CN114093218B - 一种多功能拖拉机驾驶模拟方法及系统 - Google Patents

一种多功能拖拉机驾驶模拟方法及系统 Download PDF

Info

Publication number
CN114093218B
CN114093218B CN202111312945.3A CN202111312945A CN114093218B CN 114093218 B CN114093218 B CN 114093218B CN 202111312945 A CN202111312945 A CN 202111312945A CN 114093218 B CN114093218 B CN 114093218B
Authority
CN
China
Prior art keywords
signal
tractor
wheel
switch
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111312945.3A
Other languages
English (en)
Other versions
CN114093218A (zh
Inventor
杜岳峰
赵晓宁
毛恩荣
王帅
张延安
翟志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN202111312945.3A priority Critical patent/CN114093218B/zh
Publication of CN114093218A publication Critical patent/CN114093218A/zh
Application granted granted Critical
Publication of CN114093218B publication Critical patent/CN114093218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/04Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

本发明属于模拟驾驶技术领域,尤其涉及一种多功能拖拉机驾驶模拟方法及系统。方法包括:S1、模拟参数设置;S2、操控参数采集;S3、操控参数处理;S4、虚拟场景和拖拉机3D模型动态呈现。本发明基于真实的拖拉机驾驶室和精确的拖拉机整车动力学模型进行驾驶模拟,将驾驶室操控机构的动作与虚拟场景中的拖拉机运动直接关联,达到接近真实的驾驶体验,实时输出所需动力学运行参数并可视化呈现。虚拟场景画面和动力学运行参数分别实时同步显示在第一和第二显示器中,实现实时仿真;本发明可用于高精度试验,包括拖拉机动力学试验、操作部件人机交互,驾驶员培训和驾驶娱乐体验,可扩展性强。

Description

一种多功能拖拉机驾驶模拟方法及系统
技术领域
本发明属于模拟驾驶技术领域,尤其涉及一种多功能拖拉机驾驶模拟方法及系统。
背景技术
田间拖拉机动力学试验和拖拉机人机交互研究成本高,耗费人力多,试验进度易受天气等外部因素影响,试验周期长,效率低下,试验数据易受环境干扰,数据准确性难以适应高精度研究需求。
现有农机驾驶员操作技术培训手段受农田机械化作业季节性强、机型机具种类繁多、培训成本高等条件的制约,田间实际操作培训方式不适应对农机驾驶员进行大规模集中培训需求。
现有的拖拉机模拟驾驶娱乐设备真实度低,设备简陋,操作环境和操控机构与真实拖拉机差别大,用户体验感不足,将真实的拖拉机驾驶室融入拖拉机驾驶模拟器对于提高模拟效果和体验具有重要意义。
现有的拖拉机驾驶模拟设备没有精确的拖拉机动力学模型,因此模拟精度低,只能实现娱乐等功能,无法用于高精度科学试验,更无法实现实时仿真。
发明内容
针对上述技术问题,本发明的目的是提供一种多功能拖拉机驾驶模拟方法及系统,基于真实的拖拉机驾驶室进行驾驶模拟,搭建高精度拖拉机整车动力学模型,实时输出所需动力学运行参数并可视化呈现。
为了实现上述目的,本发明提供了如下技术方案:
一种多功能拖拉机驾驶模拟方法,包括如下步骤:
S1、模拟参数设置;
驾驶员通过多功能拖拉机驾驶模拟器的终端运算模块304内置的虚拟视景系统的人机交互界面对拖拉机作业场景类型、试验工况、拖拉机功率类型、挂接农具类型进行配置,并选择需要在显示模块306的第二显示器602实时显示的动力学参数指标和显示形式;终端运算模块304的虚拟视景系统根据拖拉机作业场景类型、试验工况、拖拉机功率类型和挂接农具类型在显示模块306的第一显示器601上呈现虚拟场景和拖拉机3D模型;
S2、操控参数采集;
驾驶员在多功能拖拉机驾驶模拟器中通过操控机构405进行模拟操控,数据采集模块305实时采集操控机构405的控制信号,经过运算将处理后的控制信号传输至终端运算模块304;
所述处理后的控制信号包括动力学控制信号和辅助控制信号;
所述动力学控制信号包括方向盘转角
Figure BDA0003342446310000027
由脚油门踏板或手油门手柄角位移与全行程比值得到的发动机转速系数λ,由离合器角位移与全行程比值得到的力矩传递系数θ、由制动踏板角位移与全行程比值得到的制动系数β,由挡位增减信号和存储在单片机中的可编辑的挡位数据表格得到的变速器传动比ig和主减速器传动比i0
S3、操控参数处理;
终端运算模块304的虚拟视景系统将动力学控制信号发送至高精度拖拉机整车动力学模型进行处理,获得实时拖拉机动力学参数;将辅助控制信号发送至Unity3D的虚拟物件运动脚本模块中驱动对应动作;
所述实时拖拉机动力学参数包括纵向速度u、横向速度v、纵向加速度
Figure BDA0003342446310000021
横向加速度
Figure BDA0003342446310000022
横摆角r、横摆角速度
Figure BDA0003342446310000023
侧倾角φ、侧倾角速度
Figure BDA0003342446310000024
前轮转角δ、左前轮纵向受力Fxfl、右前轮纵向受力Fxfr、左后轮纵向受力Fxrl、右后轮纵向受力Fxrr、左前轮横向受力Fyfl、右前轮横向受力Fyfr、左后轮横向受力Fyrl、右后轮横向受力Fyrr、左前轮垂直载荷Fzfl、右前轮垂直载荷Fzfr、左后轮垂直载荷Fzrl、右后轮垂直载荷Fzrr、前轴驱动力矩Tf、后轴驱动力矩Tr、左前轮制动力矩Tbfl、右前轮制动力矩Tbfr、左后轮制动力矩Tbrl、右后轮制动力矩Tbrr、前轮角速度ωf、后轮角速度ωr、前轮角加速度
Figure BDA0003342446310000025
后轮角加速度
Figure BDA0003342446310000026
发动机输出转矩Ttq、变速器输出转矩MC和整车制动力矩Tb
所述高精度拖拉机整车动力学模型包括八自由度操纵稳定性动力学模型、发动机模型、传动系模型、转向系模型和制动系模型;
所述八自由度操纵稳定性动力学模型包括车身纵向模型、车身横向模型、车身横摆模型、车身侧倾模型和四轮转动模型;
所述车身纵向模型为:
Figure BDA0003342446310000031
所述车身横向模型为:
Figure BDA0003342446310000032
所述车身横摆模型为:
Figure BDA0003342446310000033
所述车身侧倾模型为:
Figure BDA0003342446310000034
所述四轮转动模型为:
Figure BDA0003342446310000035
Figure BDA0003342446310000036
Figure BDA0003342446310000037
Figure BDA0003342446310000038
公式1~公式8中,M为整车质量,单位为kg;
Figure BDA0003342446310000039
为纵向加速度,单位为m/s2;u为纵向速度,单位为m/s;v为横向速度,单位为m/s;r为横摆角,单位为rad;
Figure BDA00033424463100000310
为横摆角速度,单位为rad/s;ms为簧载质量,单位为kg;hs为质心与侧倾中心垂直距离,单位为m;φ为侧倾角,单位为rad;
Figure BDA00033424463100000311
为侧倾角速度,单位为rad/s;Fxfl为左前轮纵向受力,单位为N;Fxfr为右前轮纵向受力,单位为N;δ为前轮转角,单位为rad;Fxrl为左后轮纵向受力,单位为N;Fxrr为右后轮纵向受力,单位为N;Fyfl为左前轮横向受力,单位为N;Fyfr为右前轮横向受力,单位为N;g为重力加速度,单位为m/s2;α为路面坡度,单位为rad;
Figure BDA00033424463100000312
横向加速度,单位为m/s2;Fyrl为左后轮横向受力,单位为N;Fyrr为右后轮横向受力,单位为N;
Figure BDA00033424463100000313
为侧倾角加速度,单位为rad/s2;IZ为横摆转动惯量,单位为kg·m2
Figure BDA00033424463100000314
为横摆角加速度,单位为rad/s2;IXZ为惯量积,单位为kg·m2;Cf为前轴距,单位为m;Cr为后轴距,单位为m;a为质心到前轴水平距离,单位为m;b为质心到后轴水平距离,单位为m;IX为侧倾转动惯量,单位为kg·m2;Kφf为前侧倾刚度,单位为N·m/rad;Kφr为后侧倾刚度,单位为N·m/rad;Cφf为前等效阻尼系数,单位为N·m·s/rad;Cφr为后等效阻尼系数,单位为N·m·s/rad;If为前轮转动惯量,单位为kg·m2;Ir为后轮转动惯量,单位为kg·m2
Figure BDA0003342446310000041
为前轮角加速度,单位为rad/s2
Figure BDA0003342446310000042
为后轮角加速度,单位为rad/s2;Tf为前轴驱动力矩,单位为N·m;Tr为后轴驱动力矩,单位为N·m;Tbfl为左前轮制动力矩,单位为N·m;Tbfr为右前轮制动力矩,单位为N·m;Tbrl为左后轮制动力矩,单位为N·m;Tbrr为右后轮制动力矩,单位为N·m;Rf为前轮半径,单位为m;Rr为后轮半径,单位为m;
其中,左前轮纵向受力Fxfl、右前轮纵向受力Fxfr、左后轮纵向受力Fxrl、右后轮纵向受力Fxrr分别通过公式9计算获得;
左前轮横向受力Fyfl、右前轮横向受力Fyfr、左后轮横向受力Fyrl、右后轮横向受力Fyrr分别通过公式10计算获得;
Fxij=Dxijsin(Cxarctan(BxijΦxij))+Svx 公式9
Fyij=Dyijsin(Cyarctan(ByijΦyij))+Svyij 公式10
公式9~公式10中,下角标ij分别代表fl、fr、rl、rr,即Fxij分别代表Fxfl、Fxfr、Fxrl、Fxrr,Fyij分别代表Fyfl、Fyfr、Fyrl、Fyrr,以此类推;Dxij分别为计算车轮纵向受力时各车轮的峰值因子,无量纲,分别通过公式11计算获得;Dyij分别为计算车轮横向受力时各车轮的峰值因子,无量纲,分别通过公式12计算获得;Cx为计算车轮纵向受力时的曲线形状因子,无量纲,Cx=B0,B0为常数;Cy为计算车轮横向受力时的曲线形状因子,无量纲,Cy=A0,A0为常数;Bxij分别为计算车轮纵向受力时各车轮的刚度因子,无量纲,分别通过公式13计算获得;Byij分别为计算车轮横向受力时各车轮的刚度因子,无量纲,分别通过公式14计算获得;Φxij和Φyij均为中间量,无单位,分别通过公式15和公式16计算获得;Svx为计算车轮纵向受力时曲线的垂直方向漂移,Svx=0;Svyij分别为计算车轮横向受力时各车轮曲线的垂直方向漂移,无量纲,分别通过公式17计算获得;
Dxij=B1Fzij 2+B2Fzij 公式11
Dyij=A1Fzij 2+A2Fzij 公式12
Figure BDA0003342446310000051
Byij=A3sin(2arctan(Fzij/A4))(1-A5|γ|)/(CyDyij) 公式14
Figure BDA0003342446310000052
Figure BDA0003342446310000053
Svyij=A11Fzijγ+A12Fzij+A13 公式17
公式11~公式17中,A1~A13、B1~B13均为常数;下角标ij分别代表fl、fr、rl、rr,Fzij为各车轮垂直载荷,单位为N,分别通过公式18~公式21计算获得;e为自然对数的底数;γ为车轮外倾角,单位为rad;ωi为前轮角速度ωf或后轮角度ωr;Ri为前轮半径Rf或后轮半径Rr;uij为各车轮纵向速度,单位为m/s,通过公式22计算获得;Exij为计算车轮纵向受力时各车轮的曲线曲率因子,无量纲,通过公式23计算获得;Shxij为计算车轮纵向受力时曲线的水平方向漂移,无量纲,通过公式24计算获得;vij为各车轮横向速度,单位为m/s,通过公式25计算获得;Eyij为计算车轮横向受力时各车轮的曲线曲率因子,无量纲,通过公式26计算获得;Shyij为计算车轮横向受力时曲线的水平方向漂移,无量纲,通过公式27计算获得;
Figure BDA0003342446310000054
Figure BDA0003342446310000055
Figure BDA0003342446310000056
Figure BDA0003342446310000057
公式18~公式19中,mu为非簧载质量,单位为kg;hg为整车质心高度,单位为m;L为整车轴距,单位为m;
Figure BDA0003342446310000058
Exij=B6Fzij 2+B7Fzij+B8 公式23
Shxij=B9Fzij+B10 公式24
Figure BDA0003342446310000061
Eyij=A6Fzij 2+A7 公式26
Shyij=A9Fzij+A10+A8γ 公式27
下角标ij分别代表fl、fr、rl、rr,Ci为前轴距Cf或后轴距Cr,单位为m,当计算左前车轮时,
Figure BDA0003342446310000062
当计算右前车轮时,
Figure BDA0003342446310000063
当计算左后车轮时,
Figure BDA0003342446310000064
当计算右后车轮时,
Figure BDA0003342446310000065
p为质心到前轴水平距离a或质心到后轴水平距离b,当计算前轴车轮时,
Figure BDA0003342446310000066
当计算后轴车轮时,
Figure BDA0003342446310000067
所述发动机模型为:
Ttq=Tmax-(Tmax-TP)(nmax-n)2/(nmax-n)2 公式28
公式28中,Ttq为发动机输出转矩,单位为N·m;Tmax为发动机最大转矩,单位为N·m;TP为发动机最大功率点转矩,单位为N·m;nmax为发动机最大转速,单位为r/min;n为发动机待求点转速,单位为r/min,n=nmaxλ;λ为发动机转速系数,无量纲;
所述传动系统模型为:
MC=Ttqθigi0η 公式29
公式29中,MC为传动系输出转矩,单位为N·m;θ为力矩传递系数,无量纲;ig为变速器传动比,无量纲;i0为主减速器传动比,无量纲;η为传动效率,无量纲;
所述转向系模型为:
Figure BDA0003342446310000068
公式30中,IS为转向系转动惯量,单位为kg·m2;iS为转向系传动比,无量纲;ks为转向系线性刚度系数,无量纲;ksl为转向阻力系数,无量纲;BS为转向角速度阻力系数,无量纲;
Figure BDA0003342446310000069
为方向盘转角,单位为rad;
所述制动系模型为:
Tb=Tbmaxβ 公式31
公式31中,Tb为制动力矩,单位为N·m;Tbmax为最大制动力矩,单位为N·m;β为制动系数,无量纲;
S4、虚拟场景和拖拉机3D模型动态呈现;
终端运算模块304内置的虚拟视景系统根据实时拖拉机动力学参数动态调整虚拟场景中拖拉机3D模型的姿态,根据其他控制信号参数动态调整拖拉机上其他部件的动作,并相应变换虚拟场景,实现实时仿真。
所述步骤S1中,所述拖拉机作业场景类型包括拖拉机试验场、田间运输道路、标准公路、丘陵山地、旱地、水田;
所述试验工况包括牵引和动力性能试验场、爬坡性能试验场、直线高速跑道试验场、环形跑道转向性能试验场、颠簸跑道试验场、曲线起伏跑道试验场、侧翻试验台和整车振动试验台;
所述拖拉机功率类型包括功率小于30千瓦的小型拖拉机、功率为40千瓦-70千瓦的中型拖拉机和功率大于70千瓦的大型拖拉机;
所述挂接农具类型包括拖斗、圆盘耙、平地器、铲运斗、犁、推土铲、翻转犁、旋耕机、播种机、粉碎机、收割机、脱粒机和旋耕机;
所述动力学参数指标包括纵向速度、横向速度、纵向加速度、横向加速度、横摆角、横摆角速度、侧倾角、侧倾角速度、前轮转角、各轮垂向受力、各轮纵向受力、各轮横向受力、前后轴驱动力矩、各轮制动力矩、前后轮角速度、前后轮角加速度、发动机输出转矩、变速器输出转矩和整车制动力矩;
所述显示形式包括曲线图、柱状图、扇形图、条形图、面积图、散点图、组合图、三坐标曲面图和表格。
所述步骤S1中,人机交互界面通过Unity3D创建,基于skin、color、tooltip、depth变量,添加Label、Window、Button、RepeatButton、PasswordField、Slider控件;
虚拟场景采用Unity3D建模,包括模拟试验场景、设施环境和自然气候场景;其中,
模拟试验场景包括牵引和动力性能试验场、爬坡性能试验场、直线高速跑道试验场、环形跑道转向性能试验场、颠簸跑道试验场、曲线起伏跑道试验场、侧翻试验台和整车振动试验台;
设施环境包括房屋、围墙、指示标牌和路灯;
自然气候场景包括地形、天空、山、植被、河流、雾和雨;
拖拉机3D模型采用3DS Max建立,并导入到Unity3D;
将虚拟场景、拖拉机3D模型和人机交互界面整合到一个项目中,建立连接关系。
为虚拟场景中的个体设定物理特性,为不同物体添加碰撞器、力场和蒙皮,使得虚拟场景具备与现实相同的物理性质;采用着色器对物体进行渲染,使虚拟场景更加逼真。
所述操控机构405的控制信号包括方向盘转角、脚油门踏板或手油门手柄角位移、离合器角位移、制动踏板角位移、增减挡通断信号、行驶方向控制手柄通断信号、点火开关通断信号、灯控手柄通断信号、刮水器旋钮角位移信号、洗涤器按钮通断信号、电喇叭按钮通断信号、驻车制动手柄通断信号、PTO换挡手柄通断信号、PTO开关通断信号、液压输出手柄通断信号、定时旋钮角位移信号、流量控制旋钮角位移信号、拇指开关通断信号、电控多路阀使能开关通断信号、变速杆通断信号、差速锁开关通断信号、前驱动开关通断信号、悬挂提升控制旋钮角位移信号、减震开关通断信号、耕深控制旋钮角位移信号、提升高度限制旋钮角位移信号、力位综合控制旋钮角位移信号、悬挂下降速度控制旋钮角位移信号、灯光总开关通断信号、信号灯转换开关通断信号、危险报警开关通断信号。
所述辅助控制信号包括行驶方向控制手柄0/1信号、点火开关0/1信号、灯控手柄0/1信号、由刮水器旋钮角位移与全行程比值得到的比例信号、洗涤器按钮0/1信号、电喇叭按钮0/1信号、驻车制动手柄0/1信号、PTO换挡手柄0/1信号、PTO开关0/1信号、液压输出手柄0/1信号、由定时旋钮角位移与全行程比值得到的比例信号、由流量控制旋钮角位移与全行程比值得到的比例信号、拇指开关0/1信号、电控多路阀使能开关0/1信号、变速杆0/1信号、差速锁开关0/1信号、前驱动开关0/1信号、由悬挂提升控制旋钮角位移与全行程比值得到的比例信号、减震开关0/1信号、由耕深控制旋钮角位移与全行程比值得到的比例信号、由提升高度限制旋钮角位移与全行程比值得到的比例信号、由力位综合控制旋钮角位移与全行程比值得到的比例信号、由悬挂下降速度控制旋钮角位移与全行程比值得到的比例信号、灯光总开关0/1信号、信号灯转换开关0/1信号和危险报警开关0/1信号。
所述八自由度操纵稳定性动力学模型中,设定两前轮转向角相等,同轴两侧轮驱动力平均分配,忽略外倾横向推力和侧倾转向,车辆侧倾轴与坐标系x轴重合,车身与轮作相同的横摆运动;所述坐标系以拖拉机质心垂线CG与侧倾轴交点作为原点建立,所有角位移、角加速度均取正方向。
所述高精度拖拉机整车动力学模型的采用欧拉法解算。
所述高精度拖拉机整车动力学模型需要转换为Tractor Controller脚本代码形式写入Unity3D;首先,基于Simulink建立整车图形化模型图,利用Simulink软件自带的代码生成功能将其模型转换为代码,再基于Move函数、SpeedSwitch函数、SteerHelper函数和TractionControl函数将初步代码进行修改嵌套得到脚本文件加入Unity3D项目中,将高精度拖拉机整车动力学模型与拖拉机3D模型直接关联。
一种采用所述的多功能拖拉机驾驶模拟方法的多功能拖拉机驾驶模拟器,包括电控拖拉机驾驶室301,以及布置在电控拖拉机驾驶室301内的终端运算模块304、数据采集模块305和显示模块306;
所述终端运算模块304包含一个基于Unity3D的虚拟视景系统,驱动虚拟场景动画;
所述数据采集模块305选用一块STM32单片机,所述STM32单片机自动采集数据采集模块305中各传感器的电平信号,并发送至终端运算模块304;所述数据采集模块305包括开关型传感器和角位移传感器;
所述终端运算模块304与数据采集模块305采用标准通讯协议,实现数据的规范化传输;
所述电控拖拉机驾驶室301包括拖拉机驾驶室框架401,以及按照真实拖拉机驾驶室布置在拖拉机驾驶室框架401上的仪表板402、侧面座椅403、主座椅404和操控机构405;
所述主座椅404采用空气弹簧座椅;侧面座椅403用于研究人员或观测人员记录数据或观测显示模块306的实时画面;
所述电控拖拉机驾驶室301的底部设有行走机构303;
所述显示模块306通过显示器支架302固接在拖拉机驾驶室框架401上;所述显示模块306包括第一显示器601和第二显示器602,其中,所述第一显示器601位于主座椅404的正前方;所述第二显示器602位于第一显示器601的左侧或右侧;
所述显示器支架302包括由固定支架701与活动支架702组成的第一显示器支架和第二显示器支架801;所述活动支架702位置可调地安装在固定支架701上;所述第一显示器601固接在活动支架702上,能够随活动支架702横向滑动和转动一定角度;第二显示器602通过第二显示器支架801固接在拖拉机驾驶室框架401上,位于第一显示器601的左侧或右侧;
所述第一显示器601采用55英寸曲面显示器,具备声音系统,可模拟拖拉机运行状态下不同声音,安装在驾驶室前端,显示虚拟场景和拖拉机3D模型,所述第二显示器602采用24英寸显示器,安装在驾驶室右侧,作为驾驶员启动并配置虚拟视景系统的交互设备,用于模拟前参数配置,模拟中数据显示,模拟后数据处理及评价;
所述操控机构405包括方向盘901、行驶方向控制手柄902、点火开关903、灯控手柄904、刮水器旋钮905、洗涤器按钮906、电喇叭按钮907、离合器踏板1001、驻车制动手柄1002、脚油门踏板1003、制动踏板1004、PTO换挡手柄1101、PTO开关1102、液压输出手柄1103、定时旋钮1104、流量控制旋钮1105、拇指开关1106、电控多路阀使能开关1107、变速杆1108、手油门手柄1109、差速锁开关1110、前驱动开关1111、悬挂提升控制旋钮1112、减震开关1113、耕深控制旋钮1114、提升高度限制旋钮1115、力位综合控制旋钮1116、悬挂下降速度控制旋钮1117、灯光总开关1118、信号灯转换开关1119和危险报警开关1120;
其中,行驶方向控制手柄902、点火开关903、灯控手柄904、刮水器旋钮905、洗涤器按钮906、电喇叭按钮907、离合器踏板1001、驻车制动手柄1002、制动踏板1004、PTO换挡手柄1101、PTO开关1102、液压输出手柄1103、拇指开关1106、电控多路阀使能开关1107、变速杆1108、差速锁开关1110、前驱动开关1111、减震开关1113、灯光总开关1118、信号灯转换开关1119和危险报警开关1120均采用开关型传感器采集信号;
其中,所述脚油门踏板1003、定时旋钮1104、流量设定旋钮1105、手油门手柄1109、悬挂提升控制旋钮1112、耕深控制旋钮1114、提升高度限制旋钮1115、力位综合控制旋钮1116和悬挂下降速度控制旋钮1117均采用角位移传感器采集信号;
所述方向盘901采用绝对值编码器采集信号;
各传感器通过线束连接到数据采集模块305。
与现有技术相比,本发明的有益效果在于:
本发明基于真实的拖拉机驾驶室和精确的拖拉机整车动力学模型进行驾驶模拟,将驾驶室操控机构的动作与虚拟场景中的拖拉机运动直接关联,达到接近真实的驾驶体验,实时输出所需动力学运行参数并可视化呈现。虚拟场景画面和动力学运行参数分别实时同步显示在第一和第二显示器中,实现实时仿真;本发明可用于高精度试验,包括拖拉机动力学试验、操作部件人机交互,驾驶员培训和驾驶娱乐体验,可扩展性强。
汽车操纵稳定性动力学模型最常用的是不考虑侧倾的7自由度模型,但其无法更加真实地反映汽车实际运行状态。拖拉机重心高,侧倾对其运动状态有较大影响,该8自由度动力学模型将侧倾自由度考虑进来,结合拖拉机本身结构特点创新性地将侧倾对纵向、横向、横摆运动以及车轮载荷转移的影响精确地计算出来,能够更加真实准确的模拟计算拖拉机实时状态,满足仿真精度要求。
附图说明
图1是本发明的多功能拖拉机驾驶模拟方法流程图;
图2是本发明的多功能拖拉机驾驶模拟系统的结构示意图;
图3是电控拖拉机驾驶室301的结构示意图;
图4是行走模块303的结构示意图;
图5是显示模块306的布置示意图;
图6是第一显示器支架的结构示意图;
图7是第二显示器支架的结构示意图;
图8、图9、图10是操控机构405的结构示意图。
其中的附图标记为:
301-电控拖拉机驾驶室 302-显示器支架
303-行走机构 304-终端运算模块
305-数据采集模块 306-显示模块
401-拖拉机驾驶室框架 402-仪表板
403-侧面座椅 404-主座椅
405-操控机构 501-板体
502-加强筋 503-万向轮
601-第一显示器 602-第二显示器
701-固定支架 702-活动支架
801-第二显示器支架 901-方向盘
902-行驶方向控制手柄 903-点火开关
904-灯控手柄 905-刮水器旋钮
906-洗涤器按钮 907-电喇叭按钮
1001-离合器踏板 1002-驻车制动手柄
1003-脚油门踏板 1004-制动踏板
1101-PTO换挡手柄 1102-PTO开关
1103-液压输出手柄 1104-定时旋钮
1105-流量控制旋钮 1106-拇指开关
1107-电控多路阀使能开关 1108-变速杆
1109-手油门手柄 1110-差速锁开关
1111-前驱动开关 1112-悬挂提升控制旋钮
1113-减震开关 1114-耕深控制旋钮
1115-提升高度限制旋钮 1116-力位综合控制旋钮
1117-悬挂下降速度控制旋钮 1118-灯光总开关
1119-信号灯转换开关 1120-危险报警开关
具体实施方式
下面结合附图和实施例对本发明进行进一步说明。
如图1所示,本发明的一种多功能拖拉机驾驶模拟方法,包括如下步骤:
S1、模拟参数设置;
驾驶员通过多功能拖拉机驾驶模拟器的终端运算模块304内置的虚拟视景系统的人机交互界面对拖拉机作业场景类型、试验工况、拖拉机功率类型、挂接农具类型进行配置,并选择需要在显示模块306的第二显示器602实时显示的动力学参数指标和显示形式;终端运算模块304的虚拟视景系统根据拖拉机作业场景类型、试验工况、拖拉机功率类型和挂接农具类型在显示模块306的第一显示器601上呈现虚拟场景和拖拉机3D模型;
所述拖拉机作业场景类型包括拖拉机试验场、田间运输道路、标准公路、丘陵山地、旱地、水田;
所述试验工况包括牵引和动力性能试验场、爬坡性能试验场、直线高速跑道试验场、环形跑道转向性能试验场、颠簸跑道试验场、曲线起伏跑道试验场、侧翻试验台和整车振动试验台。
所述拖拉机功率类型包括功率小于30千瓦的小型拖拉机、功率为40千瓦-70千瓦的中型拖拉机和功率大于70千瓦的大型拖拉机。
所述挂接农具类型包括拖斗、圆盘耙、平地器、铲运斗、犁、推土铲、翻转犁、旋耕机、播种机、粉碎机、收割机、脱粒机和旋耕机。
所述动力学参数指标包括纵向速度、横向速度、纵向加速度、横向加速度、横摆角、横摆角速度、侧倾角、侧倾角速度、前轮转角、各轮垂向受力、各轮纵向受力、各轮横向受力、前后轴驱动力矩、各轮制动力矩、前后轮角速度、前后轮角加速度、发动机输出转矩、变速器输出转矩和整车制动力矩。
所述显示形式包括曲线图、柱状图、扇形图、条形图、面积图、散点图、组合图、三坐标曲面图和表格。
所述步骤S1中,人机交互界面通过Unity3D创建,基于skin、color、tooltip、depth变量,添加Label、Window、Button、RepeatButton、PasswordField、Slider控件。
所述步骤S1中,虚拟场景采用Unity3D建模,包括模拟试验场景、设施环境和自然气候场景;其中,
模拟试验场景包括牵引和动力性能试验场、爬坡性能试验场、直线高速跑道试验场、环形跑道转向性能试验场、颠簸跑道试验场、曲线起伏跑道试验场、侧翻试验台和整车振动试验台。
设施环境包括房屋、围墙、指示标牌和路灯。
自然气候场景包括地形、天空、山、植被、河流、雾和雨。
所述步骤S1中,拖拉机3D模型采用3DS Max建立,并导入到Unity3D。
所述步骤S1中,将虚拟场景、拖拉机3D模型和人机交互界面整合到一个项目中,建立连接关系。
为虚拟场景中的个体设定物理特性,为不同物体添加碰撞器、力场和蒙皮,使得虚拟场景具备与现实相同的物理性质;采用着色器对物体进行渲染,使虚拟场景更加逼真。
S2、操控参数采集;
驾驶员在多功能拖拉机驾驶模拟器中通过操控机构405进行模拟操控,数据采集模块305实时采集操控机构405的控制信号,经过运算将处理后的控制信号传输至终端运算模块304;
所述操控机构405的控制信号包括方向盘转角、脚油门踏板或手油门手柄角位移、离合器角位移、制动踏板角位移、增减挡通断信号、行驶方向控制手柄通断信号、点火开关通断信号、灯控手柄通断信号、刮水器旋钮角位移信号、洗涤器按钮通断信号、电喇叭按钮通断信号、驻车制动手柄通断信号、PTO换挡手柄通断信号、PTO开关通断信号、液压输出手柄通断信号、定时旋钮角位移信号、流量控制旋钮角位移信号、拇指开关通断信号、电控多路阀使能开关通断信号、变速杆通断信号、差速锁开关通断信号、前驱动开关通断信号、悬挂提升控制旋钮角位移信号、减震开关通断信号、耕深控制旋钮角位移信号、提升高度限制旋钮角位移信号、力位综合控制旋钮角位移信号、悬挂下降速度控制旋钮角位移信号、灯光总开关通断信号、信号灯转换开关通断信号、危险报警开关通断信号;
所述处理后的控制信号包括动力学控制信号和辅助控制信号;其中,
所述动力学控制信号包括方向盘转角
Figure BDA0003342446310000141
由脚油门踏板或手油门手柄角位移与全行程比值得到的发动机转速系数λ,由离合器角位移与全行程比值得到的力矩传递系数θ、由制动踏板角位移与全行程比值得到的制动系数β,由挡位增减信号和存储在单片机中的可编辑的挡位数据表格得到的变速器传动比ig和主减速器传动比i0
所述辅助控制信号包括行驶方向控制手柄0/1信号、点火开关0/1信号、灯控手柄0/1信号、由刮水器旋钮角位移与全行程比值得到的比例信号、洗涤器按钮0/1信号、电喇叭按钮0/1信号、驻车制动手柄0/1信号、PTO换挡手柄0/1信号、PTO开关0/1信号、液压输出手柄0/1信号、由定时旋钮角位移与全行程比值得到的比例信号、由流量控制旋钮角位移与全行程比值得到的比例信号、拇指开关0/1信号、电控多路阀使能开关0/1信号、变速杆0/1信号、差速锁开关0/1信号、前驱动开关0/1信号、由悬挂提升控制旋钮角位移与全行程比值得到的比例信号、减震开关0/1信号、由耕深控制旋钮角位移与全行程比值得到的比例信号、由提升高度限制旋钮角位移与全行程比值得到的比例信号、由力位综合控制旋钮角位移与全行程比值得到的比例信号、由悬挂下降速度控制旋钮角位移与全行程比值得到的比例信号、灯光总开关0/1信号、信号灯转换开关0/1信号和危险报警开关0/1信号。
S3、操控参数处理;
终端运算模块304的虚拟视景系统将动力学控制信号发送至高精度拖拉机整车动力学模型进行处理,获得实时拖拉机动力学参数;将辅助控制信号发送至Unity3D的虚拟物件运动脚本模块中驱动对应动作。
所述实时拖拉机动力学参数包括纵向速度u、横向速度v、纵向加速度
Figure BDA0003342446310000151
横向加速度
Figure BDA0003342446310000152
横摆角r、横摆角速度
Figure BDA0003342446310000153
侧倾角φ、侧倾角速度
Figure BDA0003342446310000154
前轮转角δ、左前轮纵向受力Fxfl、右前轮纵向受力Fxfr、左后轮纵向受力Fxrl、右后轮纵向受力Fxrr、左前轮横向受力Fyfl、右前轮横向受力Fyfr、左后轮横向受力Fyrl、右后轮横向受力Fyrr、左前轮垂直载荷Fzfl、右前轮垂直载荷Fzfr、左后轮垂直载荷Fzrl、右后轮垂直载荷Fzrr、前轴驱动力矩Tf、后轴驱动力矩Tr、左前轮制动力矩Tbfl、右前轮制动力矩Tbfr、左后轮制动力矩Tbrl、右后轮制动力矩Tbrr、前轮角速度ωf、后轮角速度ωr、前轮角加速度
Figure BDA0003342446310000155
后轮角加速度
Figure BDA0003342446310000156
发动机输出转矩Ttq、变速器输出转矩MC和整车制动力矩Tb
所述高精度拖拉机整车动力学模型包括八自由度操纵稳定性动力学模型、发动机模型、传动系模型、转向系模型和制动系模型。
所述八自由度操纵稳定性动力学模型包括车身纵向模型、车身横向模型、车身横摆模型、车身侧倾模型和四轮转动模型。
所述八自由度操纵稳定性动力学模型中,设定两前轮转向角相等,同轴两侧车轮驱动力平均分配,忽略外倾横向推力和侧倾转向,车辆侧倾轴与坐标系x轴重合,车身与车轮作相同的横摆运动。所述坐标系以拖拉机质心垂线CG与侧倾轴交点作为原点建立,所有角位移、角加速度均取正方向。
所述车身纵向模型为:
Figure BDA0003342446310000157
所述车身横向模型为:
Figure BDA0003342446310000158
所述车身横摆模型为:
Figure BDA0003342446310000159
所述车身侧倾模型为:
Figure BDA0003342446310000161
所述四轮转动模型为:
Figure BDA0003342446310000162
Figure BDA0003342446310000163
Figure BDA0003342446310000164
Figure BDA0003342446310000165
公式1~公式8中,M为整车质量,单位为kg;
Figure BDA0003342446310000166
为纵向加速度,单位为m/s2;u为纵向速度,单位为m/s;v为横向速度,单位为m/s;r为横摆角,单位为rad;
Figure BDA0003342446310000167
为横摆角速度,单位为rad/s;ms为簧载质量,单位为kg;hs为质心与侧倾中心垂直距离,单位为m;φ为侧倾角,单位为rad;
Figure BDA0003342446310000168
为侧倾角速度,单位为rad/s;Fxfl为左前轮纵向受力,单位为N;Fxfr为右前轮纵向受力,单位为N;δ为前轮转角,单位为rad;Fxrl为左后轮纵向受力,单位为N;Fxrr为右后轮纵向受力,单位为N;Fyfl为左前轮横向受力,单位为N;Fyfr为右前轮横向受力,单位为N;g为重力加速度,单位为m/s2;α为路面坡度,单位为rad;
Figure BDA0003342446310000169
为横向加速度,单位为m/s2;Fyrl为左后轮横向受力,单位为N;Fyrr为右后轮横向受力,单位为N;
Figure BDA00033424463100001610
为侧倾角加速度,单位为rad/s2;IZ为横摆转动惯量,单位为kg·m2
Figure BDA00033424463100001611
为横摆角加速度,单位为rad/s2;IXZ为惯量积,单位为kg·m2;Cf为前轴距,单位为m;Cr为后轴距,单位为m;a为质心到前轴水平距离,单位为m;b为质心到后轴水平距离,单位为m;IX为侧倾转动惯量,单位为kg·m2;Kφf为前侧倾刚度,单位为N·m/rad;Kφr为后侧倾刚度,单位为N·m/rad;Cφf为前等效阻尼系数,单位为N·m·s/rad;Cφr为后等效阻尼系数,单位为N·m·s/rad;If为前轮转动惯量,单位为kg·m2;Ir为后轮转动惯量,单位为kg·m2
Figure BDA00033424463100001612
为前轮角加速度,单位为rad/s2
Figure BDA00033424463100001613
为后轮角加速度,单位为rad/s2;Tf为前轴驱动力矩,单位为N·m;Tr为后轴驱动力矩,单位为N·m;Tbfl为左前轮制动力矩,单位为N·m;Tbfr为右前轮制动力矩,单位为N·m;Tbrl为左后轮制动力矩,单位为N·m;Tbrr为右后轮制动力矩,单位为N·m;Rf为前轮半径,单位为m;Rr为后轮半径,单位为m;
其中,左前轮纵向受力Fxfl、右前轮纵向受力Fxfr、左后轮纵向受力Fxrl、右后轮纵向受力Fxrr分别通过公式9计算获得;
左前轮横向受力Fyfl、右前轮横向受力Fyfr、左后轮横向受力Fyrl、右后轮横向受力Fyrr分别通过公式10计算获得;
Fxij=Dxijsin(Cxarctan(BxijΦxij))+Svx 公式9
Fyij=Dyijsin(Cyarctan(ByijΦyij))+Svyij 公式10
公式9~公式10中,下角标ij分别代表fl、fr、rl、rr,即Fxij分别代表Fxfl、Fxfr、Fxrl、Fxrr,Fyij分别代表Fyfl、Fyfr、Fyrl、Fyrr,以此类推;Dxij分别为计算车轮纵向受力时各车轮的峰值因子,无量纲,分别通过公式11计算获得;Dyij分别为计算车轮横向受力时各车轮的峰值因子,无量纲,分别通过公式12计算获得;Cx为计算车轮纵向受力时的曲线形状因子,无量纲,Cx=B0,B0为常数;Cy为计算车轮横向受力时的曲线形状因子,无量纲,Cy=A0,A0为常数;Bxij分别为计算车轮纵向受力时各车轮的刚度因子,无量纲,分别通过公式13计算获得;Byij分别为计算车轮横向受力时各车轮的刚度因子,无量纲,分别通过公式14计算获得;Φxij和Φyij均为中间量,无单位,分别通过公式15和公式16计算获得;Svx为计算车轮纵向受力时曲线的垂直方向漂移,Svx=0;Svyij分别为计算车轮横向受力时各车轮曲线的垂直方向漂移,无量纲,分别通过公式17计算获得;
Dxij=B1Fzij 2+B2Fzij 公式11
Dyij=A1Fzij 2+A2Fzij 公式12
Figure BDA0003342446310000171
Byij=A3sin(2arctan(Fzij/A4))(1-A5|γ|)/(CyDyij) 公式14
Figure BDA0003342446310000172
Figure BDA0003342446310000173
Svyij=A11Fzijγ+A12Fzij+A13 公式17
公式11~公式17中,A1~A13、B1~B13均为常数;下角标ij分别代表fl、fr、rl、rr,Fzij为各车轮垂直载荷,单位为N,分别通过公式18~公式21计算获得;e为自然对数的底数;γ为车轮外倾角,单位为rad;ωi为前轮角速度ωf或后轮角度ωr;Ri为前轮半径Rf或后轮半径Rr;uij为各车轮纵向速度,单位为m/s,通过公式22计算获得;Exij为计算车轮纵向受力时各车轮的曲线曲率因子,无量纲,通过公式23计算获得;Shxij为计算车轮纵向受力时曲线的水平方向漂移,无量纲,通过公式24计算获得;vij为各车轮横向速度,单位为m/s,通过公式25计算获得;Eyij为计算车轮横向受力时各车轮的曲线曲率因子,无量纲,通过公式26计算获得;Shyij为计算车轮横向受力时曲线的水平方向漂移,无量纲,通过公式27计算获得;
Figure BDA0003342446310000181
Figure BDA0003342446310000182
Figure BDA0003342446310000183
Figure BDA0003342446310000184
公式18~公式19中,mu为非簧载质量,单位为kg;hg为整车质心高度,单位为m;L为整车轴距,单位为m;
Figure BDA0003342446310000185
Exij=B6Fzij 2+B7Fzij+B8 公式23
Shxij=B9Fzij+B10 公式24
Figure BDA0003342446310000186
Eyij=A6Fzij 2+A7 公式26
Shyij=A9Fzij+A10+A8γ 公式27
下角标ij分别代表fl、fr、rl、rr,Ci为前轴距Cf或后轴距Cr,单位为m,当计算左前车轮时,
Figure BDA0003342446310000187
当计算右前车轮时,
Figure BDA0003342446310000188
当计算左后车轮时,
Figure BDA0003342446310000189
当计算右后车轮时,
Figure BDA0003342446310000191
p为质心到前轴水平距离a或质心到后轴水平距离b,当计算前轴车轮时,
Figure BDA0003342446310000192
当计算后轴车轮时,
Figure BDA0003342446310000193
所述发动机模型为:
Ttq=Tmax-(Tmax-TP)(nmax-n)2/(nmax-n)2 公式28
公式28中,Ttq为发动机输出转矩,单位为N·m;Tmax为发动机最大转矩,单位为N·m;TP为发动机最大功率点转矩,单位为N·m;nmax为发动机最大转速,单位为r/min;n为发动机待求点转速,单位为r/min,n=nmaxλ;λ为发动机转速系数,无量纲;
传动系统包含离合器、变速器和主减速器,为降低模型复杂程度,将离合器、变速器、主减速器视为刚性系统。
所述传动系统模型为:
MC=Ttqθigi0η 公式29
公式29中,MC为传动系输出转矩,单位为N·m;θ为力矩传递系数,无量纲;ig为变速器传动比,无量纲;i0为主减速器传动比,无量纲;η为传动效率,无量纲。
由于转向系机械结构本身存在一定刚度和阻尼,为保证仿真精度,考虑部分刚度和阻尼特性,建立转向系模型。
所述转向系模型为:
Figure BDA0003342446310000194
公式30中,IS为转向系转动惯量,单位为kg·m2;iS为转向系传动比,无量纲;ks为转向系线性刚度系数,无量纲;ksl为转向阻力系数,无量纲;BS为转向角速度阻力系数,无量纲;
Figure BDA0003342446310000195
为方向盘转角,单位为rad;
根据地面制动力与附着力之间的关系,建立制动系模型。
所述制动系模型为:
Tb=Tbmaxβ 公式31
公式31中,Tb为制动力矩,单位为N·m;Tbmax为最大制动力矩,单位为N·m;β为制动系数,无量纲。
优选地,所述高精度拖拉机整车动力学模型的采用欧拉法解算。
所述高精度拖拉机整车动力学模型需要转换为Tractor Controller脚本代码形式写入Unity3D。首先,基于Simulink建立整车图形化模型图,利用Simulink软件自带的代码生成功能将其模型转换为代码,再基于Move函数、SpeedSwitch函数、SteerHelper函数和TractionControl函数等将初步代码进行修改嵌套即可得到脚本文件加入Unity3D项目中,将高精度拖拉机整车动力学模型与拖拉机3D模型直接关联。该方法借助Simulink功能实现了脚本代码的高效快速获取。
S4、虚拟场景和拖拉机3D模型动态呈现;
终端运算模块304内置的虚拟视景系统根据实时拖拉机动力学参数动态调整虚拟场景中拖拉机3D模型的姿态,根据其他控制信号参数动态调整拖拉机上其他部件的动作,并相应变换虚拟场景,实现实时仿真。
如图2所示,一种采用多功能拖拉机驾驶模拟方法的多功能拖拉机驾驶模拟器,包括电控拖拉机驾驶室301,以及布置在电控拖拉机驾驶室301内的终端运算模块304、数据采集模块305和显示模块306。
所述终端运算模块304包含一个基于Unity3D的虚拟视景系统,驱动虚拟场景动画。
所述数据采集模块305选用一块STM32单片机,所述STM32单片机自动采集数据采集模块305中各传感器的电平信号,并发送至终端运算模块304。所述数据采集模块305包括开关型传感器和角位移传感器。
所述终端运算模块304与数据采集模块305采用标准通讯协议,实现数据的规范化传输。
如图3所示,所述电控拖拉机驾驶室301包括拖拉机驾驶室框架401,以及按照真实拖拉机驾驶室布置在拖拉机驾驶室框架401上的仪表板402、侧面座椅403、主座椅404和操控机构405。
所述主座椅404采用空气弹簧座椅;侧面座椅403用于研究人员或观测人员记录数据或观测显示模块306的实时画面。
所述电控拖拉机驾驶室301的底部设有行走机构303。如图4所示,所述行走模块303包括板体501、加强筋502和万向轮503;加强筋502固接在板体501上,四个万向轮503用螺栓安装在板体501上;四轮转向,转向半径范围大,驾驶模拟器机动性和灵活性高;四轮制动,驾驶模拟器停驻稳定性高。
所述显示模块306通过显示器支架302固接在拖拉机驾驶室框架401上。如图5所示,所述显示模块306包括第一显示器601和第二显示器602,其中,所述第一显示器601位于主座椅404的正前方;所述第二显示器602位于第一显示器601的左侧或右侧。
所述显示器支架302包括由固定支架701与活动支架702组成的第一显示器支架和第二显示器支架801。如图6所示,所述活动支架702位置可调地安装在固定支架701上;所述第一显示器601固接在活动支架702上,能够随活动支架702横向滑动和转动一定角度。如图7所示,第二显示器602通过第二显示器支架801固接在拖拉机驾驶室框架401上,位于第一显示器601的左侧或右侧。
所述第一显示器601采用55英寸曲面显示器,具备声音系统,可模拟拖拉机运行状态下不同声音,安装在驾驶室前端,显示虚拟场景和拖拉机3D模型,所述第二显示器602采用24英寸显示器,安装在驾驶室右侧,作为驾驶员启动并配置虚拟视景系统的交互设备,用于模拟前参数配置,模拟中数据显示,模拟后数据处理及评价。
模拟前参数配置:在操作系统界面启动终端运算模块304中的虚拟视景系统。根据不同使用要求,在人机交互界面对拖拉机作业场景类型、试验工况、拖拉机功率类型、挂接农具类型进行配置,点击进入模拟。
模拟中数据显示:进入模拟界面后,虚拟场景动画显示在第一显示器601,此时虚拟场景中的拖拉机还未启动。在第二显示器602中,驾驶员通过人机交互界面手动选择需要实时输出的动力学参数指标和显示形式,之后,对应的参数图表按一定排布顺序显示在第二显示器602。驾驶员操纵控制机构405启动虚拟场景中拖拉机,动力学参数就会随拖拉机运动状态的变化实时同步输出,实现实时仿真。
模拟后数据处理及评价:模拟结束后,模拟过程中产生的拖拉机动力学运行参数可以以不同文件格式导出,便于后续数据处理与分析;模拟过程动画可以以不同视频格式导出,便于展示和辅助后续研究。在驾驶员培训和驾驶娱乐体验功能下,所述第二显示器602还可以显示对驾驶员操作的评价和打分。
如图8、图9和图10所示,所述操控机构405包括方向盘901、行驶方向控制手柄902、点火开关903、灯控手柄904、刮水器旋钮905、洗涤器按钮906、电喇叭按钮907、离合器踏板1001、驻车制动手柄1002、脚油门踏板1003、制动踏板1004、PTO换挡手柄1101、PTO开关1102、液压输出手柄1103、定时旋钮1104、流量控制旋钮1105、拇指开关1106、电控多路阀使能开关1107、变速杆1108、手油门手柄1109、差速锁开关1110、前驱动开关1111、悬挂提升控制旋钮1112、减震开关1113、耕深控制旋钮1114、提升高度限制旋钮1115、力位综合控制旋钮1116、悬挂下降速度控制旋钮1117、灯光总开关1118、信号灯转换开关1119和危险报警开关1120。
其中,行驶方向控制手柄902、点火开关903、灯控手柄904、刮水器旋钮905、洗涤器按钮906、电喇叭按钮907、离合器踏板1001、驻车制动手柄1002、制动踏板1004、PTO换挡手柄1101、PTO开关1102、液压输出手柄1103、拇指开关1106、电控多路阀使能开关1107、变速杆1108、差速锁开关1110、前驱动开关1111、减震开关1113、灯光总开关1118、信号灯转换开关1119和危险报警开关1120均采用开关型传感器采集信号。
其中,所述脚油门踏板1003、定时旋钮1104、流量设定旋钮1105、手油门手柄1109、悬挂提升控制旋钮1112、耕深控制旋钮1114、提升高度限制旋钮1115、力位综合控制旋钮1116和悬挂下降速度控制旋钮1117均采用角位移传感器采集信号。
所述方向盘901采用绝对值编码器采集信号。
各传感器通过线束连接到数据采集模块305。

Claims (10)

1.一种多功能拖拉机驾驶模拟方法,其特征在于,包括如下步骤:
S1、模拟参数设置;
驾驶员通过多功能拖拉机驾驶模拟器的终端运算模块(304)内置的虚拟视景系统的人机交互界面对拖拉机作业场景类型、试验工况、拖拉机功率类型、挂接农具类型进行配置,并选择需要在显示模块(306)的第二显示器(602)实时显示的动力学参数指标和显示形式;终端运算模块(304)的虚拟视景系统根据拖拉机作业场景类型、试验工况、拖拉机功率类型和挂接农具类型在显示模块(306)的第一显示器(601)上呈现虚拟场景和拖拉机3D模型;
S2、操控参数采集;
驾驶员在多功能拖拉机驾驶模拟器中通过操控机构(405)进行模拟操控,数据采集模块(305)实时采集操控机构(405)的控制信号,经过运算将处理后的控制信号传输至终端运算模块(304);
所述处理后的控制信号包括动力学控制信号和辅助控制信号;
所述动力学控制信号包括方向盘转角
Figure FDA0003342446300000011
由脚油门踏板或手油门手柄角位移与全行程比值得到的发动机转速系数λ,由离合器角位移与全行程比值得到的力矩传递系数θ、由制动踏板角位移与全行程比值得到的制动系数β,由挡位增减信号和存储在单片机中的可编辑的挡位数据表格得到的变速器传动比ig和主减速器传动比i0
S3、操控参数处理;
终端运算模块(304)的虚拟视景系统将动力学控制信号发送至高精度拖拉机整车动力学模型进行处理,获得实时拖拉机动力学参数;将辅助控制信号发送至Unity3D的虚拟物件运动脚本模块中驱动对应动作;
所述实时拖拉机动力学参数包括纵向速度u、横向速度v、纵向加速度
Figure FDA0003342446300000021
横向加速度
Figure FDA0003342446300000022
横摆角r、横摆角速度
Figure FDA0003342446300000023
侧倾角φ、侧倾角速度
Figure FDA0003342446300000024
前轮转角δ、左前轮纵向受力Fxfl、右前轮纵向受力Fxfr、左后轮纵向受力Fxrl、右后轮纵向受力Fxrr、左前轮横向受力Fyfl、右前轮横向受力Fyfr、左后轮横向受力Fyrl、右后轮横向受力Fyrr、左前轮垂直载荷Fzfl、右前轮垂直载荷Fzfr、左后轮垂直载荷Fzrl、右后轮垂直载荷Fzrr、前轴驱动力矩Tf、后轴驱动力矩Tr、左前轮制动力矩Tbfl、右前轮制动力矩Tbfr、左后轮制动力矩Tbrl、右后轮制动力矩Tbrr、前轮角速度ωf、后轮角速度ωr、前轮角加速度
Figure FDA0003342446300000025
后轮角加速度
Figure FDA0003342446300000026
发动机输出转矩Ttq、变速器输出转矩MC和整车制动力矩Tb
所述高精度拖拉机整车动力学模型包括八自由度操纵稳定性动力学模型、发动机模型、传动系模型、转向系模型和制动系模型;
所述八自由度操纵稳定性动力学模型包括车身纵向模型、车身横向模型、车身横摆模型、车身侧倾模型和四轮转动模型;
所述车身纵向模型为:
Figure FDA0003342446300000027
所述车身横向模型为:
Figure FDA0003342446300000028
所述车身横摆模型为:
Figure FDA0003342446300000029
所述车身侧倾模型为:
Figure FDA0003342446300000031
所述四轮转动模型为:
Figure FDA0003342446300000032
Figure FDA0003342446300000033
Figure FDA0003342446300000034
Figure FDA0003342446300000035
公式1~公式8中,M为整车质量,单位为kg;
Figure FDA0003342446300000036
为纵向加速度,单位为m/s2;u为纵向速度,单位为m/s;v为横向速度,单位为m/s;r为横摆角,单位为rad;
Figure FDA00033424463000000311
为横摆角速度,单位为rad/s;ms为簧载质量,单位为kg;hs为质心与侧倾中心垂直距离,单位为m;φ为侧倾角,单位为rad;
Figure FDA0003342446300000037
为侧倾角速度,单位为rad/s;Fxfl为左前轮纵向受力,单位为N;Fxfr为右前轮纵向受力,单位为N;δ为前轮转角,单位为rad;Fxrl为左后轮纵向受力,单位为N;Fxrr为右后轮纵向受力,单位为N;Fyfl为左前轮横向受力,单位为N;Fyfr为右前轮横向受力,单位为N;g为重力加速度,单位为m/s2;α为路面坡度,单位为rad;
Figure FDA0003342446300000038
为横向加速度,单位为m/s2;Fyrl为左后轮横向受力,单位为N;Fyrr为右后轮横向受力,单位为N;
Figure FDA0003342446300000039
为侧倾角加速度,单位为rad/s2;IZ为横摆转动惯量,单位为kg·m2
Figure FDA00033424463000000310
为横摆角加速度,单位为rad/s2;IXZ为惯量积,单位为kg·m2;Cf为前轴距,单位为m;Cr为后轴距,单位为m;a为质心到前轴水平距离,单位为m;b为质心到后轴水平距离,单位为m;IX为侧倾转动惯量,单位为kg·m2;Kφf为前侧倾刚度,单位为N·m/rad;Kφr为后侧倾刚度,单位为N·m/rad;Cφf为前等效阻尼系数,单位为N·m·s/rad;Cφr为后等效阻尼系数,单位为N·m·s/rad;If为前轮转动惯量,单位为kg·m2;Ir为后轮转动惯量,单位为kg·m2
Figure FDA0003342446300000041
为前轮角加速度,单位为rad/s2
Figure FDA0003342446300000042
为后轮角加速度,单位为rad/s2;Tf为前轴驱动力矩,单位为N·m;Tr为后轴驱动力矩,单位为N·m;Tbfl为左前轮制动力矩,单位为N·m;Tbfr为右前轮制动力矩,单位为N·m;Tbrl为左后轮制动力矩,单位为N·m;Tbrr为右后轮制动力矩,单位为N·m;Rf为前轮半径,单位为m;Rr为后轮半径,单位为m;
其中,左前轮纵向受力Fxfl、右前轮纵向受力Fxfr、左后轮纵向受力Fxrl、右后轮纵向受力Fxrr分别通过公式9计算获得;
左前轮横向受力Fyfl、右前轮横向受力Fyfr、左后轮横向受力Fyrl、右后轮横向受力Fyrr分别通过公式10计算获得;
Fxij=Dxijsin(Cxarctan(BxijΦxij))+Svx 公式9
Fyij=Dyijsin(Cyarctan(ByijΦyij))+Svyij 公式10
公式9~公式10中,下角标ij分别代表fl、fr、rl、rr,即Fxij分别代表Fxfl、Fxfr、Fxrl、Fxrr,Fyij分别代表Fyfl、Fyfr、Fyrl、Fyrr,以此类推;Dxij分别为计算车轮纵向受力时各车轮的峰值因子,无量纲,分别通过公式11计算获得;Dyij分别为计算车轮横向受力时各车轮的峰值因子,无量纲,分别通过公式12计算获得;Cx为计算车轮纵向受力时的曲线形状因子,无量纲,Cx=B0,B0为常数;Cy为计算车轮横向受力时的曲线形状因子,无量纲,Cy=A0,A0为常数;Bxij分别为计算车轮纵向受力时各车轮的刚度因子,无量纲,分别通过公式13计算获得;Byij分别为计算车轮横向受力时各车轮的刚度因子,无量纲,分别通过公式14计算获得;Φxij和Φyij均为中间量,无单位,分别通过公式15和公式16计算获得;Svx为计算车轮纵向受力时曲线的垂直方向漂移,Svx=0;Svyij分别为计算车轮横向受力时各车轮曲线的垂直方向漂移,无量纲,分别通过公式17计算获得;
Dxij=B1Fzij 2+B2Fzij 公式11
Dyij=A1Fzij 2+A2Fzij 公式12
Figure FDA0003342446300000051
Byij=A3sin(2arctan(Fzij/A4))(1-A5|γ|)/(CyDyij) 公式14
Figure FDA0003342446300000052
Figure FDA0003342446300000053
Svyij=A11Fzijγ+A12Fzij+A13 公式17
公式11~公式17中,A1~A13、B1~B13均为常数;下角标ij分别代表fl、fr、rl、rr,Fzij为各车轮垂直载荷,单位为N,分别通过公式18~公式21计算获得;e为自然对数的底数;γ为车轮外倾角,单位为rad;ωi为前轮角速度ωf或后轮角速度ωr;Ri为前轮半径Rf或后轮半径Rr;uij为各车轮纵向速度,单位为m/s,通过公式22计算获得;Exij为计算车轮纵向受力时各车轮的曲线曲率因子,无量纲,通过公式23计算获得;Shxij为计算车轮纵向受力时曲线的水平方向漂移,无量纲,通过公式24计算获得;vij为各车轮横向速度,单位为m/s,通过公式25计算获得;Eyij为计算车轮横向受力时各车轮的曲线曲率因子,无量纲,通过公式26计算获得;Shyij为计算车轮横向受力时曲线的水平方向漂移,无量纲,通过公式27计算获得;
Figure FDA0003342446300000054
Figure FDA0003342446300000061
Figure FDA0003342446300000062
Figure FDA0003342446300000063
公式18~公式19中,mu为非簧载质量,单位为kg;hg为整车质心高度,单位为m;L为整车轴距,单位为m;
Figure FDA0003342446300000064
Exij=B6Fzij 2+B7Fzij+B8 公式23
Shxij=B9Fzij+B10 公式24
Figure FDA0003342446300000065
Eyij=A6Fzij 2+A7 公式26
Shyij=A9Fzij+A10+A8γ 公式27
下角标ij分别代表fl、fr、rl、rr,Ci为前轴距Cf或后轴距Cr,单位为m,当计算左前车轮时,
Figure FDA0003342446300000066
当计算右前车轮时,
Figure FDA0003342446300000067
当计算左后车轮时,
Figure FDA0003342446300000068
当计算右后车轮时,
Figure FDA0003342446300000069
p为质心到前轴水平距离a或质心到后轴水平距离b,当计算前轴车轮时,
Figure FDA00033424463000000610
当计算后轴车轮时,
Figure FDA00033424463000000611
所述发动机模型为:
Ttq=Tmax-(Tmax-TP)(nmax-n)2/(nmax-n)2 公式28
公式28中,Ttq为发动机输出转矩,单位为N·m;Tmax为发动机最大转矩,单位为N·m;TP为发动机最大功率点转矩,单位为N·m;nmax为发动机最大转速,单位为r/min;n为发动机待求点转速,单位为r/min,n=nmaxλ;λ为发动机转速系数,无量纲;
所述传动系统模型为:
MC=Ttqθigi0η 公式29
公式29中,MC为传动系输出转矩,单位为N·m;θ为力矩传递系数,无量纲;ig为变速器传动比,无量纲;i0为主减速器传动比,无量纲;η为传动效率,无量纲;
所述转向系模型为:
Figure FDA0003342446300000071
公式30中,IS为转向系转动惯量,单位为kg·m2;iS为转向系传动比,无量纲;ks为转向系线性刚度系数,无量纲;ksl为转向阻力系数,无量纲;BS为转向角速度阻力系数,无量纲;
Figure FDA0003342446300000072
为方向盘转角,单位为rad;
所述制动系模型为:
Tb=Tbmaxβ 公式31
公式31中,Tb为制动力矩,单位为N·m;Tbmax为最大制动力矩,单位为N·m;β为制动系数,无量纲;
S4、虚拟场景和拖拉机3D模型动态呈现;
终端运算模块(304)内置的虚拟视景系统根据实时拖拉机动力学参数动态调整虚拟场景中拖拉机3D模型的姿态,根据其他控制信号参数动态调整拖拉机上其他部件的动作,并相应变换虚拟场景,实现实时仿真。
2.根据权利要求1所述的多功能拖拉机驾驶模拟方法,其特征在于,所述步骤S1中,所述拖拉机作业场景类型包括拖拉机试验场、田间运输道路、标准公路、丘陵山地、旱地、水田;
所述试验工况包括牵引和动力性能试验场、爬坡性能试验场、直线高速跑道试验场、环形跑道转向性能试验场、颠簸跑道试验场、曲线起伏跑道试验场、侧翻试验台和整车振动试验台;
所述拖拉机功率类型包括功率小于30千瓦的小型拖拉机、功率为40千瓦-70千瓦的中型拖拉机和功率大于70千瓦的大型拖拉机;
所述挂接农具类型包括拖斗、圆盘耙、平地器、铲运斗、犁、推土铲、翻转犁、旋耕机、播种机、粉碎机、收割机、脱粒机和旋耕机;
所述动力学参数指标包括纵向速度、横向速度、纵向加速度、横向加速度、横摆角、横摆角速度、侧倾角、侧倾角速度、前轮转角、各轮垂向受力、各轮纵向受力、各轮横向受力、前后轴驱动力矩、各轮制动力矩、前后轮角速度、前后轮角加速度、发动机输出转矩、变速器输出转矩和整车制动力矩;
所述显示形式包括曲线图、柱状图、扇形图、条形图、面积图、散点图、组合图、三坐标曲面图和表格。
3.根据权利要求1所述的多功能拖拉机驾驶模拟方法,其特征在于,所述步骤S1中,人机交互界面通过Unity3D创建,基于skin、color、tooltip、depth变量,添加Label、Window、Button、RepeatButton、PasswordField、Slider控件;
虚拟场景采用Unity3D建模,包括模拟试验场景、设施环境和自然气候场景;其中,
模拟试验场景包括牵引和动力性能试验场、爬坡性能试验场、直线高速跑道试验场、环形跑道转向性能试验场、颠簸跑道试验场、曲线起伏跑道试验场、侧翻试验台和整车振动试验台;
设施环境包括房屋、围墙、指示标牌和路灯;
自然气候场景包括地形、天空、山、植被、河流、雾和雨;
拖拉机3D模型采用3DS Max建立,并导入到Unity3D;
将虚拟场景、拖拉机3D模型和人机交互界面整合到一个项目中,建立连接关系。
4.根据权利要求1所述的多功能拖拉机驾驶模拟方法,其特征在于,为虚拟场景中的个体设定物理特性,为不同物体添加碰撞器、力场和蒙皮,使得虚拟场景具备与现实相同的物理性质;采用着色器对物体进行渲染,使虚拟场景更加逼真。
5.根据权利要求1所述的多功能拖拉机驾驶模拟方法,其特征在于,所述操控机构(405)的控制信号包括方向盘转角、脚油门踏板或手油门手柄角位移、离合器角位移、制动踏板角位移、增减挡通断信号、行驶方向控制手柄通断信号、点火开关通断信号、灯控手柄通断信号、刮水器旋钮角位移信号、洗涤器按钮通断信号、电喇叭按钮通断信号、驻车制动手柄通断信号、PTO换挡手柄通断信号、PTO开关通断信号、液压输出手柄通断信号、定时旋钮角位移信号、流量控制旋钮角位移信号、拇指开关通断信号、电控多路阀使能开关通断信号、变速杆通断信号、差速锁开关通断信号、前驱动开关通断信号、悬挂提升控制旋钮角位移信号、减震开关通断信号、耕深控制旋钮角位移信号、提升高度限制旋钮角位移信号、力位综合控制旋钮角位移信号、悬挂下降速度控制旋钮角位移信号、灯光总开关通断信号、信号灯转换开关通断信号、危险报警开关通断信号。
6.根据权利要求1所述的多功能拖拉机驾驶模拟方法,其特征在于,所述辅助控制信号包括行驶方向控制手柄0/1信号、点火开关0/1信号、灯控手柄0/1信号、由刮水器旋钮角位移与全行程比值得到的比例信号、洗涤器按钮0/1信号、电喇叭按钮0/1信号、驻车制动手柄0/1信号、PTO换挡手柄0/1信号、PTO开关0/1信号、液压输出手柄0/1信号、由定时旋钮角位移与全行程比值得到的比例信号、由流量控制旋钮角位移与全行程比值得到的比例信号、拇指开关0/1信号、电控多路阀使能开关0/1信号、变速杆0/1信号、差速锁开关0/1信号、前驱动开关0/1信号、由悬挂提升控制旋钮角位移与全行程比值得到的比例信号、减震开关0/1信号、由耕深控制旋钮角位移与全行程比值得到的比例信号、由提升高度限制旋钮角位移与全行程比值得到的比例信号、由力位综合控制旋钮角位移与全行程比值得到的比例信号、由悬挂下降速度控制旋钮角位移与全行程比值得到的比例信号、灯光总开关0/1信号、信号灯转换开关0/1信号和危险报警开关0/1信号。
7.根据权利要求1所述的多功能拖拉机驾驶模拟方法,其特征在于,所述八自由度操纵稳定性动力学模型中,设定两前轮转向角相等,同轴两侧车轮驱动力平均分配,忽略外倾横向推力和侧倾转向,车辆侧倾轴与坐标系x轴重合,车身与车轮作相同的横摆运动;所述坐标系以拖拉机质心垂线CG与侧倾轴交点作为原点建立,所有角位移、角加速度均取正方向。
8.根据权利要求1所述的多功能拖拉机驾驶模拟方法,其特征在于,所述高精度拖拉机整车动力学模型采用欧拉法解算。
9.根据权利要求1所述的多功能拖拉机驾驶模拟方法,其特征在于,所述高精度拖拉机整车动力学模型需要转换为Tractor Controller脚本代码形式写入Unity3D;首先,基于Simulink建立整车图形化模型图,利用Simulink软件自带的代码生成功能将其模型转换为代码,再基于Move函数、SpeedSwitch函数、SteerHelper函数和TractionControl函数将初步代码进行修改嵌套得到脚本文件加入Unity3D项目中,将高精度拖拉机整车动力学模型与拖拉机3D模型直接关联。
10.一种采用如权利要求1-9所述的多功能拖拉机驾驶模拟方法的多功能拖拉机驾驶模拟器,其特征在于,包括电控拖拉机驾驶室(301),以及布置在电控拖拉机驾驶室(301)内的终端运算模块(304)、数据采集模块(305)和显示模块(306);
所述终端运算模块(304)包含一个基于Unity3D的虚拟视景系统,驱动虚拟场景动画;
所述数据采集模块(305)选用一块STM32单片机,所述STM32单片机自动采集数据采集模块(305)中各传感器的电平信号,并发送至终端运算模块(304);所述数据采集模块(305)包括开关型传感器和角位移传感器;
所述终端运算模块(304)与数据采集模块(305)采用标准通讯协议,实现数据的规范化传输;
所述电控拖拉机驾驶室(301)包括拖拉机驾驶室框架(401),以及按照真实拖拉机驾驶室布置在拖拉机驾驶室框架(401)上的仪表板(402)、侧面座椅(403)、主座椅(404)和操控机构(405);
所述主座椅(404)采用空气弹簧座椅;侧面座椅(403)用于研究人员或观测人员记录数据或观测显示模块(306)的实时画面;
所述电控拖拉机驾驶室(301)的底部设有行走机构(303);
所述显示模块(306)通过显示器支架(302)固接在拖拉机驾驶室框架(301)上;所述显示模块(306)包括第一显示器(601)和第二显示器(602),其中,所述第一显示器(601)位于主座椅(404)的正前方;所述第二显示器(602)位于第一显示器(601)的左侧或右侧;
所述显示器支架(302)包括由固定支架(701)与活动支架(702)组成的第一显示器支架和第二显示器支架(801);所述活动支架(702)位置可调地安装在固定支架(701)上;所述第一显示器(601)固接在活动支架(702)上,能够随活动支架(702)横向滑动和转动一定角度;第二显示器(602)通过第二显示器支架(801)固接在拖拉机驾驶室框架(401)上,位于第一显示器(601)的左侧或右侧;
所述第一显示器(601)采用55英寸曲面显示器,具备声音系统,可模拟拖拉机运行状态下不同声音,安装在驾驶室前端,显示虚拟场景和拖拉机3D模型,所述第二显示器(602)采用24英寸显示器,安装在驾驶室右侧,作为驾驶员启动并配置虚拟视景系统的交互设备,用于模拟前参数配置,模拟中数据显示,模拟后数据处理及评价;
所述操控机构(405)包括方向盘(901)、行驶方向控制手柄(902)、点火开关(903)、灯控手柄(904)、刮水器旋钮(905)、洗涤器按钮(906)、电喇叭按钮(907)、离合器踏板(1001)、驻车制动手柄(1002)、脚油门踏板(1003)、制动踏板(1004)、PTO换挡手柄(1101)、PTO开关(1102)、液压输出手柄(1103)、定时旋钮(1104)、流量控制旋钮(1105)、拇指开关(1106)、电控多路阀使能开关(1107)、变速杆(1108)、手油门手柄(1109)、差速锁开关(1110)、前驱动开关(1111)、悬挂提升控制旋钮(1112)、减震开关(1113)、耕深控制旋钮(1114)、提升高度限制旋钮(1115)、力位综合控制旋钮(1116)、悬挂下降速度控制旋钮(1117)、灯光总开关(1118)、信号灯转换开关(1119)和危险报警开关(1120);
其中,行驶方向控制手柄(902)、点火开关(903)、灯控手柄(904)、刮水器旋钮(905)、洗涤器按钮(906)、电喇叭按钮(907)、离合器踏板(1001)、驻车制动手柄(1002)、制动踏板(1004)、PTO换挡手柄(1101)、PTO开关(1102)、液压输出手柄(1103)、拇指开关(1106)、电控多路阀使能开关(1107)、变速杆(1108)、差速锁开关(1110)、前驱动开关(1111)、减震开关(1113)、灯光总开关(1118)、信号灯转换开关(1119)和危险报警开关(1120)均采用开关型传感器采集信号;
其中,所述脚油门踏板(1003)、定时旋钮(1104)、流量设定旋钮(1105)、手油门手柄(1109)、悬挂提升控制旋钮(1112)、耕深控制旋钮(1114)、提升高度限制旋钮(1115)、力位综合控制旋钮(1116)和悬挂下降速度控制旋钮(1117)均采用角位移传感器采集信号;
所述方向盘(901)采用绝对值编码器采集信号;
各传感器通过线束连接到数据采集模块(305)。
CN202111312945.3A 2021-11-08 2021-11-08 一种多功能拖拉机驾驶模拟方法及系统 Active CN114093218B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111312945.3A CN114093218B (zh) 2021-11-08 2021-11-08 一种多功能拖拉机驾驶模拟方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111312945.3A CN114093218B (zh) 2021-11-08 2021-11-08 一种多功能拖拉机驾驶模拟方法及系统

Publications (2)

Publication Number Publication Date
CN114093218A CN114093218A (zh) 2022-02-25
CN114093218B true CN114093218B (zh) 2022-07-26

Family

ID=80299236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111312945.3A Active CN114093218B (zh) 2021-11-08 2021-11-08 一种多功能拖拉机驾驶模拟方法及系统

Country Status (1)

Country Link
CN (1) CN114093218B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200953191Y (zh) * 2006-09-30 2007-09-26 吉林大学 并联6自由度驾驶模拟器
CN101859500A (zh) * 2010-06-11 2010-10-13 中国农业大学 一种拖拉机驾驶操纵试验台
CN103413473A (zh) * 2013-08-22 2013-11-27 北京科技大学 一种地下矿用铰接车的驾驶模拟系统
CN103531051A (zh) * 2013-10-21 2014-01-22 武汉湾流新技术有限公司 一种起重机操作的虚拟现实训练方法及模拟器
CN104182991A (zh) * 2014-08-15 2014-12-03 辽宁工业大学 一种车辆行驶状态估计方法及装置
CN104443022A (zh) * 2014-11-11 2015-03-25 深圳职业技术学院 一种四轮独立驱动电动汽车稳定性控制方法及系统
CN105806628A (zh) * 2016-03-18 2016-07-27 中国农业大学 电动拖拉机多性能测试试验台及利用该试验台的测试方法
CN105894889A (zh) * 2016-05-09 2016-08-24 合肥工业大学 一种多维可调汽车转向操纵模拟与测试系统及其视景控制方法
CN106373453A (zh) * 2016-08-31 2017-02-01 郑州捷安高科股份有限公司 一种沉浸式高铁列车虚拟驾驶行为智能评判方法及仿真系统
CN106710359A (zh) * 2017-03-01 2017-05-24 北京华蓝盾科技有限公司 汽车驾驶模拟器三自由度模拟运动平台及汽车驾驶模拟器
CN108062875A (zh) * 2017-12-30 2018-05-22 上海通创信息技术股份有限公司 一种基于虚拟现实及大数据在线分析的云驾驶培训系统
CN109002599A (zh) * 2018-07-04 2018-12-14 重庆交通大学 基于田口实验的汽车平顺性优化分析方法
CN111845775A (zh) * 2020-07-20 2020-10-30 上海大学 一种分布式驱动电动汽车行驶状态与惯性参数联合估计方法
CN113192382A (zh) * 2021-03-19 2021-07-30 徐州九鼎机电总厂 一种基于沉浸式人机交互的车辆机动性仿真系统及方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200953191Y (zh) * 2006-09-30 2007-09-26 吉林大学 并联6自由度驾驶模拟器
CN101859500A (zh) * 2010-06-11 2010-10-13 中国农业大学 一种拖拉机驾驶操纵试验台
CN103413473A (zh) * 2013-08-22 2013-11-27 北京科技大学 一种地下矿用铰接车的驾驶模拟系统
CN103531051A (zh) * 2013-10-21 2014-01-22 武汉湾流新技术有限公司 一种起重机操作的虚拟现实训练方法及模拟器
CN104182991A (zh) * 2014-08-15 2014-12-03 辽宁工业大学 一种车辆行驶状态估计方法及装置
CN104443022A (zh) * 2014-11-11 2015-03-25 深圳职业技术学院 一种四轮独立驱动电动汽车稳定性控制方法及系统
CN105806628A (zh) * 2016-03-18 2016-07-27 中国农业大学 电动拖拉机多性能测试试验台及利用该试验台的测试方法
CN105894889A (zh) * 2016-05-09 2016-08-24 合肥工业大学 一种多维可调汽车转向操纵模拟与测试系统及其视景控制方法
CN106373453A (zh) * 2016-08-31 2017-02-01 郑州捷安高科股份有限公司 一种沉浸式高铁列车虚拟驾驶行为智能评判方法及仿真系统
CN106710359A (zh) * 2017-03-01 2017-05-24 北京华蓝盾科技有限公司 汽车驾驶模拟器三自由度模拟运动平台及汽车驾驶模拟器
CN108062875A (zh) * 2017-12-30 2018-05-22 上海通创信息技术股份有限公司 一种基于虚拟现实及大数据在线分析的云驾驶培训系统
CN109002599A (zh) * 2018-07-04 2018-12-14 重庆交通大学 基于田口实验的汽车平顺性优化分析方法
CN111845775A (zh) * 2020-07-20 2020-10-30 上海大学 一种分布式驱动电动汽车行驶状态与惯性参数联合估计方法
CN113192382A (zh) * 2021-03-19 2021-07-30 徐州九鼎机电总厂 一种基于沉浸式人机交互的车辆机动性仿真系统及方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Experimental determination of tire forces and roadfriction;Laura R.Ray;《Proceedings of the American Control Conference》;19981231;1843-1847 *
Simulation of active steering control for the prevention of tractor dynamic rollover on random road surfaces;JiahaoQin ZhehuiZhu HongyiJi ZhongxiangZhu ZhenLi YuefengDu;《Biosystems Engineering》;20190930;135-149 *
六自由度拖拉机-人椅系统振动特性仿真研究;吴灿 孔德刚 张韵 刘玲 张怀玉;《农机化研究》;20161031;223-228 *
基于虚拟现实的拖拉机双目视觉导航试验;翟志强 朱忠祥 杜岳峰 李臻 毛恩荣;《农业工程学报》;20171231;56-64 *
拖拉机自动转向最优控制方法的研究;吕安涛 宋正河 毛恩荣;《农业工程学报》;20060831;116-119 *
无人驾驶拖拉机路径跟踪联合控制研究;郑平平 汤玮 宋伟杰 张润;《农业装备与车辆工程》;20210228;第59卷(第2期);79-82 *

Also Published As

Publication number Publication date
CN114093218A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN101530329B (zh) 半实物驾驶疲劳视景仿真系统平台
CN105096688B (zh) 基于bim仿真环境的驾驶模拟控制系统
CN110097799B (zh) 基于真实场景建模的虚拟驾驶系统
CN103413473B (zh) 一种地下矿用铰接车的驾驶模拟系统
CN105894889B (zh) 一种多维可调汽车转向操纵模拟与测试系统的视景控制方法
CN112818463B (zh) 一种多模态陆空两栖车辆平台仿真系统
CN107886798A (zh) 一种基于驾驶模拟系统的驾驶技能辨识装置及方法
CN110930811B (zh) 一种适用于无人驾驶决策学习和训练的系统
CN202352127U (zh) 一种三维汽车驾驶训练模拟装置
Gobbi et al. Farm tractors with suspended front axle: Anti-dive and anti-lift characteristics
CN114093218B (zh) 一种多功能拖拉机驾驶模拟方法及系统
JP5067935B2 (ja) シミュレーション装置
CN111524412A (zh) 一种叉车模拟驾驶真实体感实现系统与方法
CN203673692U (zh) 一种仿真汽车驾驶训练装置
Nordmark VTI driving simulator: mathematical model of a four-wheeled vehicle for simulation in real time
CN110956866A (zh) 一种基于vr技术的驾驶模拟系统
CN209118541U (zh) 全工况数字化城市的智能驾驶培训模拟器
CN208061476U (zh) 大型车辆驾驶模拟系统
CN207966228U (zh) 一种新型基于汽车驾驶模拟器的驾驶技能辨识装置
Lee Virtual test track
RU78595U1 (ru) Тренажер для обучения водителя автомобиля
CN110570718A (zh) 一种vr学车的系统
RU68744U1 (ru) Тренажер для обучения водителя автомобиля
RU78352U1 (ru) Тренажер для обучения водителя автомобиля
CN108489735A (zh) 基于相似理论的双挂汽车列车模型稳定性试验装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant