CN114057241A - 一种镶嵌有钼酸镍纳米颗粒的自支撑低晶相氢氧化镍纳米片电极的制备方法及应用 - Google Patents

一种镶嵌有钼酸镍纳米颗粒的自支撑低晶相氢氧化镍纳米片电极的制备方法及应用 Download PDF

Info

Publication number
CN114057241A
CN114057241A CN202111506772.9A CN202111506772A CN114057241A CN 114057241 A CN114057241 A CN 114057241A CN 202111506772 A CN202111506772 A CN 202111506772A CN 114057241 A CN114057241 A CN 114057241A
Authority
CN
China
Prior art keywords
nickel
nimoo
self
electrode
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111506772.9A
Other languages
English (en)
Other versions
CN114057241B (zh
Inventor
马立安
陈彦斌
宋执谦
陈洪祥
魏朝晖
叶晓云
张磊
王乾廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian University of Technology
Original Assignee
Fujian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian University of Technology filed Critical Fujian University of Technology
Priority to CN202111506772.9A priority Critical patent/CN114057241B/zh
Publication of CN114057241A publication Critical patent/CN114057241A/zh
Application granted granted Critical
Publication of CN114057241B publication Critical patent/CN114057241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种自支撑低晶相Ni(OH)0.75H2O@NiMoO4纳米片电极的制备方法及应用,一步合成的产物为多层片状阵列,在结构中均匀细小NiMoO4颗粒镶嵌于Ni(OH)纳米片中,Ni(OH)0.75H2O和NiMoO4界面紧密接触不但有利于电解液的渗透、暴露尽可能的活性点外,还减小了电荷的传递阻抗、循环稳定性得到较好提升。

Description

一种镶嵌有钼酸镍纳米颗粒的自支撑低晶相氢氧化镍纳米片 电极的制备方法及应用
技术领域
本发明提供了一种自支撑低晶相Ni(OH)0.75H2O@NiMoO4纳米片电极材料及制备方法,可应用于能量存储和能量转换领域。
背景技术
氢氧化镍(Ni(OH)2)纳米材料具有环境友好、理论容量高的优点,在超电容领域广泛研究和报道。但因Ni(OH)2本质低的电导,作为超电容的正极循环特性较差。最近报道的基于Ni(OH)2的核壳结构电极材料电化学特性有极大提高,但该材料大都采用多步的合成工艺制备,不但制备工序繁琐,且在使用中这种核壳材料极易剥落。
基于此,本发明提出了一种低成本、简单的一步水热法来合成成分可调的自支撑Ni(OH)/NiMoO4纳米片阵列电极。该电极材料的结构优势在于:一步合成的产物为多层片状阵列,在结构中均匀细小NiMoO4颗粒镶嵌于Ni(OH)纳米片中,Ni(OH)0.75H2O和NiMoO4界面紧密接触不但有利于电解液的渗透、暴露尽可能的活性点外,还减小了电荷的传递阻抗、循环稳定性得到较好提升。
发明内容
本发明的目的在于提供一种自支撑低晶相Ni(OH)0.75H2O@NiMoO4纳米片电极的制备方法及应用,一步合成自支撑高比容量的Ni(OH)2基核壳纳米片阵列,降低材料的阻抗、提升电极循环的寿命。
为实现上述目的,本发明采用如下技术方案:
自支撑低晶相Ni(OH)2·0.75H2O@NiMoO4纳米片电极的制备过程如下:
(1)以泡沫镍为衬底,将泡沫镍在2M HCl中超声清洗10min,去除表面氧化层,接着分别在去离子水和无水乙醇中分别超声15分钟,最后在60℃烘箱中干燥10h;
(2)为了合成具有成分可调的氧化钼纳米颗粒镶嵌的层状Ni(OH)2 .0.75H2O 纳米片,将4.36~8.72g Ni(NO3)2·6H2O、3.63~7.26g Na2MoO4·2H2O和2.7~30.03g尿素溶于100ml去离子水中,混合液搅拌40分钟后,接着将泡沫镍和前驱体溶液转移到特氟隆内衬的不锈钢高压釜中,110℃水热反应10小时。 待冷却至室温后样品取出,随后样品在去离子水中超声3分钟,60℃干燥6 h。
(3)采用三电极体系以Ni(OH)0.75H2O@NiMoO4 纳米片为工作电极、铂片为对电极、Hg/HgO为参比电极在 2M KOH电解液CV充放电激活500~1000圈,使Ni(OH)0.75H2O@NiMoO4纳米片电极形成分层多孔的结构。在泡沫镍衬底上所形成的自由站立的Ni(OH)0.75H2O@NiMoO4 纳米片电极比表面约为114m2/g,孔径为3.5 nm。
产物的结构特征如下:
1、产物结构为两相组成即:由Ni(OH)0.75H2O和NiMoO4组成,且NiMoO4纳米颗粒均匀镶嵌于低晶相Ni(OH)0.75H2O纳米片中;
2、Ni(OH)0.75H2O纳米片和NiMoO4颗粒成分比例可调。
本发明的优点在于:
(1)采用一步水热法在泡米镍衬底上合成了自支撑分层多孔的低晶相Ni(OH)0.75H2O@ NiMoO4纳米片阵列;
(2)本发明合成的产物为分层超薄的导电纳米片阵列。其中产物结构为NiMoO4纳米颗粒均匀镶嵌于低晶相Ni(OH)0.75H2O纳米片中;
(3)Ni(OH)0.75H2O纳米片和NiMoO4颗粒成分比例可调;
(4)Ni(OH)0.75H2O和NiMoO4界面紧密接触不但有利于电解液的渗透、暴露尽可能的活性点外,还减小了电荷的传递阻抗。
标准三电极体系下即:在1.8 A g-1条件下该电极的容量为2000 F g-1;两电极体系下即:以合成的产物为正极、活性碳为负极,在功率密度为318.84 W kg-1的条件下可获得了较高的能量密度(70.76 Wh kg-1),5000圈的充放电显示该材料具有较高的循环稳定性。
基于本发明所合成的产物具有独特特征结合其优良的电化学特性以及简便的制作工艺,该电极材料有望在能量存储领域获得应用。
附图说明
图1为不同合成条件下产物的形貌,(a)实施例1形貌,(b)实施例2形貌,(c)实施例3形貌,(d)实施例4形貌;
图2中(a-c)是实施例2产物的透射电镜照片,(d)选区衍射(SAED)照片;
图3中(a)实施例2产物的XRD图谱,(b-d)产物的XPS谱;
图4为产物的循环伏安(CV)曲线;
图5为产物的恒流充放电(GCD)曲线;
图6为实施例2产物在不同电流密度条件下的电容特性;
图7为实施例2产物和活性炭的CV曲线;
图8为ASC器件在不同电流密度下的GCD曲线;
图9为ASC器件循环稳定性。
具体实施方式
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,作详细说明。本发明的方法如无特殊说明,均为本领域常规方法。
实施例1
以泡沫镍(20mm×40mm×1.6mm)为衬底进行水热合成。泡沫镍首先在2M HCl中超声清洗10min,去除表面氧化层,接着分别在去离子水和无水乙醇分别超声15分钟,最后在60℃烘箱中干燥10h。为了合成具有氧化钼纳米颗粒镶嵌的层状Ni(OH)2 .0.75H2O 纳米片,以Ni(NO3)2·6H2O作为Ni源,以Na2MoO4·2H2O作为Mo源,分别将8.72g Ni(NO3)2·6H2O和3.63g Na2MoO4·2H2O溶于含有2.7g 尿素的去离子水(100mL)中,搅拌40分钟后,接着将泡沫镍和前驱体溶液转移到特氟隆内衬的不锈钢高压釜中,110℃水热反应10小时。 最后样品取出在去离子水中超声3分钟,60℃干燥6 h待用。
实施例2
以泡沫镍(20mm×40mm×1.6mm)为衬底进行水热合成。泡沫镍首先在2M HCl中超声清洗10min,去除表面氧化层,接着分别在去离子水和无水乙醇分别超声15分钟,最后在60℃烘箱中干燥10h。为了合成具有氧化钼纳米颗粒镶嵌的层状Ni(OH)2 .0.75H2O 纳米片,以Ni(NO3)2·6H2O作为Ni源,以Na2MoO4·2H2O作为Mo源,分别将8.72g Ni(NO3)2·6H2O和3.63g Na2MoO4·2H2O溶于含有12.01g 尿素的去离子水(100mL)中,搅拌40分钟后,接着将泡沫镍和前驱体溶液转移到特氟隆内衬的不锈钢高压釜中,110℃水热反应10小时。 最后样品取出在去离子水中超声3分钟,60℃干燥6 h待用。
实施例3
以泡沫镍(20mm×40mm×1.6mm)为衬底进行水热合成。泡沫镍首先在2M HCl中超声清洗10min,去除表面氧化层,接着分别在去离子水和无水乙醇分别超声15分钟,最后在60℃烘箱中干燥10h。为了合成具有氧化钼纳米颗粒镶嵌的层状Ni(OH)2 .0.75H2O 纳米片,以Ni(NO3)2·6H2O作为Ni源,以Na2MoO4·2H2O作为Mo源,分别将8.72g Ni(NO3)2·6H2O和3.63g Na2MoO4·2H2O溶于含有21.62g 尿素的去离子水(100mL)中,搅拌40分钟后,接着将泡沫镍和前驱体溶液转移到特氟隆内衬的不锈钢高压釜中,110℃水热反应10小时。 最后样品取出在去离子水中超声3分钟,60℃干燥6 h待用。
实施例4
以泡沫镍(20mm×40mm×1.6mm)为衬底进行水热合成。泡沫镍首先在2M HCl中超声清洗10min,去除表面氧化层,接着分别在去离子水和无水乙醇分别超声15分钟,最后在60℃烘箱中干燥10h。为了合成具有氧化钼纳米颗粒镶嵌的层状Ni(OH)2 .0.75H2O 纳米片,以Ni(NO3)2·6H2O作为Ni源,以Na2MoO4·2H2O作为Mo源,分别将8.72g Ni(NO3)2·6H2O和3.63g Na2MoO4·2H2O溶于含有30.03g尿素的去离子水(100mL)中,搅拌40分钟后,接着将泡沫镍和前驱体溶液转移到特氟隆内衬的不锈钢高压釜中,110℃水热反应10小时。 最后样品取出在去离子水中超声3分钟,60℃干燥6 h待用。
电化学特性测量:
为了构建非对称超级电容装置(ASC),分别使用实施例2的产物(2.2 mg cm-2)作为正极和活性炭(AC)作为负极。通过混合质量比为8:1:1的活性炭、乙炔黑和聚四氟乙烯(PTFE)制备负极材料,随后将其粘结在泡沫镍上,并在80℃下在空气中干燥10 h。最后ASC装置中正负极由纤维素基滤纸分离,并使用2 M KOH水溶液作为电解液。
使用电化学工作站(PGSTAT302N,AUTOLAB)在2 M KOH电解液中对样品进行电化学测量。通过循环伏安法(CV)、恒流充放电(GCD)和电化学阻抗谱(EIS)对合成样品的性能进行了评估。电极的比电容可根据方程(1)和(2)从GCD曲线计算得出:
Figure 993405DEST_PATH_IMAGE002
其中CA(F cm−2) 是面积比电容,C(F g-1)是质量比电容,I(A)是放电电流,S(cm2)是电极的几何面积,m(g)是活性材料的质量,ΔV(V)是放电时间Δt(s)内的电位变化。
根据GCD曲线计算非对称超级电容装置(ASC)的能量密度(E,Wh kg-1)和功率密度(P,W kg-1),如下所示:
Figure DEST_PATH_IMAGE004
式中,C(F g-1)是根据放电曲线计算的特殊电容,ΔV(V)表示电位窗口,Δt(s)表示放电时间。
图1~图3为产物的形貌和微结构表征:
由图1中(a~d)观察可知随着反应液中尿素含量的增加(从实施例1尿素的含量为2.7g,到实施例4的30.03g),产物(纳米片)在泡沫镍上延2D方向扩展,其宽度尺寸为100 to400 nm,厚度为10 to 30 nm,纳米片互联的网状结构逐渐变大且呈现出层状薄片多孔的特征。这种独特的形貌结构将为离子运输提供更多的活性点位。
表 1. 不同合成条件下产物中O, Ni and Mo的原子比
Figure DEST_PATH_IMAGE005
图2中a为产物(实施例2)低倍TEM照片。该纳米片具有超薄、光滑的特性。高倍HRTEM像(图2中b)显示许多黑色圆形颗状物嵌入在2D纳米片,这些圆形颗粒直径约为3-5nm。纳米颗粒晶格条纹为0.195nm和0.210nm的晶面间距分别对应于NiMoO4的(4 0 -3)和(3 1 -3)面(图2中c)。而颗粒物外面的白色区域的晶格条纹间距为0.268nm和0.197nm分别对应含水氢氧化镍(Ni(OH)2·0.75H2O)的(1 0 1)和(0 1 8)面。图2中d为样品的选区电子衍射(SAED)照片。由图可知除Ni(OH)2·0.75H2O外,SAED图谱证实了NiMoO4纳米颗粒的存在。
图3中a为样品(实施例2)的X射线衍射图。从XRD图谱中可以发现, 除44.5°、51.8°、76.4° 峰位(PDF#04-0850)来自泡沫镍外,产物主要由含水氢氧化镍(Ni(OH)2·0.75H2O, PDF#38-0715)以及NiMoO4构成(NiMoO4,PDF#45-0142)。图3中b为样品(实施例2)的表面特性。Ni 2p光谱(图3中c) 被卷积为Ni 2p3/2和Ni 2p1/2两个态。结合能为854.01eV和871.55 eV的峰对应于Ni2+,结合能为856.02 eV和873.72 eV的峰对应于Ni3+。在Mo 3dXPS光谱中(图3中d),位于230.83和233.94 eV的两个峰分别对应于Mo 3d5/2和Mo 3d3/2。
图4~图9为产物的电化学特性:
图4和图5分别是尿素含量2.7g(实施例1)、12.01g(实施例2)、21.62g(实施例3)和30.03g(实施例4)产物的CV和GCD曲线。观察可知实施例2所合成样品的CV曲线面积大于其他样品,在电流密度为4 mA cm-2下他们的放电时间分别为351.3s、550.3s、488.5s和438.4s,对应的面电容分别为2.81、4.4、3.91和3.51 F cm-2。图6为不同的放电电流密度条件下产物(实施例2)的电容特性。由图可知,产物在电流密度为4 mA cm-2(1.8A g-1)下电容为4.4 cm-2 (2000 F g-1), 8 mA cm-2 (3.6 A g-1) 下电容为3.56 F cm-2 (1618 F g-1) ,12 mA cm-2 (5.4 A g-1) 下电容为3.12 F cm-2 (1417 F g-1)。
图7为产物(实施例2)和活性炭的CV曲线。产物和活性炭分别在扫速10 mV s-1下电势窗口为-0.2~0.8 V 和-1~0 V下测试。图8 为ASC在0~1.6V电位窗口内0.4~2 A g-1电流密度下记录的GCD曲线。经计算可知在电流密度为0.4、0.8、1.2、1.6和2.0 A g-1时,ASC的比电容分别为199、118、105、98和94 F g-1。 此外,由公式(3)和(4)计算知:ASC在功率密度为318.84 W kg-1时,能量密度值达70.76 Wh kg-1。循环试验显示,ASC器件具有良好的稳定性(图9),在100mV S-1的扫描速率下5000次循环后,容量保持率高达82.2%。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种镶嵌有钼酸镍纳米颗粒的自支撑低晶相氢氧化镍纳米片电极的制备方法,其特征在于,包括以下步骤:
(1)以泡沫镍为衬底,将泡沫镍在2M HCl中超声清洗10min,去除表面氧化层,接着分别在去离子水和无水乙醇中分别超声15分钟,最后在60℃烘箱中干燥10h;
(2)以Ni(NO3)2·6H2O作为Ni源,以Na2MoO4·2H2O作为Mo源,分别将Ni(NO3)2·6H2O和Na2MoO4·2H2O溶于含有尿素的去离子水中,搅拌40分钟后,接着将泡沫镍和前驱体溶液转移到特氟隆内衬的不锈钢高压釜中,110℃水热反应10小时,最后样品取出在去离子水中超声3分钟,60℃干燥6 h。
2.根据权利要求1所述的制备方法,其特征在于,100 ml前驱体溶液中Ni(NO3)2·6H2O的含量为4.36-8.72g,Na2MoO4·2H2O的含量为3.63-7.26g,尿素的含量为2.7-30.03g。
3.如权利要求1或2所述的制备方法制得的自支撑低晶相Ni(OH)0.75H2O@NiMoO4纳米片电极。
4.如权利要求3所述的自支撑低晶相Ni(OH)0.75H2O@ NiMoO4纳米片电极在作为电极材料中的应用。
CN202111506772.9A 2021-12-10 2021-12-10 一种镶嵌有钼酸镍纳米颗粒的自支撑低晶相氢氧化镍纳米片电极的制备方法及应用 Active CN114057241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111506772.9A CN114057241B (zh) 2021-12-10 2021-12-10 一种镶嵌有钼酸镍纳米颗粒的自支撑低晶相氢氧化镍纳米片电极的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111506772.9A CN114057241B (zh) 2021-12-10 2021-12-10 一种镶嵌有钼酸镍纳米颗粒的自支撑低晶相氢氧化镍纳米片电极的制备方法及应用

Publications (2)

Publication Number Publication Date
CN114057241A true CN114057241A (zh) 2022-02-18
CN114057241B CN114057241B (zh) 2023-09-08

Family

ID=80229413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111506772.9A Active CN114057241B (zh) 2021-12-10 2021-12-10 一种镶嵌有钼酸镍纳米颗粒的自支撑低晶相氢氧化镍纳米片电极的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114057241B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582638A (zh) * 2022-03-01 2022-06-03 福建工程学院 一种电化学辅助刻蚀模板制备柔性多孔镍钴钼基超电容电极的方法
CN115072808A (zh) * 2022-06-29 2022-09-20 西北工业大学 一种钼酸镍-氧化镍花状微球材料及其制备方法和应用、乙醇气体传感器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160379764A1 (en) * 2015-06-25 2016-12-29 William Marsh Rice University Ni(OH)2 NANOPOROUS FILMS AS ELECTRODES
CN109616331A (zh) * 2018-11-13 2019-04-12 哈尔滨工业大学(深圳) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
CN110400701A (zh) * 2019-08-01 2019-11-01 广东工业大学 一种超级电容器纳米球形貌电极材料的制备方法
CN111146442A (zh) * 2019-12-27 2020-05-12 东华大学 一种高性能镍锌电池正极材料CoXNi1-XMoO4及其制备和应用
CN111874959A (zh) * 2020-08-18 2020-11-03 王星星 一种SmMoO4(OH)-Ni(OH)2纳米片的制备方法
US10854395B1 (en) * 2020-07-12 2020-12-01 United Arab Emirates University Asymmetric supercapacitor with hierarchical electrodes
CN113346040A (zh) * 2021-05-19 2021-09-03 北京化工大学 一种柔性一体化锂硫电池正极材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160379764A1 (en) * 2015-06-25 2016-12-29 William Marsh Rice University Ni(OH)2 NANOPOROUS FILMS AS ELECTRODES
CN109616331A (zh) * 2018-11-13 2019-04-12 哈尔滨工业大学(深圳) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
CN110400701A (zh) * 2019-08-01 2019-11-01 广东工业大学 一种超级电容器纳米球形貌电极材料的制备方法
CN111146442A (zh) * 2019-12-27 2020-05-12 东华大学 一种高性能镍锌电池正极材料CoXNi1-XMoO4及其制备和应用
US10854395B1 (en) * 2020-07-12 2020-12-01 United Arab Emirates University Asymmetric supercapacitor with hierarchical electrodes
CN111874959A (zh) * 2020-08-18 2020-11-03 王星星 一种SmMoO4(OH)-Ni(OH)2纳米片的制备方法
CN113346040A (zh) * 2021-05-19 2021-09-03 北京化工大学 一种柔性一体化锂硫电池正极材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582638A (zh) * 2022-03-01 2022-06-03 福建工程学院 一种电化学辅助刻蚀模板制备柔性多孔镍钴钼基超电容电极的方法
CN114582638B (zh) * 2022-03-01 2023-04-11 福建工程学院 一种电化学辅助刻蚀模板制备柔性多孔镍钴钼基超电容电极的方法
CN115072808A (zh) * 2022-06-29 2022-09-20 西北工业大学 一种钼酸镍-氧化镍花状微球材料及其制备方法和应用、乙醇气体传感器及其制备方法

Also Published As

Publication number Publication date
CN114057241B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
Wu et al. Morphology controlled hierarchical NiS/carbon hexahedrons derived from nitrilotriacetic acid-assembly strategy for high-performance hybrid supercapacitors
Kumar et al. Homogeneous reduced graphene oxide supported NiO-MnO2 ternary hybrids for electrode material with improved capacitive performance
Sivakumar et al. Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application
Xie et al. MnO2-decorated hierarchical porous carbon composites for high-performance asymmetric supercapacitors
Du et al. Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor
Tseng et al. Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes
Wang et al. A phosphatized NiCo LDH 1D dendritic electrode for high energy asymmetric supercapacitors
Song et al. Preparation and electrochemical properties of Fe2O3/reduced graphene oxide aerogel (Fe2O3/rGOA) composites for supercapacitors
Zai et al. 3D hierarchical Co–Al layered double hydroxides with long-term stabilities and high rate performances in supercapacitors
Ramesh et al. A nanocrystalline structured NiO/MnO 2@ nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitors
Li et al. Rapid in situ growth of β-Ni (OH) 2 nanosheet arrays on nickel foam as an integrated electrode for supercapacitors exhibiting high energy density
Lamiel et al. Synthesis of mesoporous RGO@(Co, Mn) 3O4 nanocomposite by microwave-assisted method for supercapacitor application
CN114057241B (zh) 一种镶嵌有钼酸镍纳米颗粒的自支撑低晶相氢氧化镍纳米片电极的制备方法及应用
KR101743510B1 (ko) 초미세 산화코발트 나노튜브가 삽입된 그래핀복합체 합성방법
Harichandran et al. Facile morphology-controlled synthesis of nanostructured MnMoO 4 nanorods as an advance electrode material for supercapacitor application
He et al. Combination of 1D Ni (OH) 2 nanobelts and 2D graphene sheets to fabricate 3D composite hydrogel electrodes with ultrahigh capacitance and superior rate capability
Jadhav et al. Probing electrochemical charge storage of 3D porous hierarchical cobalt oxide decorated rGO in ultra-high-performance supercapacitor
Wang et al. Facile synthesis of 3-D composites of MnO 2 nanorods and holey graphene oxide for supercapacitors
Imtiaz et al. Three-dimensional aerogel based on in-situ growth of 1T-MoS2 on functionalized hierarchical porous carbon/reduced graphene oxide for energy storage
Wang et al. Construction of flower-like ZnCo 2 S 4/ZnCo 2 O 4 arrays on Ni foam for high-performance asymmetric supercapacitors
Gao et al. In situ hydrothermal construction of hydrogel composites by anchoring Ni (OH) 2 nanoparticles onto sulfonated graphene and their application for functional supercapacitor electrode
Liu et al. Chips assembled cuboid-like nickel hydroxide/rGO composite material for high performance supercapacitors
Zhu et al. MoO3 nanoplates preparation via self-sacrifice C3N4 for supercapacitors in an acid electrolyte
Zou et al. Facile electrodeposition route for the fabrication of Ni/Ni (OH) 2 nanocomposite films with different supporting electrolytes and their electrochemical properties
Namsheer et al. Molybdenum sulfo-selenides grown on surface engineered vertically aligned graphitic petal arrays for solid-state supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant