CN114132890A - 一种制备有序硅纳米线阵列的方法 - Google Patents

一种制备有序硅纳米线阵列的方法 Download PDF

Info

Publication number
CN114132890A
CN114132890A CN202111430000.1A CN202111430000A CN114132890A CN 114132890 A CN114132890 A CN 114132890A CN 202111430000 A CN202111430000 A CN 202111430000A CN 114132890 A CN114132890 A CN 114132890A
Authority
CN
China
Prior art keywords
silicon
gold film
aao
concentration
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111430000.1A
Other languages
English (en)
Inventor
王珊珊
黄书佳
赵季杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN202111430000.1A priority Critical patent/CN114132890A/zh
Publication of CN114132890A publication Critical patent/CN114132890A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00111Tips, pillars, i.e. raised structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00444Surface micromachining, i.e. structuring layers on the substrate
    • B81C1/00468Releasing structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及纳米材料制备技术领域,具体涉及一种制备有序硅纳米线阵列的方法。以克服现有技术存在的制备的硅线达不到直径和间距的可控性差,制备的硅线表面粗糙,顶部和侧壁出现小孔洞,有时在顶部和底部会呈现不同直径的锥状结构,同时存在着硅片随机刻蚀,表面结构杂乱无章的问题。本发明采用微纳网孔结构的阳极氧化铝模板与离子溅射工艺结合制备纳米金膜网孔阵列,以金纳米网孔阵列作为刻蚀模板及催化剂辅助化学湿法刻蚀制备有序硅纳米线阵列。

Description

一种制备有序硅纳米线阵列的方法
技术领域:
本发明涉及纳米材料制备技术领域,具体涉及一种制备有序硅纳米线阵列的方法。
背景技术
国内外常用的制备硅纳米线的方法有激光烧蚀法,热蒸发法、化学气相沉积法和化学湿法刻蚀法。
(一)激光烧蚀法是利用高能激光烧蚀材料表面,使其快速熔化蒸发,随后冷却结晶,实现材料沿某一方向生长的一种方法。该方法制备温度较难控制,且设备昂贵,制备的硅线虽纯度较高,但杂乱无序。
(二)热蒸发法是在真空环境中,高温加热钟罩内要形成薄膜的原材料,材料受热后从表面气化挥发,入射到冷却的基底材料上,沉积合成固态薄膜的方法。该方法制备的硅线形貌杂乱无序,在基底上附着力小。
(三)化学气相沉积是利用气态或蒸气态物质在气相或气固界面上反应生长固态沉积物的技术,该方法造价高,生长出来的硅线杂乱无序。这三种方法设备昂贵,实验成本高,工艺重复性低,实验条件需要高温真空,最重要的是难以实现硅线的可控生长,达不到有序性要求。
(四)化学湿法刻蚀由于成本低,被广泛地使用,但是传统方法存在的问题是:1、由于银颗粒在硅片表面的随机分布,制备的硅纳米线阵列可控性不高,相邻硅线因表面张力容易发生团簇,直径和间距都得不到精确控制。2、在化学湿法刻蚀工艺中,运用纳米银膜作为刻蚀催化剂,但是银膜在较高的温度或者较长的刻蚀时间下,都会发生溶解引起结构破坏,导致制备的硅线达不到直径和间距的可控性。3、银膜的高表面活性,在刻蚀中产生了过多的空穴,多余的空穴会扩散至硅线的顶部或侧壁,发生了二次刻蚀,所以制备的硅线表面粗糙,顶部和侧壁出现小孔洞。4、制备的硅纳米线在顶部和底部会呈现不同直径的锥状结构,这主要也是刻蚀中银膜的逐渐溶解所致。5、常见的化学湿法刻蚀是将硅片放入HF+AgNO3的混合溶液中,银离子捕捉硅价带的电子还原成单质银,附在硅片表面,银膜的覆盖区域有着很强的随机性,造成硅片随机刻蚀,表面结构杂乱无章。
发明内容:
本发明要提供一种制备有序硅纳米线阵列的方法,以克服现有技术存在的制备的硅线达不到直径和间距的可控性差,制备的硅线表面粗糙,顶部和侧壁出现小孔洞,有时在顶部和底部会呈现不同直径的锥状结构,同时存在着硅片随机刻蚀,表面结构杂乱无章的问题。
为了达到本发明的目的,本发明提供一种制备有序硅纳米线阵列的方法,包括以下步骤:
①将单面抛光N型硅片切割成方形小片,清洗、烘干备用;
②使用离子溅射仪对AAO网格进行溅射,溅射的金膜厚度为10~20nm;
③表面覆盖金膜的AAO轻轻地浸入NaOH溶液中4~18min,进行AAO的去除;
④AAO全部溶解后,将附在NaOH溶液表面的金膜转移到清洗好的硅片上;
⑤表面覆盖金膜的硅片放入体积比为5:12:37的H2O2+HF+H2O混合溶液中刻蚀40~60min,HF的溶液浓度为40%,H2O2的溶液浓度为30%,硅基底表面出现排列有序的硅纳米线阵列。
上述NaOH溶液的浓度为0.625mol/L-2.5mol/L。
上述NaOH溶液的浓度为1.875mol/L。此数据综合效果最好。
与现有技术相比,本发明的优点是:
1、本发明对传统的化学湿法刻蚀工艺进行改进,运用纳米金膜代替银膜作为刻蚀催化剂。金的化学性质很稳定,可以有效抑制二次刻蚀制备的硅线表面平滑。金膜作为高稳定性且功能化的刻蚀催化剂材料,可以克服刻蚀溶液在特定条件下对银的氧化溶解的缺点。与银膜的无序化结构相比,金膜的有序化结构不但可以实现高催化性能,而且金纳米网孔的空间限域性更好地引导了纳米线的自组装生长,控制了基底上硅线生长的尺寸、结构及其分布特性,整体阵列达到均匀有序。
2、本发明采用溅射镀膜,由于靶材化合物成分稳定,所以制得的金膜纯度很高。溅射沉积到基底上的粒子能量比蒸发时能量高几十倍,所以形成的薄膜附着力大,不会改变薄膜的微结构。溅射速率快,通过精确地控制溅射镀膜参数,容易获得均匀的高精度的致密薄膜。其次,AAO制备工艺成熟、生产成本低廉,化学性质稳定。利用AAO表面离子溅射形成的纳米金膜网孔阵列有序度高,基本上可以达到与之共形。金膜既是刻蚀模板,又是催化剂,对硅线的生长起到了控制和催化的作用。通过不同参数AAO模板的选取可以改变纳米线的分布和形态,精确控制合成的单根纳米线形态可以决定纳米线黑硅阵列的很多重要的光电性质。
2、本发明制备过程中利用液态化学溶剂与硅片发生化学反应进行自上而下的刻蚀方法,在室温下就可以实现硅纳米线的生长,不需要昂贵的仪器设备,具有成本低,周期短,反应温和,工艺简单高效,重复性高,可大面积生长的特点。
附图说明:
图1是本发明方法的示意图;
图2为本发明实施例1的序硅纳米线阵列;
图3为本发明实施例2的序硅纳米线阵列;
图4为本发明实施例3的序硅纳米线阵列;
图5为本发明实施例4的序硅纳米线阵列。
具体实施方式:
下面将结合附图和实施例对本发明进行详细地说明。
本发明采用微纳网孔结构的阳极氧化铝模板与离子溅射工艺结合制备纳米金膜网孔阵列,以金纳米网孔阵列作为刻蚀模板及催化剂辅助化学湿法刻蚀制备有序硅纳米线阵列。
实施例1:一种制备有序硅纳米线阵列的方法,包括以下步骤:①用金刚刀将单面抛光N型硅片切割成10mm×10mm的方形小片,分别放入乙醇、5%HF、氨水超声清洗10min,高纯氮气烘干备用;②使用离子溅射仪对AAO网格进行溅射,溅射的金膜厚度在15nm;③将表面覆盖金膜的AAO轻轻地浸入浓度为1.875mol/L的NaOH溶液中6分38秒min,进行AAO的去除;④AAO全部溶解后,将附在NaOH溶液表面的金膜转移到清洗好的硅片上;⑤把表面覆盖金膜的硅片放入体积比为H2O2:HF:H2O=5:12:37的刻蚀溶液中50min,,其中,HF的溶液浓度为40%,H2O2的溶液浓度为30%硅基底表面会出现排列有序的硅纳米线阵列。
实施例2:一种制备有序硅纳米线阵列的方法,包括以下步骤:①用金刚刀将单面抛光N型硅片切割成10mm×10mm的方形小片,分别放入乙醇、5%HF、氨水超声清洗10min,高纯氮气烘干备用;②使用离子溅射仪对AAO网格进行溅射,溅射的金膜厚度在15nm;③将表面覆盖金膜的AAO轻轻地浸入浓度为2.5mol/L的NaOH溶液中4分49秒,进行AAO的去除;④AAO全部溶解后,将附在NaOH溶液表面的金膜转移到清洗好的硅片上;⑤把表面覆盖金膜的硅片放入体积比为H2O2:HF:H2O=5:12:37的刻蚀溶液中50min,,其中,HF的溶液浓度为40%,H2O2的溶液浓度为30%硅基底表面会出现排列有序的硅纳米线阵列。
实施例3:一种制备有序硅纳米线阵列的方法,包括以下步骤:①用金刚刀将单面抛光N型硅片切割成10mm×10mm的方形小片,分别放入乙醇、5%HF、氨水超声清洗10min,高纯氮气烘干备用;②使用离子溅射仪对AAO网格进行溅射,溅射的金膜厚度在15nm左右;③将表面覆盖金膜的AAO轻轻地浸入浓度为1.25mol/L的NaOH溶液中11分20秒,进行AAO的去除;④AAO全部溶解后,将附在NaOH溶液表面的金膜转移到清洗好的硅片上;⑤把表面覆盖金膜的硅片放入体积比为H2O2:HF:H2O=5:12:37的刻蚀溶液中50min,,其中,HF的溶液浓度为40%,H2O2的溶液浓度为30%硅基底表面会出现排列有序的硅纳米线阵列。
实施例4:一种制备有序硅纳米线阵列的方法,包括以下步骤:①用金刚刀将单面抛光N型硅片切割成10mm×10mm的方形小片,分别放入乙醇、5%HF、氨水超声清洗10min,高纯氮气烘干备用;②使用离子溅射仪对AAO网格进行溅射,溅射的金膜厚度在15nm左右;③将表面覆盖金膜的AAO轻轻地浸入浓度为0.625mol/L的NaOH溶液中17分52秒,进行AAO的去除;④AAO全部溶解后,将附在NaOH溶液表面的金膜转移到清洗好的硅片上;⑤把表面覆盖金膜的硅片放入体积比为H2O2:HF:H2O=5:12:37的刻蚀溶液中50min,,其中,HF的溶液浓度为40%,H2O2的溶液浓度为30%硅基底表面会出现排列有序的硅纳米线阵列。
上述实施例制备出的四种金膜内部应力不同,硅基底表面会出现分布面积不同的有序硅纳米线阵列,参见图2-图5。其中以实施例1为最佳实施例,参见图2,可以看到0.625mol/L NaOH溶解AAO的样品,硅纳米线阵列主要分布在薄膜的边界处,形成面积较小。1.25mol/L NaOH和1.875mol/L NaOH溶解AAO的样品,硅纳米线依旧从薄膜的边界处开始产生,随着溶液浓度的增加,阵列的覆盖面积逐渐变大。按照上述规律,2.5mol/L NaOH溶液形成的阵列面积应该是四个样品里面最大的,但是由于NaOH溶液张力的增加,金膜破损严重,阵列并没有大面积形成。所以NaOH溶液的浓度和阵列的生成面积并不成线性关系,实验过程中要均衡两者之间的关系,从目前的实验结果分析,在溅射参数一定的情况下,1.875mol/L NaOH溶液的张力让漂浮在其表面的金膜展现了较好的平展性和完整性,此时金膜的内应力分布在四种样品中最均匀。图2所示,纳米线从边界处开始生长,不断向金膜内部扩大,形成的有序阵列面积是四种样品中最大的。

Claims (3)

1.一种制备有序硅纳米线阵列的方法,其特征在于:包括以下步骤:
①将单面抛光N型硅片切割成方形小片,清洗、烘干备用;
②使用离子溅射仪对AAO网格进行溅射,溅射的金膜厚度为10~20nm;
③表面覆盖金膜的AAO轻轻地浸入NaOH溶液中4~18min,进行AAO的去除;
④AAO全部溶解后,将附在NaOH溶液表面的金膜转移到清洗好的硅片上;
⑤表面覆盖金膜的硅片放入体积比为5:12:37的H2O2+HF+H2O混合溶液中刻蚀40~60min,HF的溶液浓度为40%,H2O2的溶液浓度为30%,硅基底表面出现排列有序的硅纳米线阵列。
2.根据权利要求1所述的一种制备有序硅纳米线阵列的方法,其特征在于:上述NaOH溶液的浓度为0.625mol/L-2.5mol/L。
3.根据权利要求2所述的一种制备有序硅纳米线阵列的方法,其特征在于:上述NaOH溶液的浓度为1.875mol/L。
CN202111430000.1A 2021-11-29 2021-11-29 一种制备有序硅纳米线阵列的方法 Pending CN114132890A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111430000.1A CN114132890A (zh) 2021-11-29 2021-11-29 一种制备有序硅纳米线阵列的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111430000.1A CN114132890A (zh) 2021-11-29 2021-11-29 一种制备有序硅纳米线阵列的方法

Publications (1)

Publication Number Publication Date
CN114132890A true CN114132890A (zh) 2022-03-04

Family

ID=80388761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111430000.1A Pending CN114132890A (zh) 2021-11-29 2021-11-29 一种制备有序硅纳米线阵列的方法

Country Status (1)

Country Link
CN (1) CN114132890A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120168713A1 (en) * 2009-09-03 2012-07-05 Korea Research Institute Of Standards And Science Method for manufacturing a silicon nanowire array using a porous metal film
CN103112819A (zh) * 2013-01-08 2013-05-22 安徽师范大学 一种有序硅纳米线阵列的制备方法
CN105789042A (zh) * 2016-03-29 2016-07-20 苏州大学 一种硅微米线阵列的制备工艺
CN107634005A (zh) * 2017-09-13 2018-01-26 云南大学 一种基于金属辅助化学刻蚀技术制备硅纳米线阵列的方法
WO2018204963A1 (de) * 2017-05-11 2018-11-15 Technische Universität Wien Verfahren zur herstellung edelmetallmodifizierter silicium-nanowires

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120168713A1 (en) * 2009-09-03 2012-07-05 Korea Research Institute Of Standards And Science Method for manufacturing a silicon nanowire array using a porous metal film
CN103112819A (zh) * 2013-01-08 2013-05-22 安徽师范大学 一种有序硅纳米线阵列的制备方法
CN105789042A (zh) * 2016-03-29 2016-07-20 苏州大学 一种硅微米线阵列的制备工艺
WO2018204963A1 (de) * 2017-05-11 2018-11-15 Technische Universität Wien Verfahren zur herstellung edelmetallmodifizierter silicium-nanowires
CN107634005A (zh) * 2017-09-13 2018-01-26 云南大学 一种基于金属辅助化学刻蚀技术制备硅纳米线阵列的方法

Similar Documents

Publication Publication Date Title
US9816176B2 (en) Preparation method for multi-layer metal oxide porous film nano gas-sensitive material
CN102976264B (zh) 一种自支撑多层微纳米结构的制备方法
CN108546919B (zh) 一种利用脉冲激光沉积制备独立分散铁酸钴纳米柱的方法
Zhao et al. Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method
CN112279290B (zh) 一种氧化铜微米球-纳米线微纳分级结构及其制备方法
CN103296141B (zh) 一种枝状异质结纳米线阵列结构材料的制备方法
CN103088422B (zh) 一种三氧化钼纳米棒的制备方法
CN102534800A (zh) 一种In2Se3纳米材料的制备方法
CN110767811A (zh) 一种甲胺铅碘钙钛矿单晶纳米线的光电探测器及制备方法
CN101104509A (zh) 一种在孔洞结构中制作单个纳米材料的方法
CN1391237A (zh) 利用氧化铝模板生长锗纳米线的方法
CN103864460A (zh) 一种有序氧化钨纳米线阵列结构的制备方法
CN101319387B (zh) 一种高温超导体纳米结构阵列的制备方法
CN109161850A (zh) 一种生长在Si衬底上的(In)GaN纳米管及其制备方法与应用
CN114132890A (zh) 一种制备有序硅纳米线阵列的方法
CN103073048B (zh) 一种液相自组装技术制备图案化的ZnO薄膜的方法
CN111312851A (zh) 一种AlN纳米线日盲区探测器的制备方法
CN103787335B (zh) 一种针尖型硅纳米线的制备方法
CN101994149A (zh) 一种ZnO纳米棒阵列尺寸可控生长方法
CN101845619A (zh) 一种制备ZnO纳米针阵列的方法
WO2011073508A1 (en) Process and apparatus for producing a substrate
Orlov et al. Synthesis of ZnO nanorods for acoustic wave sensor
CN112582486A (zh) 一种NiO紫外光电探测器及其制备方法
CN114566424A (zh) 一种在集成电路芯片上直接生长图形化石墨烯的工艺方法
CN108996540B (zh) 一种ZnO纳米花及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination