CN114079315A - 充电器 - Google Patents

充电器 Download PDF

Info

Publication number
CN114079315A
CN114079315A CN202110948046.6A CN202110948046A CN114079315A CN 114079315 A CN114079315 A CN 114079315A CN 202110948046 A CN202110948046 A CN 202110948046A CN 114079315 A CN114079315 A CN 114079315A
Authority
CN
China
Prior art keywords
switch
converter
power
diode
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110948046.6A
Other languages
English (en)
Other versions
CN114079315B (zh
Inventor
井本健太郎
丸山晃则
上田圭祐
大沼喜也
米田升平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=80112832&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN114079315(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Yazaki Corp filed Critical Yazaki Corp
Publication of CN114079315A publication Critical patent/CN114079315A/zh
Application granted granted Critical
Publication of CN114079315B publication Critical patent/CN114079315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明的目的是提供一种能够吸收电力脉动的小型充电器。一种充电器,包括:整流器,其包括两个输入端子、阴极端子和阳极端子,其中,设置两个输入端子用于连接到交流电源;DC/DC转换器,其包括被配置为连接到整流器的阴极端子的第一端子、被配置为连接到整流器的阳极端子的第二端子以及用于连接到电池的两个输出端子;电力脉动吸收电路,其包括第一二极管、第二二极管、第三二极管、电感器、电容器、第一开关和第二开关;以及控制部,其被配置为控制DC/DC转换器的开关、第一开关和第二开关,其中,控制部被配置为以使得从交流电源输出的电力与从电容器输出的电力之和为恒定的方式控制DC/DC转换器、第一开关和第二开关。

Description

充电器
技术领域
本发明涉及一种充电器。
背景技术
为了减少被认为是温室气体的二氧化碳的排放,电动车辆(EV)和插电式混合动力电动车辆(PHEV)分布越来越广泛。这些车辆配备有充电器,该充电器使得电池能够介由家用交流电源充电。
举例来说,非专利文献1和2公开了具有整流器和绝缘DC/DC转换器的充电器。根据非专利文献1的充电器包括功率因数校正(PFC)电路,该功率因数校正电路在整流器与DC/DC转换器之间具有大电容的电容器,以便吸收交流电源的电力中的脉动(pulsation)。另一方面,根据非专利文献2的充电器仅包括在整流器与DC/DC转换器之间的小电容的电容器,其中,这样的电容器不能吸收交流电源的电力中的脉动,使得脉动电力被传递到电池。
此外,非专利文献3公开了仅具有绝缘AC/DC转换器而没有整流器的充电器。在根据非专利文献3的充电器中,脉动电力被传递到电池。
引用列表
非专利文献
非专利文献1:M.Yilmaz,P.T.Krein,“电池充电器拓扑的检查,充电电力水平,以及用于插电式电动和混合动力车辆的基础结构(Review of Battery ChargerTopologies,Charging Power Levels,and Infrastructure for Plug-In Electric andHybrid Vehicles)”,IEEE Trans.on PELS,Vol.28,No.5(2013)
非专利文献2:J.Lu,Q.Tian,K.Bai,A.Brown和M.McAmmond,“使用E型GaN HEMT的基于97%-效率的车载级别2电池充电器的间接矩阵转换器(An indirect matrixconverter based 97%-efficiency on-board level 2battery charger using E-modeGaN HEMTs,)”2015IEEE第三研讨会,关于宽禁带电源设备和应用程序(Wide BandgapPower Devices and Applications(WiPDA)),Blacksburg,VA,2015,pp.351-358.
非专利文献3:F.Jauch和J.Biela,“具有PFC的单相单级双向隔离ZVS AC-DC转换器,”2012第15届国际电力电子和运动控制会议(International Power Electron.andMotion Control Conf.(EPE/PEMC)),Novi Sad,2012,pp.LS5d.1-1-LS5d.1-8.
发明内容
对于安装在汽车中的充电器,有小型化的需求。为了实现小型化的充电器,有必要小型化诸如电容器、电感器和变压器这样的无源元件。
然而,根据非专利文献1的充电器包括具有大电容的电容器的PFC,以便吸收交流电源的电力中的脉动。用于PFC的电感器和用于DC/DC转换器的变压器的小型化能够通过高频操作来实现。然而,用于PFC的电容器需要足以吸收交流电源的电力脉动这样的电容,由此小型化是困难的。
此外,在根据非专利文献2的充电器中,脉动的电力被输入到DC/DC转换器中。因此,用于DC/DC转换器的变压器需要考虑这种脉动,由此小型化是困难的。
此外,根据非专利文献3的充电器,脉动的电力被输入到AC/DC转换器中。因此,用于AC/DC转换器的变压器需要考虑这种脉动,由此小型化是困难的。
因此,本发明的目的是提供一种小型充电器,其使得能够吸收电力中的脉动。
为了实现如上所述的目的,根据本发明的充电器包括:整流器,该整流器包括两个输入端子、阴极端子和阳极端子,其中,所述两个输入端子被设置为用于连接到交流电源;DC/DC转换器,该DC/DC转换器包括第一端子、第二端子和两个输出端子,该第一端子被配置为经由第一线路连接到所述整流器的所述阴极端子,该第二端子被配置为经由第二线路连接到所述整流器的所述阳极端子,该两个输出端子用于连接到电池;电力脉动吸收电路,该电力脉动吸收电路包括第一二极管、第二二极管、第三二极管、电感器、电容器、第一开关和第二开关;以及控制部,该控制部被配置为控制所述DC/DC转换器的开关、所述第一开关和所述第二开关,其中,所述第一二极管连接在所述电感器与所述整流器的所述两个输入端子中的一个输入端子之间,并且所述第二二极管连接在所述电感器与所述整流器的所述两个输入端子中的另一个输入端子之间,其中,所述电容器和所述第一开关串联连接在所述第一线路与所述第二线路之间,并且所述电容器布置在所述第二线路侧,其中,所述第三二极管连接在所述电感器与将所述电容器连接到所述第一开关的线路之间,其中,所述第二开关连接在所述第二线路与将所述电感器连接到所述第三二极管的线路之间;并且其中,所述控制部被配置为以如下方式控制所述DC/DC转换器、所述第一开关和所述第二开关:从所述交流电源输出的电力与从所述电容器输出的电力之和是恒定的。
所述控制部可以被配置为以如下方式控制所述DC/DC转换器、所述第一开关和所述第二开关:施加到所述电容器的电压大于所述整流器的输出电压。
所述控制部可以被配置为控制所述DC/DC转换器、所述第一开关和所述第二开关,以在充电周期期间利用从所述交流电源输出的电力的一部分对所述电容器充电,其中,在所述充电周期期间,从所述交流电源输出的瞬时电力高于从所述交流电源输出的电力的平均电力,其中,所述控制部可以进一步被配置为控制所述DC/DC转换器、所述第一开关和所述第二开关,以在放电周期期间对所述电容器中的电力进行放电,其中,在所述放电周期期间,从所述交流电源输出的瞬时电力低于从所述交流电源输出的电力的平均电力。
所述控制部可以被配置为在所述放电周期期间将所述第二开关保持为关断状态。
所述控制部可以被配置为以如下方式控制所述DC/DC转换器和所述第一开关:所述DC/DC转换器的变压器的漏电感的高频电流具有非对称波形。
根据本发明,能够提供一种小的充电器,其使得能够吸收电力的脉动。
附图说明
图1示出了根据本发明实施例的充电器100;
图2示出了从交流电源输出的瞬时电力ps与从缓冲电容器Cbuf输出的瞬时电力pc之间的关系;
图3示出了模式1的电流的流动;
图4示出了模式2的电流的流动;
图5示出了模式3的电流的流动;
图6示出了模式4的电流的流动;
图7示出了模式5的电流的流动;
图8示出了模式6的电流的流动;
图9示出了模式7的电流的流动;
图10示出了在放电时段期间的操作波形的实例;以及
图11示出了与根据图10的操作波形等同的矩形波的实例。
参考标记列表
100 充电器
110 整流器
120 DC/DC转换器
S21至S28 DC/DC转换器的开关
130 电力脉动吸收电路
D31 第一二极管
D32 第二二极管
D33 第三二极管
Lb 电感器
Cbuf 缓冲电容器
S31 第一开关
S32 第二开关
具体实施方式
<充电器100>
图1示出了根据本发明实施例的充电器100。充电器100包括整流器110、DC/DC转换器120、电力脉动吸收电路130和控制部140。如图1所示,DC/DC转换器120例如是DAB(双有源桥)转换器120。
整流器110包括阴极端子111、阳极端子112和用于连接到交流电源200的两个输入端子113,其中,阴极端子111和阳极端子112连接到DC/DC转换器120。例如,整流器110是如图1所示的桥式二极管整流器,桥式二极管整流器由四个二极管形成,其中,整流器110接收作为连接到交流电源200的两个输入端子113之间的输入的交流电流,将交流电流转换成直流电流,并将其从阴极端子111输出。整流器110可以经由滤波器F连接到交流电源200,如图1所示,滤波器F包括电感器和电容器。
DC/DC转换器120包括与整流器110的阴极端子111连接的第一端子121、与整流器110的阳极端子112连接的第二端子122、用于连接到电池300的正电极的第三端子123以及用于连接到电池300的负电极的第四端子124。DC/DC转换器120包括变压器Tr,其中,DC/DC转换器120还包括在相对于变压器Tr的输入侧(初级侧)上的四个开关,即第一开关S21、第二开关S22、第三开关S23和第四开关S24,以及相对于变压器Tr的输出侧(次级侧)上的四个开关,即第五开关S25、第六开关S26、第七开关S27和第八开关S28。例如,八个开关S21至S28均是具有反向极性二极管(体二极管)的N沟道功率MOSFET(金属氧化物半导体场效应晶体管)。在这种情况下,如图1所示,N沟道功率MOSFET可以包括缓冲电容器。
DC/DC转换器120包括在变压器Tr的初级侧上的电感L。例如,该电感L是变压器Tr的漏电感。
此外,DC电容器Cdc连接在DC/DC转换器120的第三端子123与第四端子124之间。在根据本实施例的充电器100中,施加到DC电容器Cdc的电压Vdc被输出到电池300。
电力脉动吸收电路130包括第一二极管D31、第二二极管D32、第三二极管D33、电感器Lb、缓冲电容器Cbuf、第一开关S31和第二开关S32。
电力脉动吸收电路130的第一二极管D31连接在电力脉动吸收电路130的电感器Lb与整流器110的两个输入端子113中的一个输入端子之间,其中,电力脉动吸收电路130的第二二极管D32连接在电力脉动吸收电路130的电感器Lb与整流器110的两个输入端子113中的另一个输入端子之间。在这种情况下,电力脉动吸收电路130的第一二极管D31和第二二极管D32分别连接在电力脉动吸收电路130的电感器Lb与整流器110的输入端子113之间,使得第一二极管D31和第二二极管D32各自的正向均为从整流器110的输入端子113朝向电感器Lb。这导致即使交流电源200连接到整流器110的输入端子113,直流电流也输入到电力脉动吸收电路130的电感器Lb。
电力脉动吸收电路130的缓冲电容器Cbuf和第一开关S31串联连接在第一线LH与第二线LL之间,其中,第一线LH将整流器110的阴极端子111连接到DC/DC转换器120的第一端子121,并且第二线LL将整流器110的阳极端子112连接到DC/DC转换器120的第二端子122。缓冲电容器Cbuf布置在第二线LL侧上,而第一开关S31被布置在第一线LH侧上。例如,第一开关S31是具有反向极性二极管(体二极管)的N沟道功率MOSFET(金属氧化物半导体场效应晶体管)。在这种情况下,优选的是,N沟道功率MOSFET的源极连接到第一线LH,并且N沟道功率MOSFET的漏极连接到缓冲电容器。
电力脉动吸收电路130的第三二极管D33连接在将缓冲电容器Cbuf连接到电力脉动吸收电路130的第一开关S31的线路与电力脉动吸收电路130的电感器Lb之间,第三二极管D33的正向为从电感器Lb到所述线路。
电力脉动吸收电路130的第二开关S32连接在第二线LL与将电感器Lb连接到电力脉动吸收电路130的第三二极管D33的线路之间。例如,第二开关S32是具有反向极性二极管(体二极管)的N沟道功率MOSFET(金属氧化物半导体场效应晶体管)。在这种情况下,优选的是,N沟道功率MOSFET的漏极连接到将电感器Lb连接到电力脉动吸收电路130的第三二极管D33的线路,并且N沟道功率MOSFET的源极连接到第二线LL。
控制部140控制DC/DC转换器120的开关S21至S28以及电力脉动吸收电路130的开关S31和S32的切换。
由于电力脉动吸收电路130包括第一二极管D31、第二二极管D32、第三二极管D33、电感器Lb、缓冲电容器Cbuf和第二开关S32,所以电力脉动吸收电路130能够用作功率校正电路(PFC)。因此根据当前实施例,能够进行控制以从交流电源200向充电器100输入如下所示的正弦电压vs/正弦电流is
Figure BDA0003217511850000081
Figure BDA0003217511850000082
在这种情况下,交流电源200输出瞬时电力ps,该瞬时电力ps由平均电力P(=VsIs)和脉动分量prip(t)(=-VsIs cos 2ωst)之和形成,如下面所示,其中,瞬时电力ps如图2中的实线所示的在平均电力P(由图2中的虚线指示)周围以两倍AC角频率ωs的角频率脉动:
ps(t)=vsis=VsIs(1-CoS2ωst)=P+prip(t)
其中,Vs是电源电压的有效值,并且Is是电源电流的有效值。
因此,控制部140控制DC/DC转换器120的开关S21至S28以及电力脉动吸收电路130的开关S31和S32的切换,以在电力脉动吸收电路130中吸收交流电源的电力的脉动,使得恒定电力被输入到DC/DC转换器120。
为了这样的控制,设置了根据本实施例的充电器100,使得不同的控制被应用于不同的情况,即,从交流电源200输出的瞬时电力ps高于平均电力P(ps>P),和从交流电源200输出的瞬时电力ps低于平均电力P(ps<P)。
当交流电源输出高于平均电力P的瞬时电力ps时(ps>P),DC/DC转换器120的八个开关S21至S28以及电力脉动吸收电路130的两个开关S31和S32在它们切换时被控制为经由电力脉动吸收电路130的电感器Lb利用已经从交流电源200输出的瞬时电力ps的脉动分量Prip对缓冲电容器Cbuf充电,使得仅从交流电源输出的电力的平均电力P被输入到DC/DC转换器120。这意味着根据本实施例,从交流电源输出的瞬时电力ps高于平均电力P的周期是缓冲电容器Cbuf被充电的周期(充电周期),其中,如图2中的点划线所指示的缓冲电容器Cbuf输出负瞬时电力pc。
另一方面,当交流电源输出低于平均电力P的瞬时电力ps时(ps<P),DC/DC转换器120的八个开关S21至S28和电力脉动吸收电路130的第一开关S31在它们切换时被控制为:在使电力脉动吸收电路130的第二开关S32保持为在断开状态,以经由第一开关S31主动地对缓冲电容器Cbuf放电的同时,将脉动分量Prip补偿为从交流电源200输出的瞬时电力ps与平均电力P之间的差值,使得平均电力P被输入到DC/DC转换器120。这意味着根据本实施例,从交流电源输出的瞬时电力ps低于平均电力P的周期是在缓冲电容器Cbuf放电的周期(放电周期),其中,如图2中的点划线所指示的,缓冲电容器Cbuf输出正瞬时电力pc。
因此,根据本实施例,控制部140以如下方式控制DC/DC转换器120的开关S21至S28和/或电力脉动吸收电路130的开关S31和S32的切换:使得从交流电源200输出的瞬时电力ps与从缓冲电容器Cbuf输出的瞬时电力pc之和是恒定的。
以这种方式,提供了本实施例,使得缓冲电容器Cbuf在放电时段期间主动地放电。根据本实施例,这使得能够限制存储在缓冲电容器Cbuf中的电力的量(即,缓冲电容器Cbuf的电容),使得能够小型化缓冲电容器Cbuf。特别地,与根据非专利文献1的PFC的电容器相比,本实施例的缓冲电容器Cbuf可以具有小的电容并且小型化。
此外,根据本实施例的第二开关S32仅在充电周期期间操作。根据本实施例,这能够限制存储在电感器Lb中的电力的量(即,电感器Lb的电感),使得能够使电感器Lb小型化。特别地,与根据非专利文献1的PFC的电感器相比,根据本实施例的电感器Lb可以具有小的电感并且小型化。
此外,根据本实施例,输入到DC/DC转换器120的电力不具有脉动。根据本实施例,这使得DC/DC转换器120的变压器Tr和/或DC电容器Cdc小型化。特别地,与根据非专利文献2和3的变压器和DC电容器相比,根据本实施例的变压器Tr和DC电容器Cdc可以小型化。
如上所述,本实施例能够使得诸如电容器、电感器和/或变压器这样的无源元件小型化。因此,本实施例能够提供使电力的脉动能够被吸收的小型充电器。
<切换模式和操作波形>
图3至图9示出了示例性切换模式。图10示出了放电周期期间的示例性操作波形。如图3到9中所示的切换模式包括七个模式(模式1、模式2、模式3、模式4、模式5、模式6和模式7),其中,图10示出了通过依次切换到模式1、模式2、模式3、模式4、模式5、模式4、模式6、模式7、模式1、模式5而获得的操作波形。由于根据本实施例,电力脉动吸收电路130的第二开关S32在放电周期期间不操作,所以不需要考虑经由电感器Lb的电力传输。此外,充电电路的二极管D31和D32使充电电路能够在不影响放电电路和DC/DC转换器的情况下操作。在图3至图9中,因此省略了包括电感器Lb的电路部分。
根据本实施例,DC/DC转换器120的开关S21至S28和电力脉动吸收电路130的第一开关S31在切换时以如下方式被控制:DC/DC转换器120的电感器L的电流iL呈现如图10所示的波形。根据本实施例,DC/DC转换器120的输入电流iin是整流器110的输出电流irec和缓冲电容器Cbuf的输出电流iC的和(iin=irec+iC)。整流器110的输出电流irec可以不是负的。根据本实施例,当电力脉动吸收电路130的第一开关S31接通时,以这样的方式控制:施加到缓冲电容器Cbuf的电压vC总是大于从整流器110输出的瞬时电压vrec,使得缓冲电容器Cbuf更主动地放电。根据本实施例,对于iin<0,irec=0且iin=iC
在模式1中,开关S21、S24、S26、S27和S31接通,而开关S22、S23、S25和S28关断。当iL>0时,电流如图3(A)所示的流动,而当iL<0时,电流如图3(B)所示的流动。假设在时间tc1切换到模式1,则模式1中的电流iL根据以下公式随时间改变:
Figure BDA0003217511850000111
其中,L是电感器L的电感。为了简化,变压器Tr的匝数比为1:1。当iL>0(图3(A))时,缓冲电容器Cbuf和DC电容器Cdc两者都放电,并且电力被存储在电感器L中。另一方面,当iL<0时(图3(B)),缓冲电容器Cbuf和DC电容器Cdc两者均利用电感器L中存储的电力充电。这意味着,在模式1中,电力在充电器100内部循环,并且没有电力从充电器100传输到电池300。当iL<0时,即使开关S31关断,基于整流器110的二极管的极性和开关S31的二极管的极性,电流也如图3(B)所示流动。例如,尽管在图10中的从t0到t1的周期期间建立模式1,但是由于iL(t0)=0,根据上述公式获得下述公式:
Figure BDA0003217511850000112
在模式2中,开关S21、S24、S25、S28、S31接通,并且开关S22、S23、S26和S27关断,其中电流如图4所示流动。通过从模式1切换到模式2,DC/DC转换器120的次级侧上的电压极性被反转。因此,假设在时间tc2切换到模式2,则模式2中的电流iL根据下述公式随时间改变:
Figure BDA0003217511850000121
当iL>0时,连接在第三端子123与第四端子124之间的DC电容器Cdc和电池300利用从缓冲电容器Cbuf放出的电力充电。这意味着在模式2中,电力从充电器100向电池300传输。
在模式3中,开关S21、S24、S25和S28接通,并且开关S22、S23、S26、S27和S31关断,其中,电流如图5所示流动。通过从模式2切换到模式3,电力脉动吸收电路130的第一开关S31被切换到关断。因此,假设在时间tc3切换到模式3,则模式3中的电流iL根据下述公式随时间改变:
Figure BDA0003217511850000122
当iL>0时,连接在第三端子123与第四端子124之间的DC电容器Cdc和电池300利用从交流电源200供应的电力充电。这意味着在模式3中,电力从充电器100传输到电池300。
在模式4中,开关S22、S23、S25、S28和S31接通,并且开关S21、S24、S26和S27关断,其中,当iL>0时,电流如图6(A)所示的流动,而当iL<0时,电流如图6(B)所示流动。通过从模式3切换到模式4,次级侧的电压极性被反转,并且电力脉动吸收电路130的第一开关S31被切换为接通。因此,假设在时间tc4切换到模式4,则模式4中的电流iL随时间改变如下:
Figure BDA0003217511850000123
当iL>0时,缓冲电容器Cbuf和DC电容器Cdc两者都用存储在电感器L中的电力充电(图6(A)),而当iL<0时,缓冲电容器Cbuf和DC电容器Cdc两者都放电,使得电力存储在电感器L中(图6(B))。这意味着在模式4中,电力在充电器100内循环,并且没有电力从充电器100传输到电池单元300。当iL>0时,即使开关S31关断,基于整流器110的二极管的极性和开关S31的二极管的极性,电流也如图6(A)所示流动。
在模式5中,所有开关S21至S28和S31关断,其中,电流如图7所示流动。因此,假设当与图10所示的实例类似地在时间tc5切换到模式5时零电流流动(iL(tc5)=0),则模式5中的电流iL展现没有电流流过变压器Tr且iL(t)=0这样的时间行为。
在模式6中,开关S22、S23、S26和S27接通,并且开关S21、S24、S25、S28和S31关断,其中,电流如图8所示流动。假设在时间tc6切换到模式6,则模式6中的电流iL根据下述公式随时间改变:
Figure BDA0003217511850000131
这里,当iL<0时,连接在第三端子123与第四端子124之间的DC电容器Cdc和/或电池300利用从交流电源200提供的电力充电。这意味着在模式6中,电力从充电器100传输到电池300。
在模式7中,开关S22、S23、S26、S27和S31接通,并且开关S21、S24、S25和S28关断,其中,电流如图9所示流动。通过从模式6切换到模式7,电力脉动吸收电路130的第一开关S31切换为接通。因此,假设在时间tc7切换到模式7,则模式7中的电流iL根据下述公式随时间改变:
Figure BDA0003217511850000132
当iL<0时,连接在第三端子123与第四端子124之间的DC电容器Cdc和/或电池300利用从缓冲电容器Cbuf放出的电力充电。这意味着在模式7中,电力从充电器100向电池300传输。
根据图10的用于操作波形的周期中的每一个周期的长度,即,用于获得根据图10的波形的开关控制规则通过以如下方式将相应周期的电流公式作为联立方程求解而得出:使得施加到缓冲电容器Cbuf的瞬时电压vC总是大于从整流器110输出的瞬时电压vrec,并且从交流电源200输出的瞬时电力ps和从缓冲电容器Cbuf输出的瞬时电力pc的和是恒定的。
如上所述,在模式1和模式4中,虽然电流流过变压器Tr,但是不从充电器100向电池300传输电力。这意味着在如图10所示的操作波形中,t0与t1之间、t3与t5之间、t6与t7之间以及t9与t11之间的周期是其中没有电力从交流电源200传输到电池300的无功电流周期。然而,由于根据本实施例的用于获得vC>vrec的控制,在无功电流周期期间的波形的梯度由施加到缓冲电容器Cbuf的电压vC确定。因此,与具有依据整流器110的vrec而确定的无功电流周期期间的波形梯度的常规充电器相比,本实施例能够减少无功电流周期。因此,本实施例实现了具有比传统充电器更高效率的电力传输。
此外,根据本实施例,施加到缓冲电容器Cbuf的电压vC具有与整流器110的瞬时电压vrec不同的值。因此,根据本实施例,模式2与模式3的波形具有不同的梯度。类似地,模式6与模式7的波形具有不同的梯度。根据本实施例,这使得能够生成正波形和负波形关于iL=0不对称的操作波形,如图10所示。根据本实施例,如下面更详细地描述的(大沼喜也和宫胁慧:“由矩阵转换器和PWM整流器构成的高频绝缘AC-DC转换器的控制方法”,会议记录I.E.E.日本工业应用学会,Vol.1,No.53,pp.197-200(2018)),这能够得到一种用等效方波来近似操作波形的方法的观点,使得能够更容易地获得用于切换的控制规则。此方法的观点是针对漏电感电流的正周期和负周期,改变施加到漏电感的电压的次序,使得正波形和负波形不对称。然而,已经针对矩阵转换器提出了该方法,其中,施加到漏电感的任何电压可从三相交流电压中选择。另一方面,根据本实施例的施加到漏电感的电压由通过漏电感的电流的极性唯一地确定,如图3(B)和6(A)所示。因此,有必要应用考虑这一点的方法。
<利用等效方波近似操作波形>
为了获得根据图10的波形的控制规则,有必要将十个周期的电流公式作为联立方程求解。然而,如图10所示的非对称操作波形能够用等效的方波来近似,由此能够更容易地获得用于切换的控制规则。
对于如图10所示的操作波形,在t0与t1之间的周期中应用模式1,在t1与t2之间的周期中应用模式2,在t2与t3之间的周期中应用模式3,在t3与t5之间的周期中应用模式4,在t5与t6之间的周期中应用模式5,在t6与t7之间的周期中应用模式4,在t7与t8之间的周期中应用模式6,在t8与t9之间的周期中应用模式7,在t9与t11之间的周期中应用模式1,且在t11与t12之间的周期中应用模式5。例如,在根据图10的波形中,通过将t0-t3、t5-t9、t11和t12设置为使得|t0-t1|=|t6-t7|、|t1-t2|=|t8-t9|、|t2-t3|=|t7-t8|并且|t3-t5|=|t9-t11|,并且通过将t3与t5之间的t4以及t9与t11之间的t10设置为使得|t0-t1|=|t4-t5|=|t10-t11|,根据图10的操作波形能够用等效方波iL’近似,如图11所示。
Figure BDA0003217511850000151
如果在根据图11的等效方波iL’中,t0与t1之间、t4与t5之间、t6与t7之间以及t10与t11之间的周期被定义为无功电流周期Tq,t1与t2之间以及t8与t9之间的周期被定义为缓冲电容器放电电流周期TC,t2与t3之间以及t7与t8之间的周期被定义为电源电流周期Trec,t3与t4之间以及t9与t10之间的周期被定义为电流平衡周期Tb,t5与t6之间以及t11与t12之间的周期被定义为零电流周期T0,这导致在切换周期TSW期间各周期的占空比如下:
Figure BDA0003217511850000161
通过给出irec、iC、vC、Vdc和Isq作为命令值,能够获得相应周期的占空比。能够通过使用所获得的用于周期的占空比来获得根据图10的用于操作波形的控制规则。
通过在放电周期与充电周期之间切换上述命令值的irec和iC,电力脉动吸收电路能够实现其功能。
在放电期间,电力脉动吸收电路130的充电电路(包括第一二极管D31、第二二极管D32、电感器Lb和第二开关S32的电路部分)未运行,使得该充电电路从交流电源200汲取零电力。结果,从交流电源200输出的电力与来自整流器110的输出电力一致。此时,通过如下给出irec的命令值irec*,电源电流具有正弦波形。
Figure BDA0003217511850000162
因此,本实施例提供类似于PFC的功能。此时,从交流电源200输出的瞬时电力ps小于平均电力P,并且因此,通过如下给出iC的命令值iC*使缓冲电容器Cbuf放电,从而补偿瞬时电力ps与平均电力P之差。
Figure BDA0003217511850000171
在充电周期中,通过如下给出irec的命令值irec*,使从整流器110输出的瞬时电力ps与平均电力P一致:
Figure BDA0003217511850000172
由于从交流电源200输出的瞬时电力ps大于平均电力P,所以过量的电力经由充电电路被存储在缓冲电容器Cbuf中,由此缓冲电容器Cbuf被充电并且电源电流能够具有正弦波形(PFC操作)。此时,整流器110向DC/DC转换器传输恒定电力,使得不需要使缓冲电容器Cbuf放电,其中,如下给出iC的命令值iC*:
iC*=0
本发明通过以上优选实施例进行了描述。虽然这里通过展示具体实例来对本发明进行了描述,但是在不脱离权利要求中限定的本发明的核心和范围的情况下,可以以各种方式修改和改变这些实例。

Claims (6)

1.一种充电器,包括:
整流器,该整流器包括两个输入端子、阴极端子和阳极端子,其中,所述两个输入端子被设置为用于连接到交流电源;
DC/DC转换器,该DC/DC转换器包括:
第一端子,该第一端子被配置为经由第一线路连接到所述整流器的所述阴极端子;
第二端子,该第二端子被配置为经由第二线路连接到所述整流器的所述阳极端子;和
两个输出端子,该两个输出端子用于连接到电池;
电力脉动吸收电路,该电力脉动吸收电路包括第一二极管、第二二极管、第三二极管、电感器、电容器、第一开关和第二开关;以及
控制部,该控制部被配置为控制所述DC/DC转换器的开关、所述第一开关和所述第二开关,
其中,所述第一二极管连接在所述电感器与所述整流器的所述两个输入端子中的一个输入端子之间,并且所述第二二极管连接在所述电感器与所述整流器的所述两个输入端子中的另一个输入端子之间,
其中,所述电容器和所述第一开关串联连接在所述第一线路与所述第二线路之间,并且所述电容器布置在所述第二线路侧,
其中,所述第三二极管连接在所述电感器与将所述电容器连接到所述第一开关的线路之间,
其中,所述第二开关连接在所述第二线路与将所述电感器连接到所述第三二极管的线路之间;并且
其中,所述控制部被配置为以如下方式控制所述DC/DC转换器、所述第一开关和所述第二开关:从所述交流电源输出的电力与从所述电容器输出的电力之和是恒定的。
2.根据权利要求1所述的充电器,
其中,所述控制部被配置为以如下方式控制所述DC/DC转换器、所述第一开关和所述第二开关:施加到所述电容器的电压大于所述整流器的输出电压。
3.根据权利要求1或2所述的充电器,
其中,所述控制部被配置为:
控制所述DC/DC转换器、所述第一开关和所述第二开关,以在充电周期期间利用从所述交流电源输出的电力的一部分对所述电容器充电,其中,在所述充电周期期间,从所述交流电源输出的瞬时电力高于从所述交流电源输出的电力的平均电力;以及
控制所述DC/DC转换器、所述第一开关和所述第二开关,以在放电周期期间对所述电容器中的电力进行放电,其中,在所述放电周期期间,从所述交流电源输出的瞬时电力低于从所述交流电源输出的电力的平均电力。
4.根据权利要求3所述的充电器,
其中,所述控制部被配置为在所述放电周期期间将所述第二开关保持为关断状态。
5.根据权利要求4所述的充电器,
其中,所述控制部被配置为以如下方式控制所述DC/DC转换器和所述第一开关:所述DC/DC转换器的变压器的漏电感的高频电流具有非对称波形。
6.根据权利要求1至5中任一项所述的充电器,
其中,所述DC/DC转换器是DAB(双有源桥)转换器。
CN202110948046.6A 2020-08-19 2021-08-18 充电器 Active CN114079315B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020138698A JP7212904B2 (ja) 2020-08-19 2020-08-19 充電器
JP2020-138698 2020-08-19

Publications (2)

Publication Number Publication Date
CN114079315A true CN114079315A (zh) 2022-02-22
CN114079315B CN114079315B (zh) 2024-02-02

Family

ID=80112832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110948046.6A Active CN114079315B (zh) 2020-08-19 2021-08-18 充电器

Country Status (4)

Country Link
US (1) US11831194B2 (zh)
JP (1) JP7212904B2 (zh)
CN (1) CN114079315B (zh)
DE (1) DE102021121325A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024121158A (ja) 2023-02-27 2024-09-06 矢崎総業株式会社 充電器
JP2024121159A (ja) 2023-02-27 2024-09-06 矢崎総業株式会社 充電器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224080A (ja) * 2004-02-09 2005-08-18 Sanken Electric Co Ltd 単相スイッチング整流装置
CN103929074A (zh) * 2013-01-10 2014-07-16 Lg伊诺特有限公司 单级交流/直流变换器
JP2016116385A (ja) * 2014-12-17 2016-06-23 ダイキン工業株式会社 電力変換装置
US20180234028A1 (en) * 2017-02-14 2018-08-16 Yang Chen Hybrid Full Bridge-Voltage Doubler Rectifier and Single Stage LLC Converter Thereof
US20190199114A1 (en) * 2017-12-22 2019-06-27 Industrial Technology Research Institute Distributed single-stage on-board charging device and method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027284B2 (ja) * 1993-06-30 2000-03-27 新電元工業株式会社 スイッチング電源
FR2991833B1 (fr) 2012-06-06 2015-12-18 Valeo Sys Controle Moteur Sas Circuit d'absorption d'une ondulation de puissance procede associe
JP5929703B2 (ja) 2012-10-22 2016-06-08 三菱電機株式会社 Dc/dcコンバータ
JP6179652B2 (ja) 2015-12-24 2017-08-16 株式会社安川電機 電力変換装置及び電力変換方法
JP6418287B1 (ja) 2017-06-30 2018-11-07 ダイキン工業株式会社 直接形電力変換器用制御装置
US10749441B1 (en) 2019-10-11 2020-08-18 Deere & Company Method and system for controlling a direct current to direct current converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224080A (ja) * 2004-02-09 2005-08-18 Sanken Electric Co Ltd 単相スイッチング整流装置
CN103929074A (zh) * 2013-01-10 2014-07-16 Lg伊诺特有限公司 单级交流/直流变换器
JP2016116385A (ja) * 2014-12-17 2016-06-23 ダイキン工業株式会社 電力変換装置
US20180234028A1 (en) * 2017-02-14 2018-08-16 Yang Chen Hybrid Full Bridge-Voltage Doubler Rectifier and Single Stage LLC Converter Thereof
US20190199114A1 (en) * 2017-12-22 2019-06-27 Industrial Technology Research Institute Distributed single-stage on-board charging device and method thereof

Also Published As

Publication number Publication date
CN114079315B (zh) 2024-02-02
DE102021121325A1 (de) 2022-02-24
JP7212904B2 (ja) 2023-01-26
JP2022034820A (ja) 2022-03-04
US20220060045A1 (en) 2022-02-24
US11831194B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
US10071637B2 (en) Pulse width modulation resonance converter and charger for vehicle using the same
Kim et al. Integrated dual full-bridge converter with current-doubler rectifier for EV charger
US20220094274A1 (en) Single phase single stage bi-directional level 1 electric vehicle battery charger
US9499060B2 (en) Power conversion device
KR101288230B1 (ko) 전기 차량용 배터리 충전 장치
US11368037B2 (en) On-board charger (OBC) single-stage converter
CN111585443B (zh) Dc-dc转换器
WO2013186996A1 (ja) 電力変換装置
CN114079315B (zh) 充电器
JP6742145B2 (ja) 双方向dc−dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
CN108235509A (zh) 一种集成降压Cuk和LLC电路的单级LED驱动电路
US11689112B2 (en) DC-DC converter and vehicle
CN210807100U (zh) 一种功率传输电路
CN109842182B (zh) 供电系统
WO2023131101A1 (zh) 双向直流变换器及系统
US11936297B2 (en) DC-DC converter including first and second coils magnetically coupled such that current flows through second coil in forward direction of diode by mutual induction as current flowing through first coil from intermediate terminal to output terminal increases and vehicle
US20230322105A1 (en) Charging device and method for operating the charging device
Patel et al. An Accurate Loss Model of Single-Stage Single-Phase Isolated PFC Converter for Bidirectional Plug-in EV Charger
CN210350838U (zh) 车载充放电系统
CN106972752A (zh) 可宽范围调节输出的dc‑dc变换器
CN115428322A (zh) Ac/dc功率变换器
US20240291309A1 (en) Charger
US20240072666A1 (en) Charger
CN215871196U (zh) 直流-直流dcdc变换器及车辆
US20240291383A1 (en) Charger

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant