CN114086198B - 一种固体氧化物电解池膜电极的制备方法 - Google Patents

一种固体氧化物电解池膜电极的制备方法 Download PDF

Info

Publication number
CN114086198B
CN114086198B CN202111545912.3A CN202111545912A CN114086198B CN 114086198 B CN114086198 B CN 114086198B CN 202111545912 A CN202111545912 A CN 202111545912A CN 114086198 B CN114086198 B CN 114086198B
Authority
CN
China
Prior art keywords
electrode
slurry
preparing
electrolyte
hydrogen electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111545912.3A
Other languages
English (en)
Other versions
CN114086198A (zh
Inventor
赵哲
邵志刚
程谟杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202111545912.3A priority Critical patent/CN114086198B/zh
Publication of CN114086198A publication Critical patent/CN114086198A/zh
Application granted granted Critical
Publication of CN114086198B publication Critical patent/CN114086198B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3671Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种固体氧化物电解池膜电极的制备方法,所述膜电极由氢电极层、电解池层、隔层、氧电极层组成,膜电极制备过程包括:氢电极层浆料制备、氢电极支撑体制备、电解质层制备、隔层制备及氧电极制备。制备的膜电极的氢电极含有指状孔结构,显著地提高了水蒸气和氢气的扩散过程,提高了电解池的性能。

Description

一种固体氧化物电解池膜电极的制备方法
技术领域
本发明涉及燃料电池及电解池领域,具体涉及一种固体氧化物电解池膜电极的制备方法。
背景技术
固体氧化物电解池(Solid Oxide electrolysis Cell,简称SOEC)可在高温下将水蒸气电解为氢气和氧气,表观电效率可达到100%,目前被认为是最高效的电解制氢技术。
膜电极是SOEC的核心部件,其具有“三明治”结构,中间是致密的电解质层,两边为多孔的氢电极和氧电极。当膜电极用于高温电解水蒸气制取氢气应用时,在氢电极上发生水蒸气扩散、水分子解离为氢气和氧离子,氧离子体相扩散,氧离子通过氢电极/电解质界面注入到电解质等过程。对于传统流延、干压等方法制备的氢电极支撑型膜电极,氢电极的孔径多为亚微米级,孔隙率较低,导致水分子在氢电极上的传质过程较慢,在高的电解电流密度下出现明显的浓差极化,严重制约了SOEC的性能。而单一的增加氢电极的孔隙率或增加几十微米级的大孔,则会导致氢电极与电解质界面在高温烧制过程中结合不好,引入较大的界面电阻。
发明内容
为了解决上述问题,本发明提供一种固体氧化物电解池膜电极的制备方法,在氢电极中控制制备出直径为几十微米的指状孔结构,显著提升水分子的扩散过程,提高SOEC制氢性能。
一种固体氧化物电解池膜电极的制备方法,其特征在于:所述膜电极制备过程包括如下:
(1)制备氢电极层浆料;
(2)制备氢电极支撑体;
(3)电解质层预烧制:将YSZ粉体与溶剂、粘结剂、分散剂、增塑剂混合研磨形成电解质浆料,将YSZ电解质浆料涂覆于预烧后的氢电极支撑体的一侧,然后在600~1000℃预烧2~10h,形成电解质预烧层;
(4)电解质层致密化烧制:配置Y、Zr硝酸盐的混合液,Y∶Zr摩尔比=0.1~0.25∶0.75~0.9,优选0.15∶0.85,金属离子总浓度为0.5~3M,将硝酸盐混合液滴到电解质预烧层上,在80~120℃干燥后,在高温1200~1400℃下焙烧5~20h,得到致密的YSZ电解质薄膜;
(5)制备隔层;
(6)制备氧电极。
进一步地,在上述技术方案中,步骤(1)中,制备氢电极层浆料:将溶剂、粘结剂和分散剂混合搅拌10~100h,形成稳定的有机浆料,将氢电极粉体NiO、YSZ与有机浆料混合后研磨10~50h,形成稳定均匀的氢电极浆料,其中,溶剂为1-甲基-2-吡咯烷酮(NMP),N,N-二甲基甲酰胺(DMF)中一种或几种,粘结剂为聚砜(PSF)、聚醚砜(PESf)、聚醚酰亚胺(PEI)中一种或几种,分散剂为聚乙烯吡咯烷酮(PVP)、聚乙烯醇中一种或几种,溶剂、粘结剂和分散剂三者质量比为100∶10~20∶2~6,有机浆料与氢电极粉体的质量比为40∶60~15∶85,NiO和YSZ粉体的质量比为50∶50~70∶30;
进一步地,在上述技术方案中,步骤(2)中,制备氢电极支撑体;将(1)制备的氢电极浆料涂覆到表面光滑的玻璃平板上,控制厚度为500~1500微米,将玻璃平板室温下浸泡于水、乙醇、乙二醇单一或混合凝固浴中静置固化10~60min后得到湿胚体,然后将湿的胚体在40~80℃干燥0.5~50h,将干燥的生胚在800~1300℃下预烧1~10h,得到氢电极支撑体,支撑体中含有指状孔,孔直径为20~100微米,孔隙率为40~70%。
进一步地,在上述技术方案中,步骤(3)中,电解质层预烧制:将YSZ粉体与溶剂、粘结剂、分散剂、增塑剂混合研磨形成电解质浆料,将YSZ电解质浆料涂覆于预烧后的氢电极支撑体的一侧,然后在600~1000℃预烧2~10h,形成电解质预烧层。其中,溶剂为正丁醇、乙醇、松油醇中一种或几种,粘结剂为聚乙烯醇缩丁醛、聚乙烯醇、聚丙烯酸甲酯、聚甲基丙烯酸中一种或几种,分散剂为鱼油、磷酸酯、三油酸甘油酯中一种或几种,增塑剂为聚乙二醇、邻苯二甲酸二辛酯、邻苯二甲酸二丁酯、甘油中一种或几种,YSZ粉体与溶剂、粘结剂、分散剂、增塑剂的质量比为100∶80~120∶6~8∶1~5∶6~12。
进一步地,在上述技术方案中,步骤(5)中,制备隔层;将原子比为8~9∶2~1的Ce/Gd合金材料为靶材在YSZ电解质膜上反应溅射GDC隔层,溅射厚度为100~2000纳米,将隔层在800~1000℃退火1~10h。
进一步地,在上述技术方案中,步骤(6)中,制备氧电极:将氧电极粉体与松油醇、乙基纤维素混合研磨形成电解质浆料,其质量比为:100∶30~60∶1.5~4.5,将氧电极浆料涂敷在隔层表面,氧电极厚度为10~100微米,在高温800~1100℃下焙烧1~10h制得膜电极。
进一步地,在上述技术方案中,所述氢电极层浆料制备中溶剂、粘结剂、分散剂质量比为100∶12~18∶2~4,有机溶剂与氢电极粉体的质量比为30∶70~20∶80,NiO和YSZ粉体的质量比为55∶45~65∶35。
进一步地,在上述技术方案中,所述氢电极支撑体制备中,将氢电极浆料用刮刀刮到表面光滑的玻璃或不锈钢平板上,控制厚度为600~1000微米,将干燥的生胚在900~1200℃下预烧,氢电极支撑体中指状孔的孔直径为30~80微米,孔隙率为50~65%。
进一步地,在上述技术方案中,所述电解质层制备中,YSZ粉体与溶剂、粘结剂、分散剂、增塑剂的质量比为100∶85~110∶6~8∶2~4∶6~10。
进一步地,在上述技术方案中,所述隔层制备中,溅射厚度为200~1000纳米;
进一步地,在上述技术方案中,所述氧电极制备中,氧电极粉体与松油醇、乙基纤维素的质量比为:100∶40~55∶2~4,氧电极厚度为20~50微米。
本发明的优点在于:
(1)本发明在膜电极制备过程中,将电解质层分为预烧和致密化烧制两个过程,致密化烧制过程中,与电解质组成一致的硝酸盐溶液在电解质预烧层和氢电极层间扩散,强化了氢电极层与电解质层的接触。
(2)本发明的膜电极制备过程中,氢电极浆料与凝固浴间不同组分、相间扩散、分离反应,在氢电极中含有直径为几十微米的指状孔,孔径远大于H2O和H2的分子平均值自由程,其内部气体为分子扩散,实现了氢电极内气体的传输快速。
(3)本发明膜电极适用平板式、管式膜电极,显示出优异的电解水制氢性能。
附图说明
图1为对比例1制备的膜电极氢电极的SEM图片;
图2为实施例1制备的膜电极氢电极的SEM图片;
图3为实施例1中膜电极电解水的I-V曲线。
具体实施方式
下面通过实施例对本发明作进一步的阐述。
对比例1
(1)氢电极支撑体制备:采用流延法制备氢电极支撑体,其中,氢电极粉体NiO-YSZ(质量比为60∶40),预烧温度为1000℃下预烧5h,电镜图片如图1所示,氢电极中NiO和YSZ颗粒均匀分布,孔径大小为0.3~0.6微米。
(2)电解质层预烧制:将YSZ粉体与正丁醇、鱼油、邻苯二甲酸二辛酯和聚乙烯醇缩丁醛混合研磨50h形成电解质浆料,其质量分别为:100g、100g、2g、10g、6g,将YSZ电解质浆料涂覆于预烧后的氢电极支撑体的一侧,然后在900℃下焙烧5h.
(3)电解质层致密化烧制:配置50mL Y、Zr硝酸盐的混合液,Y∶Zr=0.15∶0.85,金属离子总浓度为1M,将2mL硝酸盐混合液滴到电解质预烧层上,在80~120℃干燥后,在高温1350℃下焙烧10h,得到致密的YSZ电解质薄膜.
(4)隔层制备:以Ce/Gd(原子比为9∶1)合金材料为靶材在YSZ电解质膜上反应溅射GDC隔层,隔层在1000℃退火2h,隔层厚度为500纳米,其中,溅射气氛为高纯Ar和O2(≥99.999vol%),流量比为10∶1,溅射气压为0.5Pa,基底温度为300℃,靶功率密度为9W cm-2
(5)氧电极层制备:将Sm0.5Sr0.5CoO3氧电极粉体与松油醇、乙基纤维素按照质量分别为100g、50g、3g混合研磨形成氧电极浆料,将氧电极浆料涂敷在隔层表面,在高温1000℃下焙烧2h制得膜电极,其中,氧电极厚度为30微米。
膜电极在绝对湿度70%、800℃、1.3V下电解水制氢的电流密度达到-1.7Acm-2
对比例2
(1)氢电极层浆料制备:将1-甲基-2-吡咯烷酮(NMP)、聚砜(PSF)聚乙烯吡咯烷酮(PVP)按照质量分别为100g、15g、5g混合后,在球磨机中研磨搅拌24h,形成稳定的有机浆料,将氢电极粉体NiO-YSZ(质量比为60∶40)与有机浆料混合后研磨24h,形成稳定均匀的氢电极浆料,其中,有机浆料与氢电极粉体的质量比为20∶80。
(2)氢电极支撑体制备:将氢电极浆料用刮刀刮到表面光滑的玻璃平板上,控制厚度为800微米,将玻璃平板室温下浸泡于凝固水浴中静置固化30min后得到湿的胚体,然后将湿的胚体在60℃干燥10h,将干燥的生胚在1000℃下预烧5h,得到氢电极支撑体,支撑体中含有指状孔,孔直径为30~70微米,孔隙率为65%,氢电极含有指状孔,最大孔径在60~80微米。
(3)电解质层制备:将YSZ粉体与正丁醇、鱼油、邻苯二甲酸二辛酯和聚乙烯醇缩丁醛混合研磨50h形成电解质浆料,其质量分别为:100g、100g、2g、10g、6g,将YSZ电解质浆料涂覆于预烧后的氢电极支撑体的一侧,然后高温1350℃下焙烧10h得到致密的YSZ电解质薄膜。
(4)隔层制备:以Ce/Gd(原子比为9∶1)合金材料为靶材在YSZ电解质膜上反应溅射GDC隔层,隔层在1000℃退火2h,隔层厚度为500纳米,其中,溅射气氛为高纯Ar和O2(≥99.999vol%),流量比为10∶1,溅射气压为0.5Pa,基底温度为300℃,靶功率密度为9W cm-2
(5)氧电极层制备:将Sm0.5Sr0.5CoO3氧电极粉体与松油醇、乙基纤维素按照质量分别为100g、50g、3g混合研磨形成氧电极浆料,将氧电极浆料涂敷在隔层表面,在高温1000℃下焙烧2h制得膜电极,其中,氧电极厚度为30微米。
膜电极在绝对湿度70%、800℃、1.3V下电解水制氢的电流密度为-2.7Acm-2
实施例1
(1)氢电极层浆料制备:将1-甲基-2-吡咯烷酮(NMP)、聚砜(PSF)聚乙烯吡咯烷酮(PVP)按照质量分别为100g、15g、5g混合后,在球磨机中研磨搅拌24h,形成稳定的有机浆料,将氢电极粉体NiO-YSZ(质量比为60∶40)与有机浆料混合后研磨24h,形成稳定均匀的氢电极浆料,其中,有机浆料与氢电极粉体的质量比为20∶80。
(2)氢电极支撑体制备:将氢电极浆料用刮刀刮到表面光滑的玻璃平板上,控制厚度为800微米,将玻璃平板室温下浸泡于凝固水浴中静置固化30min后得到湿的胚体,然后将湿的胚体在60℃干燥10h,将干燥的生胚在1000℃下预烧5h,得到氢电极支撑体,支撑体中含有指状孔,孔直径为30~70微米,孔隙率为65%,如附图2所示,其中,氢电极含有指状孔,最大孔径在60~80微米。
(3)电解质层预烧制:将YSZ粉体与正丁醇、鱼油、邻苯二甲酸二辛酯和聚乙烯醇缩丁醛混合研磨50h形成电解质浆料,其质量分别为:100g、100g、2g、10g、6g,将YSZ电解质浆料涂覆于预烧后的氢电极支撑体的一侧,然后在900℃下焙烧5h。
(4)电解质层致密化烧制:配置50mL Y、Zr硝酸盐的混合液,Y∶Zr=0.15∶0.85,金属离子总浓度为1M,将2mL硝酸盐混合液滴到电解质预烧层上,在80~120℃干燥后,在高温1350℃下焙烧10h,得到致密的YSZ电解质薄膜.
(5)隔层制备:以Ce/Gd(原子比为9∶1)合金材料为靶材在YSZ电解质膜上反应溅射GDC隔层,隔层在1000℃退火2h,隔层厚度为500纳米,其中,溅射气氛为高纯Ar和O2(≥99.999vol%),流量比为10∶1,溅射气压为0.5Pa,基底温度为300℃,靶功率密度为9W cm-2
(6)氧电极层制备:将Sm0.5Sr0.5CoO3氧电极粉体与松油醇、乙基纤维素按照质量分别为100g、50g、3g混合研磨形成氧电极浆料,将氧电极浆料涂敷在隔层表面,在高温1000℃下焙烧2h制得膜电极,其中,氧电极厚度为30微米。
膜电极在绝对湿度70%、800℃、1.3V下电解水制氢的电流密度达到-4.20Acm-2,如图3所示。

Claims (7)

1.一种固体氧化物电解池膜电极的制备方法,其特征在于:所述膜电极制备过程包括如下:
(1)制备氢电极层浆料:将溶剂、粘结剂和分散剂混合搅拌10~100h,形成稳定的有机浆料,将粉体NiO、YSZ与有机浆料混合后研磨10~50h,形成稳定均匀的氢电极浆料,其中,溶剂为1-甲基-2-吡咯烷酮,N,N-二甲基甲酰胺中一种或几种,粘结剂为聚砜、聚醚砜、聚醚酰亚胺中一种或几种,分散剂为聚乙烯吡咯烷酮、聚乙烯醇中一种或几种,溶剂、粘结剂和分散剂三者质量比为100:10~20:2~6,有机浆料与氢电极粉体的质量比为40:60~15:85,NiO和YSZ粉体的质量比为50:50~70:30;
(2)制备氢电极支撑体:将(1)制备的氢电极浆料涂覆到表面光滑的玻璃平板上,控制厚度为500~1500微米,将玻璃平板室温下浸泡于水、乙醇、乙二醇单一或混合凝固浴中静置固化10~60min后得到湿胚体,然后将湿的胚体在40~80℃干燥0.5~50 h,将干燥的生胚在800~1300℃下预烧1~10h,得到氢电极支撑体,支撑体中含有指状孔,孔直径为20~100微米,孔隙率为40~70%;
(3)电解质层预烧制:将YSZ粉体与溶剂、粘结剂、分散剂、增塑剂混合研磨形成电解质浆料,将YSZ电解质浆料涂覆于预烧后的氢电极支撑体的一侧,然后在600~1000℃预烧2~10h,形成电解质预烧层;
(4)电解质层致密化烧制:配置Y、Zr硝酸盐的混合液,Y:Zr摩尔比= 0.1~0.25:0.75~0.9,金属离子总浓度为0.5~3M,将硝酸盐混合液滴到电解质预烧层上,在80~120℃干燥后,在高温1200~1400℃下焙烧5~20h,得到致密的YSZ电解质薄膜;
(5)制备隔层;
(6)制备氧电极。
2.根据权利要求1所述一种固体氧化物电解池膜电极的制备方法,其特征在于:(3)电解质层预烧制中,溶剂为正丁醇、乙醇、松油醇中一种或几种,粘结剂为聚乙烯醇缩丁醛、聚乙烯醇、聚丙烯酸甲酯、聚甲基丙烯酸中一种或几种,分散剂为鱼油、磷酸酯、三油酸甘油酯中一种或几种,增塑剂为聚乙二醇、邻苯二甲酸二辛酯、邻苯二甲酸二丁酯、甘油中一种或几种,YSZ粉体与溶剂、粘结剂、分散剂、增塑剂的质量比为100: 80~120 : 6~8:1~5:6~12;
(5)制备隔层:将原子比为8~9: 2~1的Ce/Gd合金材料为靶材在YSZ电解质膜上反应溅射GDC隔层,溅射厚度为100~2000纳米,将隔层在800~1000℃退火1~10h;
(6)制备氧电极:将氧电极粉体与松油醇、乙基纤维素混合研磨形成电解质浆料,其质量比为:100:30~60:1.5~4.5,氧电极浆料涂敷在隔层表面,氧电极厚度为10~100微米,在高温800~1100℃下焙烧1~10 h制得膜电极。
3.根据权利要求1所述一种固体氧化物电解池膜电极的制备方法,其特征在于:所述氢电极层浆料制备中溶剂、粘结剂、分散剂质量比为100:12~18:2~4,有机浆料与氢电极粉体的质量比为30:70~20:80,NiO和YSZ粉体的质量比为55:45~65:35。
4.根据权利要求1所述一种固体氧化物电解池膜电极的制备方法,其特征在于:所述氢电极支撑体制备中,将氢电极浆料用刮刀刮到表面光滑的玻璃或不锈钢平板上,控制厚度为600~1000微米,将干燥的生胚在900~1200℃下预烧,氢电极支撑体中指状孔的孔直径为30~80微米,孔隙率为50~65%。
5.根据权利要求2所述一种固体氧化物电解池膜电极的制备方法,其特征在于:所述电解质层预烧制中,YSZ粉体与溶剂、粘结剂、分散剂、增塑剂的质量比为100: 85~110 : 6~8:2~4:6~10。
6.根据权利要求2所述一种固体氧化物电解池膜电极的制备方法,其特征在于:所述隔层制备中,溅射厚度为200~1000 纳米。
7.根据权利要求2所述一种固体氧化物电解池膜电极的制备方法,其特征在于:所述氧电极制备中,氧电极粉体与松油醇、乙基纤维素的质量比为:100:40~55:2~4,氧电极厚度为20~50微米。
CN202111545912.3A 2021-12-15 2021-12-15 一种固体氧化物电解池膜电极的制备方法 Active CN114086198B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111545912.3A CN114086198B (zh) 2021-12-15 2021-12-15 一种固体氧化物电解池膜电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111545912.3A CN114086198B (zh) 2021-12-15 2021-12-15 一种固体氧化物电解池膜电极的制备方法

Publications (2)

Publication Number Publication Date
CN114086198A CN114086198A (zh) 2022-02-25
CN114086198B true CN114086198B (zh) 2022-11-08

Family

ID=80307482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111545912.3A Active CN114086198B (zh) 2021-12-15 2021-12-15 一种固体氧化物电解池膜电极的制备方法

Country Status (1)

Country Link
CN (1) CN114086198B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116924799A (zh) * 2023-07-28 2023-10-24 中国矿业大学 一种质子导体陶瓷电化学氢泵及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881438B2 (en) * 2000-03-07 2005-04-19 Teijin Limited Process for production of composite porous film
ATE508488T1 (de) * 2001-12-18 2011-05-15 Univ California Verfahren zur herstellung dichter dünnfilme
KR100933246B1 (ko) * 2005-03-24 2009-12-22 후지쯔 가부시끼가이샤 연료 전지
CN100511788C (zh) * 2007-06-22 2009-07-08 中国科学技术大学 一种固体氧化物燃料电池复合阴极及其制备方法
CN102011140B (zh) * 2010-10-27 2012-06-20 清华大学 固体氧化物电解池电解质/氧电极界面微结构修饰方法
CN104009245B (zh) * 2014-06-10 2016-03-02 江苏绿遥燃料电池系统制造有限公司 一种燃料电池用气体扩散层胚体的制备方法
CN106876753B (zh) * 2015-12-12 2019-05-21 中国科学院大连化学物理研究所 具有有序孔结构电极的燃料电池的制备方法
US10734656B2 (en) * 2016-08-16 2020-08-04 University Of South Carolina Fabrication method for micro-tubular solid oxide cells
CN108103524A (zh) * 2016-11-25 2018-06-01 中国科学院大连化学物理研究所 一种固体氧化物电解池及其制备方法
JP2021141025A (ja) * 2020-03-09 2021-09-16 セイコーエプソン株式会社 固体電解質、固体電解質の製造方法および複合体
CN112382774B (zh) * 2020-11-13 2021-11-09 中国科学院大连化学物理研究所 一种电解质支撑型电解池阻挡层的制备方法
CN113066996B (zh) * 2021-03-23 2022-03-15 中国科学院化学研究所 一种pem燃料电池、气体扩散层多孔碳纸及其制备方法

Also Published As

Publication number Publication date
CN114086198A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
JP5469795B2 (ja) サーメット電解質を用いたアノード支持固体酸化物燃料電池
CN101562255B (zh) 一种金属支撑型固体氧化物燃料电池的制备方法
JP2007529852A5 (zh)
KR20140085431A (ko) 개선된 기계적 건전성 및 향상된 효율성을 갖는 고체 산화물형 연료 전지를 위한 복합 애노드
CN107017423B (zh) 一种低温固体氧化物燃料电池及其制备方法
CN104779409A (zh) 一种固体氧化物燃料电池及其制备方法
CN111910201B (zh) 固体氧化物电解池的氢电极及其制备方法、固体氧化物电解池
CN104332635A (zh) 一种固体氧化物燃料电池及其制备方法
CN111029592B (zh) 一种蜂窝状高性能的固体氧化物可逆电池氢电极材料及其制备方法
CN114086198B (zh) 一种固体氧化物电解池膜电极的制备方法
KR20110051955A (ko) 고체 산화물 연료 전지용 금속 산화물 박막의 저온 무수축 제조 방법
CN114890787A (zh) 氧电极支撑型固体氧化物电解池及其制备方法
JP2002175814A (ja) 固体電解質型燃料電池用燃料極の製造方法並びに固体電解質型燃料電池及びその製造方法
US6858045B2 (en) Method of manufacturing an electrolytic cell
CN101222050A (zh) 抗碳沉积阳极膜材及其制备方法
KR20200096342A (ko) 고체산화물 연료전지 및 이의 제조방법
EP2166602A1 (en) The formulation of nano-scale electrolyte suspensions and its application process for fabrication of solid oxide fuel cell-membrane electrode assembly (SOFC-MEA)
CN116722166A (zh) 一种高性能管状可逆质子型陶瓷电化学电池的制备方法
KR102261142B1 (ko) 전기화학기법을 적용한 고체산화물연료전지 공기극 및 이의 제조방법
JP5198908B2 (ja) 高性能固体酸化物形燃料電池膜電極接合体(sofc−mea)に積層する完全緻密な電解質層の製造方法。
JP2022506504A (ja) 積層電解質の作成法
JP5110337B2 (ja) 固体電解質型燃料電池用電極構造体およびその製造方法
Hedayat et al. A novel method to fabricate inert substrate-supported microtubular solid oxide fuel cells by selective leaching
TW201417383A (zh) 一種多孔氧化物電極層及其製作法
CN114016072A (zh) 一种固体氧化物电解池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant