面改性剂、发泡剂、无机填料,机械搅拌2h,使混合均匀,转移到密炼机中,设置温度为130℃,密炼2h,然后温度不变下压铸成型,得到防静电EVA。
对实施例1、2、3进行检测,检测结果如下表:
检测标准 实施例1 实施例2 实施例3
拉伸强度(MPa) GB/T 6344-2008 19.3 20.5 19.8
表面电阻率(Ω) GB/T31838.3-2019 3.59×10<sup>3</sup> 4.62×10<sup>4</sup> 3.31×10<sup>3</sup>
由上表可知,本发明方法制备的防静电EVA具有良好的力学性能和抗静电性能。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (8)

1.一种防静电EVA,其特征在于,包括以下质量份数的原料:
Figure FDA0003399721890000011
所述防静电EVA的制备方法,包括以下步骤:
步骤一:取质量份数的EVA和甲苯,密闭加热到60~80℃,磁力搅拌1~3h,迅速加入质量份数的过氧化苯酰胺和改性碳纳米管,继续搅拌1~2h,得到混合物A;
步骤二:取质量份数的改性聚苯胺和N-甲基吡咯烷酮,超声溶解成乳浊液,加入到步骤一中得到的混合物A中,再加入质量份数的表面改性剂、发泡剂、无机填料,机械搅拌1~2h,使混合均匀,转移到密炼机中,设置温度为120~150℃,密炼1~3h,然后温度不变下压铸成型,得到防静电EVA。
2.根据权利要求1所述的一种防静电EVA,其特征在于,所述改性聚苯胺为:将聚苯胺破碎成粉末状,并过100目筛,加入到反应容器中,加入樟脑磺酸和间甲基苯酚,球磨1h,球磨温度为30~50℃,取出后,进行烘干,得到改性聚苯胺。
3.根据权利要求2所述的一种防静电EVA,其特征在于:所述聚苯胺、樟脑磺酸、间甲基苯酚的质量比例为聚苯胺:樟脑磺酸:间甲基苯酚=5:5~7:4。
4.根据权利要求1所述的一种防静电EVA,其特征在于:所述改性碳纳米管为:取多壁碳纳米管加入到反应容器中,加入无水乙醇,40kHz超声波中超声30min,加入过氧化氢,设置超声功率为400w,温度为50~60℃,超声2h,停止超声,然后搅拌,搅拌速度为80~120r/min,温度为40~70℃,搅拌2h,冷却到室温,离心,然后将固态产物再80~100℃烘箱中干燥5h,得到改性碳纳米管。
5.根据权利要求4所述的一种防静电EVA,其特征在于:所述多壁碳纳米管、无水乙醇、过氧化氢的质量比例为3:30~40:52~60。
6.根据权利要求1所述的一种防静电EVA,其特征在于:所述表面改性剂为硅烷偶联剂或者酞酸酯偶联剂中的一种。
7.根据权利要求1所述的一种防静电EVA,其特征在于:所述发泡剂为偶氮二甲酰胺和氧化锌的混合,质量比为偶氮二甲酰胺:氧化锌=2~3:1。
8.根据权利要求1所述的一种防静电EVA,其特征在于:所述无机填料为二氧化硅或者三氧化二铝中的一种,为亚微米级或纳米级。
CN202111492006.1A 2021-12-08 2021-12-08 一种防静电eva及其制备方法 Pending CN114133653A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111492006.1A CN114133653A (zh) 2021-12-08 2021-12-08 一种防静电eva及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111492006.1A CN114133653A (zh) 2021-12-08 2021-12-08 一种防静电eva及其制备方法

Publications (1)

Publication Number Publication Date
CN114133653A true CN114133653A (zh) 2022-03-04

Family

ID=80385125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111492006.1A Pending CN114133653A (zh) 2021-12-08 2021-12-08 一种防静电eva及其制备方法

Country Status (1)

Country Link
CN (1) CN114133653A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116657415A (zh) * 2023-06-15 2023-08-29 武汉纺织大学 防静电聚酯面料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158349A (zh) * 1995-12-20 1997-09-03 万都机械株式会社 掺杂有樟脑磺酸的导电性聚苯胺
CN105419077A (zh) * 2015-12-30 2016-03-23 广东国立科技股份有限公司 一种抗静电eva发泡材料及其制备方法
CN107903482A (zh) * 2017-11-07 2018-04-13 广州市欧橡隔热材料有限公司 一种永久防静电、导电eva的制备方法
CN113429653A (zh) * 2021-05-27 2021-09-24 吉泰(福建)体育用品有限公司 一种抗静电eva发泡材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158349A (zh) * 1995-12-20 1997-09-03 万都机械株式会社 掺杂有樟脑磺酸的导电性聚苯胺
CN105419077A (zh) * 2015-12-30 2016-03-23 广东国立科技股份有限公司 一种抗静电eva发泡材料及其制备方法
CN107903482A (zh) * 2017-11-07 2018-04-13 广州市欧橡隔热材料有限公司 一种永久防静电、导电eva的制备方法
CN113429653A (zh) * 2021-05-27 2021-09-24 吉泰(福建)体育用品有限公司 一种抗静电eva发泡材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
O. YU. POSUDIEVSKY等: "Metallic Conductivity of Mechanochemically Doped Polyaniline", 《THEORETICAL AND EXPERIMENTAL CHEMISTRY》 *
李建军 主编: "《塑料配方设计》", 30 September 2019, 中国轻工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116657415A (zh) * 2023-06-15 2023-08-29 武汉纺织大学 防静电聚酯面料及其制备方法

Similar Documents

Publication Publication Date Title
Jiao et al. Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding
CN104672502B (zh) 氰乙基纤维素基高介电柔性纳米复合膜及其制备方法
JP2013516509A (ja) 帯電防止特性または電気伝導特性を有する全芳香族ポリイミド粉末の製造方法
CN104151582A (zh) 一种石墨烯-聚酰亚胺导电黑膜的制备方法
Wang et al. Polyaniline coated carbon nanotube/graphene “sandwich” hybrid and its high-k epoxy composites with low dielectric loss and percolation threshold
CN106366423B (zh) 一种抗静电eva泡沫复合材料及其制备方法
CN106046638A (zh) 一种超光滑半导电屏蔽电缆专用料及其屏蔽电缆
CN114133653A (zh) 一种防静电eva及其制备方法
Cui et al. Using a functional epoxy, micron silver flakes, nano silver spheres, and treated single-wall carbon nanotubes to prepare high performance electrically conductive adhesives
CN114031867B (zh) MXene-石墨烯-PVC复合材料及其制备方法
CN108102358A (zh) 基于碳纳米管及石墨烯复配体系的聚酰胺基导电母粒及其制备方法
CN106752890A (zh) 一种环保氧氟化石墨烯复合聚酰亚胺粉末涂料及其制备方法
CN111793208B (zh) 一种三维石墨烯空心球改性的聚酰亚胺材料、其制备方法及改性聚酰亚胺胶黏剂
CN112266611A (zh) 一种功能化聚酰亚胺复合微球及其制备方法
CN112029284A (zh) 一种氧化石墨烯助分散蒙脱土改性聚硫橡胶及其制备方法
CN108623976B (zh) 一种抗静电遮光pet薄膜及其制备方法
CN1903935A (zh) 聚酯/石墨纳米导电复合材料及其制备方法
CN102690513B (zh) 一种塑料用永久抗静电组合物及其制备方法
CN112341660B (zh) 一种抗静电高分子薄膜及其制备方法
CN106832728A (zh) 一种炭黑/聚合物抗静电复合材料及其制备方法
CN110982232B (zh) 一种抗静电型pet/纳米碳纤维复合材料及其制备方法
Wu et al. Functionalization of graphene oxide with polysilicone: Synthesis, characterization and fire retardancy in thiol-ene systems
CN113943462A (zh) 一种导电高分子复合材料及其制备方法和应用
CN101974246B (zh) 一种复合改性导电工程塑料及其制备方法
CN110387103A (zh) 一种用于安全帽的高强度防静电材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination