CN114107342A - 一种去除发酵液中乳糖的方法 - Google Patents

一种去除发酵液中乳糖的方法 Download PDF

Info

Publication number
CN114107342A
CN114107342A CN202111610956.XA CN202111610956A CN114107342A CN 114107342 A CN114107342 A CN 114107342A CN 202111610956 A CN202111610956 A CN 202111610956A CN 114107342 A CN114107342 A CN 114107342A
Authority
CN
China
Prior art keywords
lactose
fermentation
plasmid
selecting
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111610956.XA
Other languages
English (en)
Other versions
CN114107342B (zh
Inventor
刘振云
化宿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huangshan Tongxi Biotechnology Co ltd
Original Assignee
Huangshan Tongxi Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huangshan Tongxi Biotechnology Co ltd filed Critical Huangshan Tongxi Biotechnology Co ltd
Priority to CN202111610956.XA priority Critical patent/CN114107342B/zh
Publication of CN114107342A publication Critical patent/CN114107342A/zh
Application granted granted Critical
Publication of CN114107342B publication Critical patent/CN114107342B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Saccharide Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于生物工程技术,具体涉及一种去除发酵液中乳糖的方法。本发明通过CRISPR/Cas9系统编辑宿主基因组鼠李糖操纵子区域,对发酵实验的菌株进行基因编辑,将LacZ基因与LacY基因编辑进入鼠李糖操纵子区域,具体为将鼠李糖操纵子的RhaB基因与RhaA基因替换为LacZ基因与LacY基因,发酵前期过程中LacZ基因与LacY基因不会表达,而在发酵的末期加入鼠李糖,会诱导LacZ基因与LacY基因表达β‑半乳糖苷酶和透过酶,对残留在罐体中的乳糖进行代谢消耗,减少乳糖残留。

Description

一种去除发酵液中乳糖的方法
技术领域
本发明属于生物工程技术,具体涉及一种去除发酵液中乳糖的方法。
背景技术
近年来利用生物工程技术将乳糖转化为更高附加值的糖类产品也具有很大市场,例如乳果糖( lactulse)、岩藻糖基乳糖( fucosyllactose)、D-塔格糖( D-tagatose)、低聚半乳糖( galacto-oligosaccharides)等。这些产品为大幅提升乳糖的商业附加值提供了可能,因而具有很大的发展潜力。Abramson等证明大肠杆菌中的乳糖透过酶(LacY)能够协助乳糖从培养基进入到细胞质中,但在大肠杆菌体内存在β-半乳糖苷酶(LacZ)可降解乳糖,因此为维持大肠杆菌胞内高浓度的乳糖,需要敲除LacZ。代谢乳糖基因的敲除导致大肠杆菌发酵后期乳糖残留量过高继而影响纯化效率,增加纯化成本,影响以乳糖为底物发酵的得率。目前生产上去除乳糖的方法大多使用β-半乳糖苷酶(乳糖酶),然而乳糖酶价格高昂,在去除乳糖的过程中加入乳糖酶,极大的提高了生产成本。
发明内容
乳糖作为很多糖类产品生产的发酵底物,在发酵液中往往会造成乳糖大量残留,在后续纯化工作中需要添加乳糖酶、增加过滤步骤等来去除乳糖。这样不仅会增加纯化成本,还会减少目标产物的得率。本发明通过CRISPR/Cas9系统编辑宿主基因组鼠李糖操纵子区域,对发酵实验的菌株进行基因编辑,将LacZ基因与LacY基因编辑进入鼠李糖操纵子区域,具体为将鼠李糖操纵子的RhaB基因与RhaA基因替换为LacZ基因与LacY基因,发酵前期过程中LacZ基因与LacY基因不会表达,而在发酵的末期加入鼠李糖,会诱导LacZ基因与LacY基因表达β-半乳糖苷酶和透过酶,对残留在罐体中的乳糖进行代谢消耗,减少乳糖残留。
本发明采用如下技术方案:
一种去除发酵液中乳糖的方法,利用改造菌发酵乳糖,最后加入鼠李糖诱导,完成发酵液中乳糖的去除;具体的,将改造菌、IPTG(异丙基-β-D-硫代半乳糖苷)、乳糖添加到发酵罐中,然后进行发酵,最后加入鼠李糖诱导,完成发酵液中乳糖的去除;所述改造菌中,鼠李糖操纵子区域,RhaB基因与RhaA基因替换为LacZ基因与LacY基因。
本发明中,发酵罐中含有发酵培养基,还可以有其他常规乳糖发酵所需物质,比如甘油、蔗糖或者葡萄糖。
本发明中,进行发酵时,温度为30~37℃,时间为40~90h;诱导的时间为1~10h,优选3~8h。
本发明中,改造菌的原始菌为常规乳糖发酵菌且敲除乳糖代谢基因,比如细菌、真菌,优选棒杆菌属、短杆菌属、芽孢杆菌属、酵母属、埃希氏菌属,尤其是谷氨酸棒杆菌属、黄短杆菌属,最优选敲除β-半乳糖苷酶(LacZ)的大肠杆菌,即乳糖代谢缺陷的菌株。
本发明中,改造菌的制备方法包括以下步骤:
(1)以pTargetF质粒为模板使用引物pTS-CP-F/R342-N20-F/R,分别通过PCR获得线性质粒后连接,再转化感受态细胞,并涂抗性板培养,获得N20-342质粒;
(2)以N20-342质粒为模板,以N20-CPF/R为引物,通过PCR获得线性化N20-342载体片段;
(3)以本底菌株基因组为模板,以342-HL-F/R、342-HR-F/R、lacZ-CDS-F/R为引物,分别通过PCR获得上下游同源臂以及LacZY序列;
(4)将步骤(3)获得的PCR产物连接后转化感受态细胞,并涂抗性板培养,挑选单克隆提取目标质粒;
(5)步骤(4)的目标质粒转入电转感受态菌,然后涂双抗性板培养,选取阳性单克隆菌;
(6)将阳性单克隆菌落挑至LB液体试管,加入IPTG和卡那霉素,培养后划线固体平板,挑去除pTargetF质粒的单克隆挑至无抗LB液体试管,培养后划线无抗平板,挑取pCas质粒去除的菌为改造菌。
具体的,改造菌的制备方法包括以下步骤:
(1)以pTargetF质粒为模板使用引物pTS-CP-F/R342-N20-F/R,分别通过PCR获得线性质粒后连接,再转化DH5a感受态细胞,并涂抗性板培养,获得N20-342质粒;
(2)以N20-342质粒为模板,以N20-CPF/R为引物,通过PCR获得线性化N20-342载体片段;
(3)以E.coli BL21(DE3)基因组为模板,以342-HL-F/R、342-HR-F/R、lacZ-CDS-F/ R为引物,分别通过PCR获得上下游同源臂以及LacZY序列;
(4)将步骤(3)获得的PCR产物通过Gibson Assembly Master Mix连接后转化DH5a感受态细胞,并涂抗性板培养,挑选单克隆提取目标质粒;
(5)步骤(4)的目标质粒转入E.coli BL21(DE3)Y电转感受态菌,然后涂双抗性板培养,选取阳性单克隆菌;
(6)将阳性单克隆菌落挑至LB液体试管,加入IPTG和卡那霉素,培养后划线LB固体平板,挑去除pTargetF质粒的单克隆挑至无抗LB液体试管,培养后划线无抗平板,挑取pCas质粒去除的菌为改造菌。
进一步的,改造菌的制备方法如下:
(1)以pTargetF质粒为模板使用引物pTS-CP-F/R342-N20-F/R,分别通过PCR获得线性质粒后,通过Gibson Assembly Master Mix连接后转化E.coli DH5a感受态细胞,并涂壮观霉素抗性板培养,然后挑选单克隆摇菌并测序,选择阳性克隆摇菌培养并提取质粒,获得N20-342质粒;
(2)以N20-342质粒为模板,以N20-CPF/R为引物,通过PCR获得线性化N20-342载体片段;
(3)以E.coli BL21(DE3)基因组为模板,以342-HL-F/R、342-HR-F/R、lacZ-CDS-F/ R为引物,分别通过PCR获得上下游同源臂以及LacZY序列;
(4)将上述线性片段通过Gibson Assembly Master Mix连接后转化E.coli DH5a感受态细胞,并涂壮观霉素抗性板培养,挑选单克隆摇菌并测序,测序成功后提取目标质粒;
(5)制备电转感受态:当E.coli BL21(DE3)Y菌液OD值达到0.6~0.8时,加入卡那霉素、阿拉伯糖诱导,制备电转感受态菌;
(6)步骤(4)的目标质粒转入步骤(5)的电转感受态菌,然后涂卡那霉素和壮观霉素双抗性板,培养后挑单克隆PCR鉴定,选取阳性单克隆菌;
(7)将阳性单克隆菌落挑至LB液体试管,加入IPTG和卡那霉素,培养后划线LB固体平板,挑单克隆验证是否去除pTargetF质粒;
(8)将去除pTargetF质粒的单克隆挑至无抗LB液体试管,培养后划线无抗平板,挑取单克隆PCR验证pCas质粒是否去除,取pCas质粒去除的菌为改造菌。本发明成功替换基因的菌株成功去除pTargetF和pCas质粒后,制成甘油菌并命名为342保存于-80℃冰箱中,为常规技术。
本发明中,通过Gibson Assembly Master Mix连接;步骤(7)中,LB固体平板为卡那霉素抗性;上述引物的序列参见实施例。
本发明通过CRISPR/Cas9系统编辑宿主基因组鼠李糖操纵子区域。对发酵实验的菌株进行基因编辑,将LacZ基因与LacY基因编辑进入鼠李糖操纵子区域,该基因编辑将鼠李糖操纵子的RhaB基因与RhaA基因替换为LacZ基因与LacY基因,发酵前期过程中LacZ基因与LacY基因不会表达,而在发酵的末期加入鼠李糖,会诱导LacZ基因与LacY基因表达β一半乳糖苷酶和透过酶,对残留在罐体中的乳糖进行代谢消耗,减少乳糖残留。减少后续的纯化步骤,增加目标产物得率。
附图说明
图1为342质粒的结构图谱。
具体实施方式
本发明通过构建改造鼠李糖操纵子,代谢乳糖途经过程中的关键酶基因,加快发酵底物乳糖的消耗来减少后续纯化的压力,增强菌株生产产物(比如2'-FL、LNnt、3-FL)的能力。主要技术方案为,过CRISPR/Cas9系统改造本底菌株(比如E.coli BL21(DE3))基因组,将β-半乳糖核苷酶LacZ基因与透过酶LacY基因编辑进入鼠李糖操纵子区域,该基因编辑将鼠李糖代谢酶的RhaB基因与RhaA基因替换为LacZ基因与LacY基因。在发酵后期加入鼠李糖诱导,代谢多余的乳糖,减少纯化成本。本发明涉及的原料都为现有产品,具体基因编辑操作以及发酵方法与测试方法为现有技术。以E.coli BL21(DE3)为本底菌株,采用现有技术(比如,徐铮, 李娜, 陈盈利, 等. 人乳寡糖2`-FL和3-FL的生物制备研究进展. 生物工程学报, 2020, 36(12): 2767–2778.以及Yingying Zhu, Guocong Luo, Li Wan,Jiawei Meng, Sang Yup Lee & Wanmeng Mu (2021): Physiological effects,biosynthesis, and derivatization of key human milk tetrasaccharides, lacto-N-tetraose, and lacto-N-neotetraose, Critical Reviews in Biotechnology.2021)构建针对不同产物的发酵菌株,本发明命名为E.coli BL21(DE3)X菌株(产生2'-FL,2`-岩藻糖基乳糖)、E.coli BL21(DE3)Y菌株(产生LNnt,乳糖-N-新四糖)、E.coli BL21(DE3)Z菌株(产生3-FL,3-岩藻糖基乳糖),克隆宿主菌为E.coli DH5α。所需基因来自E.coli BL21(DE3),上述两种菌株E.coli DH5α、E.coli BL21(DE3)均购买自唯地生物公司,基础质粒p-TargetF,pCasM均购买自生物风公司,参见表1。
Figure 867275DEST_PATH_IMAGE001
利用CRISPR/Cas9基因编辑系统将β-半乳糖核苷酶LacZ基因与透过酶LacY基因替换鼠李糖代谢酶RhaB基因与RhaA基因,设计针对RhaBRhaA、LacZLacY基因序列的引物,所有引物合成和测序工作由苏州金唯智有限公司完成,引物序列见表2。
Figure 518837DEST_PATH_IMAGE003
PCR扩增均参照以下方案:
Figure 32995DEST_PATH_IMAGE004
PCR扩增程序:95℃预变性3min,95℃变性15s,X℃退火15s,72℃延伸Ymin,72℃延伸5min,其中延伸的循环次数为30次,预变性、变性、退火和彻底延伸的循环数皆为1次(X℃根据具体上下游引物的Tm值决定,Ymin根据聚合酶的聚合速度决定,根据5秒1000bp的扩增速度计算设置,为常规技术)。
实施例一 以E.coli BL21(DE3)Y菌株为例,利用CRISPR/Cas9基因编辑系统将β-半乳糖核苷酶LacZ基因与透过酶LacY基因替换鼠李糖代谢酶RhaB基因与RhaA基因,具体操作步骤如下:
(1)根据鼠李糖代谢酶RhaBRhaA的序列信息,设计N20序列,以pTargetF质粒为模板使用引物pTS-CP-F/R342-N20-F/R,分别通过PCR获得线性质粒后,通过GibsonAssembly Master Mix连接后转化E.coli DH5a感受态细胞,并涂壮观霉素抗性板在37℃培养箱中培养过夜。次日挑选单克隆摇菌并测序,测序成功替换N20序列的质粒为阳性克隆,选择阳性克隆摇菌培养并提取质粒,获得N20-342质粒;(N20-1序列:AATTGTGTCGCCGTCGATCT、N20-2序列:ATACCCCAGCGGGTAGCGAA);
(2)以N20-342质粒为模板,以N20-CPF/R为引物,通过PCR获得线性化N20-342载体片段;
(3)以E.coli BL21(DE3)基因组为模板,以342-HL-F/R、342-HR-F/R、lacZ-CDS-F/ R为引物,通过PCR获得上下游同源臂以及LacZY序列;
(4)将上述线性片段通过Gibson Assembly Master Mix连接后转化E.coli DH5a感受态细胞,并涂壮观霉素抗性板在37℃培养箱中培养过夜,次日挑选单克隆摇菌并测序,测序成功后提取目标质粒;
(5)制备电转感受态:当E.coli BL21(DE3)Y菌液OD值达到0.8时,加入50 ug/mL卡那霉素、10mmol阿拉伯糖诱导4h,制备感受态;
(6)目标质粒转入电转感受态E.coli BL21(DE3)Y菌株:使用前将电转化所需的电转杯先用超纯水润洗3遍,放置于超净台烘干;将5ul目标质粒加入到制作完成的电转感受态中,然后转移至预冷的电转杯中;选用2.5kv电压进行电击操作,然后加入500ul LB液体培养基,将电转杯内的菌液转移至1.5ml EP管中,于37℃培养1h,全部涂卡那和壮观霉素双抗平板,放置过夜;挑取单克隆进行验证,验证成功的即为阳性克隆;
(7)将上述阳性克隆菌落挑至4mlLB液体试管,加入终浓度1mmol/L的IPTG50 ug/mL卡那霉素,37℃培养16h,划线LB固体平板(卡那霉素抗性),挑单克隆验证是否去除pTargetF质粒;
(8)将去除pTargetF质粒的单克隆挑至无抗LB液体试管,42℃培养12h,划线无抗平板,挑取单克隆PCR验证pCas质粒是否去除;成功替换基因的菌株成功去除pTargetF和pCas质粒后,制成甘油菌分别命名为342Y,保存于-80℃冰箱中。
E.coli BL21(DE3)X菌株采用上述工艺,得到成功替换基因的菌株,命名为342X,保存于-80℃冰箱中;E.coli BL21(DE3)Z菌株采用上述工艺,得到成功替换基因的菌株,命名为342Z,保存于-80℃冰箱中。
实施例二 发酵罐发酵培养验证乳糖残留量
设计八组发酵,所用菌株分别为342X、342Y、342Z、E.coli BL21(DE3)X菌株,各分未诱导、诱导,共8组。发酵方法一样,为常规技术,具体如下:
将菌株接种到4mL LB培养基中,过夜培养后,以2%接种量接入到100ml的DM发酵培养基中,于37℃培养12h,种子液经过两次活化后以10%接种量接入到300mL的DM培养基中,于37℃培养至OD600约1.0,种子液300ml接入到含10L DM发酵培养基(含30g/L甘油)的发酵罐中,同时加入终浓度为5g/L的硫胺素,于37℃下培养;当最初添加的甘油耗尽时,在OD稳定的模式下(通过调节转速(ma1000r/min)和通气速率(最大为2vvm),使溶氧维持在30%),600g/L甘油(含20 g/L MgSO4·7H2O和0.2 g/L硫胺素)自动泵入到发酵罐中,以保持碳源的供给;当菌体OD600生长至90时,将IPTG(异丙基-β-D-硫代半乳糖苷)、乳糖添加到发酵罐中,终浓度分别为0.2 mmol/L、20g/L,同时温度调至30℃进行发酵60h,进行目标产物的生产,至此为常规技术;当发酵60h后,诱导组加入鼠李糖(终浓度50mM)诱导5h;未诱导组保持发酵5小时。
发酵产物检测方法如下:
样品处理:发酵液离心(12000r/min,5min)收集1mL培养物,取上清液;纯化产品稀释20倍用于HPLC测定。
HPLC检测:通过高效液相色谱(HPLC)系统( Agilent Technologies)和InertsilODS-SP色谱柱对上清液进行分析,紫外波长为254 nm,流速为0.6 mL/min。梯度洗脱流程为:先用100% (v/v) 流动相A洗脱10min;然后流动相B以0% -50% (v/v) 梯度变化洗脱10 min;流动相B再以50%-0% (v/v) 梯度洗脱5 min;最后用100% (v/v)流动相A洗脱25 min。
发酵产物乳糖残留量对比结果如下表3:
Figure 162625DEST_PATH_IMAGE005
未诱导组发酵产物纯化过程加入乳糖酶后乳糖残留量对比如下表4(“+”表示纯化过程加入乳糖酶),纯化过程为常规技术。
Figure DEST_PATH_IMAGE007
由此结果,可知运用基因编辑得到的菌株在发酵过程中,可以去除多余的乳糖,其效果与在纯化过程加入乳糖酶基本一致,但添加乳糖酶即增加纯化步骤,又增加纯化成本。
序列表
<110> 黄山同兮生物科技有限公司
<120> 一种去除发酵液中乳糖的方法
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
gttttagagc tagaaatagc 20
<210> 2
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gctagcatta tacctaggac 20
<210> 3
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ctaggtataa tgctagcaat tgtgtcgccg tcgatctgtt ttagagctag aaatagc 57
<210> 4
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atttctagct ctaaaacttc gctacccgct ggggtatgct agcattatac ctaggac 57
<210> 5
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tctagaacta gtctgcaggg 20
<210> 6
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gaattcaata gatctaagct 20
<210> 7
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ttagatctat tgaattcctt gtggcagcaa ctgattc 37
<210> 8
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
tccgtaatca tggtcataat gtgatcctgc tgaatttc 38
<210> 9
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
aggtgaatga agtcgcttaa acactgccgg atgcggc 37
<210> 10
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
tgcagactag ttctagaaac accagcgaat gtctttg 37
<210> 11
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
atgaccatga ttacggattc 20
<210> 12
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
agcgacttca ttcacctgac 20
<210> 13
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
aattgtgtcg ccgtcgatct 20
<210> 14
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
ataccccagc gggtagcgaa 20

Claims (10)

1.一种去除发酵液中乳糖的方法,其特征在于,利用改造菌发酵乳糖,最后加入鼠李糖诱导,完成发酵液中乳糖的去除;所述改造菌中,鼠李糖操纵子区域,RhaB基因与RhaA基因替换为LacZ基因与LacY基因。
2.根据权利要求1所述去除发酵液中乳糖的方法,其特征在于,发酵罐中含有发酵培养基。
3.根据权利要求1所述去除发酵液中乳糖的方法,其特征在于,将改造菌、IPTG、乳糖添加到发酵罐中,然后进行发酵,最后加入鼠李糖诱导,完成发酵液中乳糖的去除。
4.根据权利要求1所述去除发酵液中乳糖的方法,其特征在于,进行发酵时,温度为30~37℃,时间为40~90h;诱导的时间为1~10h。
5.根据权利要求1所述去除发酵液中乳糖的方法,其特征在于,改造菌为改造的乳糖发酵菌且敲除乳糖代谢基因。
6.根据权利要求1所述去除发酵液中乳糖的方法,其特征在于,改造菌的制备方法包括以下步骤:
(1)以pTargetF质粒为模板使用引物pTS-CP-F/R342-N20-F/R,分别通过PCR获得线性质粒后连接,再转化感受态细胞,并涂抗性板培养,获得N20-342质粒;
(2)以N20-342质粒为模板,以N20-CPF/R为引物,通过PCR获得线性化N20-342载体片段;
(3)以本底菌株基因组为模板,以342-HL-F/R、342-HR-F/R、lacZ-CDS-F/R为引物,分别通过PCR获得上下游同源臂以及LacZY序列;
(4)将步骤(3)获得的PCR产物连接后转化感受态细胞,并涂抗性板培养,挑选单克隆提取目标质粒;
(5)步骤(4)的目标质粒转入电转感受态菌,然后涂双抗性板培养,选取阳性单克隆菌;
(6)将阳性单克隆菌落挑至LB液体试管,加入IPTG和卡那霉素,培养后划线固体平板,挑去除pTargetF质粒的单克隆挑至无抗LB液体试管,培养后划线无抗平板,挑取pCas质粒去除的菌为改造菌。
7.一种去除发酵液中乳糖用改造菌,其特征在于,所述改造菌中,鼠李糖操纵子区域,RhaB基因与RhaA基因替换为LacZ基因与LacY基因。
8.根据权利要求7所述去除发酵液中乳糖用改造菌,其特征在于,所述改造菌的制备方法包括以下步骤:
(1)以pTargetF质粒为模板使用引物pTS-CP-F/R342-N20-F/R,分别通过PCR获得线性质粒后连接,再转化感受态细胞,并涂抗性板培养,获得N20-342质粒;
(2)以N20-342质粒为模板,以N20-CPF/R为引物,通过PCR获得线性化N20-342载体片段;
(3)以本底菌株基因组为模板,以342-HL-F/R、342-HR-F/R、lacZ-CDS-F/R为引物,分别通过PCR获得上下游同源臂以及LacZY序列;
(4)将步骤(3)获得的PCR产物连接后转化感受态细胞,并涂抗性板培养,挑选单克隆提取目标质粒;
(5)步骤(4)的目标质粒转入电转感受态菌,然后涂双抗性板培养,选取阳性单克隆菌;
(6)将阳性单克隆菌落挑至LB液体试管,加入IPTG和卡那霉素,培养后划线固体平板,挑去除pTargetF质粒的单克隆挑至无抗LB液体试管,培养后划线无抗平板,挑取pCas质粒去除的菌为改造菌。
9.权利要求7所述去除发酵液中乳糖用改造菌在去除发酵液中乳糖中的应用。
10.根据权利要求9所述的应用,其特征在于,改造菌为改造的乳糖发酵菌且敲除乳糖代谢基因。
CN202111610956.XA 2021-12-27 2021-12-27 一种去除发酵液中乳糖的方法 Active CN114107342B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111610956.XA CN114107342B (zh) 2021-12-27 2021-12-27 一种去除发酵液中乳糖的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111610956.XA CN114107342B (zh) 2021-12-27 2021-12-27 一种去除发酵液中乳糖的方法

Publications (2)

Publication Number Publication Date
CN114107342A true CN114107342A (zh) 2022-03-01
CN114107342B CN114107342B (zh) 2024-01-26

Family

ID=80363006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111610956.XA Active CN114107342B (zh) 2021-12-27 2021-12-27 一种去除发酵液中乳糖的方法

Country Status (1)

Country Link
CN (1) CN114107342B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040091976A1 (en) * 2002-07-01 2004-05-13 Ming-De Deng Process and materials for production of glucosamine and N-acetylglucosamine
US6833260B1 (en) * 1999-10-08 2004-12-21 Protein Scientific, Inc. Lactose hydrolysis
US20060014291A1 (en) * 2002-12-02 2006-01-19 Basf Aktiengesellschaft L-rhamnose-inducible expression systems
US20120208181A1 (en) * 2011-02-16 2012-08-16 Glycosyn LLC Biosynthesis Of Human Milk Oligosaccharides In Engineered Bacteria
KR101544184B1 (ko) * 2014-12-19 2015-08-21 서울대학교산학협력단 2-푸코실락토오스 생산 변이 미생물 및 이를 이용한 2-푸코실락토오스의 제조방법
US20160186223A1 (en) * 2013-09-10 2016-06-30 Jennewein Biotechnologie Gmbh Production of oligosaccharides
WO2020071524A1 (ja) * 2018-10-04 2020-04-09 株式会社バイオピーク 発現自動制御コロニーアッセイ法
US20200231635A1 (en) * 2017-08-17 2020-07-23 National Research Council Of Canada Systems and methods for the production of diphtheria toxin polypeptides

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833260B1 (en) * 1999-10-08 2004-12-21 Protein Scientific, Inc. Lactose hydrolysis
US20040091976A1 (en) * 2002-07-01 2004-05-13 Ming-De Deng Process and materials for production of glucosamine and N-acetylglucosamine
US20060014291A1 (en) * 2002-12-02 2006-01-19 Basf Aktiengesellschaft L-rhamnose-inducible expression systems
US20120208181A1 (en) * 2011-02-16 2012-08-16 Glycosyn LLC Biosynthesis Of Human Milk Oligosaccharides In Engineered Bacteria
US20160186223A1 (en) * 2013-09-10 2016-06-30 Jennewein Biotechnologie Gmbh Production of oligosaccharides
KR101544184B1 (ko) * 2014-12-19 2015-08-21 서울대학교산학협력단 2-푸코실락토오스 생산 변이 미생물 및 이를 이용한 2-푸코실락토오스의 제조방법
US20200231635A1 (en) * 2017-08-17 2020-07-23 National Research Council Of Canada Systems and methods for the production of diphtheria toxin polypeptides
WO2020071524A1 (ja) * 2018-10-04 2020-04-09 株式会社バイオピーク 発現自動制御コロニーアッセイ法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
乌兰;陈霞;杨梅;邵玉宇;包维臣;刘娜;张和平;: "影响酸乳后酸化作用的相关因素及其作用机理研究进展", 食品科学, no. 01, pages 247 - 252 *

Also Published As

Publication number Publication date
CN114107342B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
CN110699394B (zh) 一种生产1,5-戊二胺的生物转化法
CN109777763B (zh) 一株用于l-茶氨酸生产的基因工程菌及其构建与应用
US20230109256A1 (en) Method for producing l-theanine via fermentation by a genetically engineered bacterium and the application thereof
CN115786220A (zh) 一种生产2`-岩藻糖基乳糖的重组菌株及构建方法和应用
CN116555145A (zh) 重组大肠杆菌及其构建方法和生产2′-岩藻糖基乳糖的方法
CN107217043A (zh) 一种植物乳杆菌d‑乳酸脱氢酶、其编码基因及应用
CN112029701B (zh) 一种基因工程菌及其在制备22-羟基-23,24-双降胆甾-4-烯-3-酮中的应用
CN112080452B (zh) 一种高产苯乳酸地衣芽孢杆菌基因工程菌、生产苯乳酸的方法和应用
CN114075524B (zh) 阿魏酸生产工程菌、其建立方法及其应用
CN114107342B (zh) 一种去除发酵液中乳糖的方法
CN116355819A (zh) 高效合成乳酰-n-四糖的工程大肠杆菌的构建方法及应用
CN116024150A (zh) 一种生产乙偶姻基因工程菌株及其构建方法与应用
AU2022422808A1 (en) Recombinant corynebacterium glutamicum for producing high-purity isomaltulose at high yield, and application thereof
CN114854659A (zh) 一种麦角硫因生产工艺及其应用
CN112410353B (zh) 一种fkbS基因、含其的基因工程菌及其制备方法和用途
CN109370969B (zh) 一种重组克雷伯氏杆菌在制备1,3-丙二醇中的应用
KR101990104B1 (ko) 1,3-프로판디올 생성능이 향상된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 제조방법
CN106148432B (zh) 一种α-酮基丁酸的发酵生产工艺
CN112094841A (zh) 同步利用葡萄糖和木糖的大肠埃希氏菌工程菌株的构建方法
WO2024011666A1 (zh) 一种l-高丝氨酸高产菌株及其构建方法和应用
WO2024114637A1 (zh) 生产阿卡波糖的工程菌及其构建方法和应用
CN116555156B (zh) 一种提高l-缬氨酸产量的方法及其使用的重组菌
CN117586937B (zh) 一种提高乳酰-n-四糖产量的重组大肠杆菌构建及应用
CN117660277A (zh) 代谢工程改造大肠杆菌及其在发酵制备红景天苷中的应用
WO2022257758A1 (zh) 基于mdh基因的具有启动子活性的多核苷酸及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant