CN114047474A - 基于广义回归神经网络的均匀线列阵目标方位估计方法 - Google Patents
基于广义回归神经网络的均匀线列阵目标方位估计方法 Download PDFInfo
- Publication number
- CN114047474A CN114047474A CN202111250654.6A CN202111250654A CN114047474A CN 114047474 A CN114047474 A CN 114047474A CN 202111250654 A CN202111250654 A CN 202111250654A CN 114047474 A CN114047474 A CN 114047474A
- Authority
- CN
- China
- Prior art keywords
- data
- grnn
- expansion factor
- model
- estimation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 16
- 238000012549 training Methods 0.000 claims abstract description 32
- 238000012360 testing method Methods 0.000 claims abstract description 23
- 238000002790 cross-validation Methods 0.000 claims abstract description 6
- 238000005457 optimization Methods 0.000 claims abstract description 6
- 238000010606 normalization Methods 0.000 claims abstract description 5
- 238000012795 verification Methods 0.000 claims description 11
- 238000005070 sampling Methods 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 108010003272 Hyaluronate lyase Proteins 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000010200 validation analysis Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 3
- 238000013527 convolutional neural network Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000010801 machine learning Methods 0.000 description 6
- 238000012706 support-vector machine Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/80—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
- G01S3/802—Systems for determining direction or deviation from predetermined direction
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
本发明涉及一种基于广义回归神经网络的均匀线列阵目标方位估计方法,设置对应角度范围的阵列接收到数据并进行范数归一化,以复声压的实部和虚部作为GRNN模型输入特征;使用k折交叉验证来确定最优扩展因子,选取扩展因子范围和步长,将得到的扩展因子用于GRNN模型的优化。最优扩展因子用于GRNN的训练,再以测试集测试GRNN模型的估计性能,训练和验证以及测试后的GRNN模型用于实时数据的方位估计。对各个信噪比下不同方法测试集的估计结果,可得到,在高信噪比下,GRNN方法有着较好的稳健性,在低信噪比下,仍有着较好的估计性能。GRNN方法在0°附近无明显影响,仍可有效估计目标方位,但在90°附近,在信噪比较低时,会出现较小的误差。
Description
技术领域
本发明属于阵列信号处理、机器学习和水声测量等领域,涉及一种基于广义回归神经网络的均匀线列阵目标方位估计方法,利用基于广义回归神经网络模型,实现在多个信噪比下的均匀线列阵目标方位估计。
背景技术
水下目标定位是水声信号处理领域的热点,其中被动定位技术凭借其优良的隐蔽性,在军事和民用领域中有着广泛的应用,而目标方位估计是水下目标定位的重要方面。Bartlett提出最早的方位估计方法,即波束形成法,该方法通过扫描整个空间实现方位估计(Bartlett MS.Properties of sufficiency and statistical tests.Proc R SocLond A Royal Soc 1937;160(901):268–82.)。在1969年,Capon提出了最小方差信号无畸变响应方法(minimum variance distortion less response,MVDR),这种方法基于最大信噪比准则,通过估计空间波束谱来提高分辨率和抗噪声性能,但该方法的计算量较大(Capon J.High-resolution frequency-wavenumber spectrum analysis.Proc IEEE1969;57(8):1408–81.)。在1979年,Schmidt提出了特征子空间方法(multiple signalclassification,MUSIC),该方法促进了子空间类估计算法的发展(Schmidt R.Multipleemitter location and signal parameter estimation.IEEE Trans Antennas Propag1986;34(3):276–80.)。在2006年,Candes等人提出了基于稀疏信号采集和恢复理论的压缩感知方法(Compressed Sensing),该方法有效地避免了Nyquist采样定理的限制(CandesEJ.Compressive campling.Proceedings of the International Congress ofMathematicians,Madrid,Spain,2006,1433-1452.),以上方法属于模型驱动方法,在高信噪比下,可对目标方位实现有效估计,而在低信噪比下,目标方位估计性能相对较差。
在机器学习技术迅速发展的背景下,神经网络等数据驱动模型在目标方位估计中的应用可以充分挖掘数据中的深层信息,在低信噪比下可得到较稳健的估计结果。在2021年,Faisal Alam等人提出了基于支持向量机(Support Vector Machine,SVM)的均匀线列阵目标方位估计方法,在多个信噪比下验证了该方法的可行性(Alam F,Usman M,Alkhammash HI.Improved Direction-of-Arrival Estimation of an Acoustic Sourceusing Support Vector Regression and Signals Correlation.Sensors 2021,21,2692.)。同年,Yuji Liu等人提出了基于卷积神经网络(Convolutional Neural Networks,CNN)的均匀线列阵目标方位估计方法,可得到其性能明显优于MUSIC方法(Liu Y,Chen H,Wang B.DOA estimation based on CNN for underwater acoustic array[J].AppliedAcoustics,2021,172(901):107594.)。以上机器学习方法结构较为复杂,需配置的参数较多,机器学习方法在目标方位估计中的应用仍较少,需要进一步的探索。
综上所述,在低信噪比下,在目标方位估计的应用中,一种数据驱动的结构简单和参数较少的机器学习方法是必不可少的。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种基于广义回归神经网络的均匀线列阵目标方位估计方法
技术方案
一种基于广义回归神经网络的均匀线列阵目标方位估计方法,其特征在于步骤如下:
步骤1、采集L个阵元的均匀线列阵接收数据:按照设定的角度范围内,以采样频率为fs,在采样时间T内,以n角度为间隔,每个角度共采集Tfs组数据,每组数据为:
P(t)=[p1(t),p2(t),…,pL(t)]
步骤2、对均匀线列阵接收到的数据进行预处理:将基阵接收的频域复声压进行范数归一化:
步骤3:从各个角度的数据中按比例随机选取数据用于模型的训练和验证,剩余的数据用于数据测试;
步骤4:随机地将用于模型的训练和验证的数据分成k折,验证集为其中的1折,训练集为其他的k-1折;
步骤5:以k折交叉验证方法来确定最优扩展因子,选取扩展因子范围和步长,将得到的扩展因子用于GRNN模型的优化:
步骤6:将均方根误差Root Mean Squard Error,RMSE作为估计结果的衡量指标;
其中,θi为第i个样本目标方位估计结果,θ为其对应实际方位,N为样本数量;
步骤7:将各个扩展因子作为GRNN模型的参数,首先输入训练集对GRNN模型进行训练,再输入验证集进行方位估计,并计算对应的RMSE;将每一折训练样本均作为一次验证集,重复上述过程,统计并计算k个RMSE的均值,即平均RMSE;
步骤8:对所有扩展因子,重复以上步骤,将平均RMSE的最小值对应的扩展因子作为最优扩展因子;
步骤9:将得到的最优扩展因子作为GRNN模型的参数,并将训练数据用于GRNN模型的训练,再输入多个信噪比下的测试数据进行方位估计,统计目标方位的估计值,并分析GRNN模型的估计性能,训练和验证以及测试后的GRNN模型用于实时数据的方位估计。
所述步骤3的比例为3/4的数据用于模型的训练和验证,剩余的1/4用于数据测试。
所述n角度为间隔为1度。
所述扩展因子范围小于1。
所述扩展因子步长0.001~0.1
有益效果
本发明提出的一种基于广义回归神经网络的均匀线列阵目标方位估计方法,首先采集阵列接收到的数据,设置对应角度范围、采样频率、阵元间距和采样时间等参数。由于存在声源振幅的影响,需要对均匀线列阵接收到的数据进行预处理,将基阵接收的频域复声压进行范数归一化,以复声压的实部和虚部作为GRNN模型输入特征。对每个角度采集到的数据进行按比例随机划分,一部分用于训练和验证的数据,其他用于GRNN模型的测试。本研究使用k折交叉验证来确定最优扩展因子,选取扩展因子范围和步长,将得到的扩展因子用于GRNN模型的优化。将各个扩展因子作为GRNN模型的参数,输入训练集对GRNN模型进行训练,再输入验证集进行方位估计,选取其中对验证集估计性能最好的扩展因子作为最优扩展因子。将得到的最优扩展因子用于GRNN的训练,再以测试集测试GRNN模型的估计性能,训练和验证以及测试后的GRNN模型用于实时数据的方位估计。对各个信噪比下不同方法测试集的估计结果,可得到,在高信噪比下,GRNN方法有着较好的稳健性,在低信噪比下,仍有着较好的估计性能。GRNN方法在0°附近无明显影响,仍可有效估计目标方位,但在90°附近,在信噪比较低时,会出现较小的误差。
附图说明
图1:阵列接收模型示意图
图2:GRNN模型结构图
图3:基于广义回归神经网络的均匀线列阵目标方位估计方法总体流程框图
图4:CNN结构图
图5:各个信噪比下GRNN优化中不同扩展因子和RMSE的关系图
(a)20dB;(b)10dB;(c)5dB;(d)0dB;
图6:各个信噪比下不同方法测试集的估计结果
(a)20dB;(b)10dB;(c)5dB;(d)0dB。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
将均匀线列阵作为信号接收模型,假设接收到的信号Sn(t)符合窄带条件,目标和阵列位于同一个平面,在远场条件下,阵列的入射波为平面波,设置L个阵元,均匀线列阵的阵列间距为d,不同阵元之间的路径差为Dl,图1为阵列接收模型示意图。
Dl=(m-1)dsinθn (1)
阵列第l个阵元接收到的频域声压数据可表示为
其中,nl(t)是对第l个阵元的加性噪声。
本研究提出利用广义回归神经网络(Generalized regression neural network,GRNN)实现均匀线列阵目标方位估计的方法,属于前向神经网络的GRNN基于核回归分析,有着较好的非线性映射能力。GRNN通过计算训练数据的输入输出和测试数据的输入,得到条件概率密度函数,从而进一步得到测试数据的输出。GRNN包含输入层、模式层、求和层、输出层,且仅需一个网络参数,而其它神经网络模型一般需要选择多个参数,因此在网络搭建上GRNN有着明显的优势。GRNN只有一个网络参数,优化扩展因子即可提高其训练性能,本研究使用k折交叉验证来确定最优扩展因子,图2为GRNN模型结构图。
经优化扩展因子,GRNN模型可充分利用训练数据和优化模型,实现对目标的方位估计,参照图3,总体流程其搭建和训练具体分为以下步骤:
1)采集L个阵元的均匀线列阵接收数据:按照设定的角度范围内,以采样频率为fs,在采样时间T内,以n度为间隔,一般以1度为间隔,每个角度共采集到Tfs组数据,每组数据为:
P(t)=[p1(t),p2(t),…,pL(t)] (3)
2)对均匀线列阵接收到的数据进行预处理:将基阵接收的频域复声压进行范数归一化:
3)从各个角度的数据中按比例随机选取数据用于模型的训练和验证,剩余的数据用于数据测试。
4)随机地将用于模型的训练和验证的数据分成k折,验证集为其中的1折,训练集为其他的k-1折;
5)以k折交叉验证方法来确定最优扩展因子,选取扩展因子范围和步长,扩展因子范围小于1,扩展因子步长0.001~0.1,将得到的扩展因子用于GRNN模型的优化:
6)将均方根误差(Root Mean Squard Error,RMSE)作为估计结果的衡量指标。
其中,θi为第i个样本目标方位估计结果,θ为其对应实际方位,N为样本数量。
7)将各个扩展因子作为GRNN模型的参数,首先输入训练集对GRNN模型进行训练,再输入验证集进行方位估计,并计算对应的RMSE;将每一折训练样本均作为一次验证集,重复上述过程,统计并计算k个RMSE的均值,即平均RMSE。
8)对所有扩展因子,重复以上步骤,将平均RMSE的最小值对应的扩展因子作为最优扩展因子。
9)将得到的最优扩展因子作为GRNN模型的参数,并将训练数据用于GRNN模型的训练,再输入多个信噪比下的测试数据进行方位估计,统计目标方位的估计值,并分析GRNN模型的估计性能,训练和验证以及测试后的GRNN模型用于实时数据的方位估计。
在具体实施例中:采用有20个阵元的均匀线列阵,使用的训练集为无噪声角度0°~90°信号的阵列接收数据,采样频率为1000Hz,采样时间为2s,从而在每个角度均有2000个接收数据的样本。在各个角度的数据中随机选取3/4的数据用于模型的训练和验证,剩余的1/4用于数据测试,对用于测试的数据加噪声作为测试集,信噪比分别为20、10、5和0dB,将RMSE作为各个角度测试结果的衡量指标。
为与GRNN模型的估计性能进行对比,本研究在传统方法中选择MUSIC方法,在机器学习方法中选择SVM和CNN。SVM的输入和GRNN一致,均为一维序列。由(7)式得到数据协方差矩阵,其中,H表示共轭转置,CNN的输入为三维矩阵,第一层为数据协方差矩阵的实部,第二层为其虚部,从而输入特征维度为20×20×2,CNN结构如图4所示。
图5为各个信噪比下GRNN模型优化中不同扩展因子和RMSE的关系图,可得到,信噪比越低,GRNN模型最优扩展因子越大。图6为各个信噪比下不同方法测试集的估计结果,可得到,在高信噪比下,各个方法均可对目标实现有效估计,随着信噪比降低,MUSIC方法的估计性能降低最明显,相比MUSIC方法和SVR方法,其估计性能较好,而GRNN方法有着较好的稳健性,在低信噪比下,仍有着较好的估计性能。在0°和90°附近,由于各个阵元接收数据的差异性较小,MUSIC、SVM和CNN方法均估计性能均较差,而GRNN方法在0°附近无明显影响,仍可有效估计目标方位,但在90°附近,在信噪比较低时,会出现较小的误差。
Claims (5)
1.一种基于广义回归神经网络的均匀线列阵目标方位估计方法,其特征在于步骤如下:
步骤1、采集L个阵元的均匀线列阵接收数据:按照设定的角度范围内,以采样频率为fs,在采样时间T内,以n角度为间隔,每个角度共采集Tfs组数据,每组数据为:
P(t)=[p1(t),p2(t),…,pL(t)]
步骤2、对均匀线列阵接收到的数据进行预处理:将基阵接收的频域复声压进行范数归一化:
步骤3:从各个角度的数据中按比例随机选取数据用于模型的训练和验证,剩余的数据用于数据测试;
步骤4:随机地将用于模型的训练和验证的数据分成k折,验证集为其中的1折,训练集为其他的k-1折;
步骤5:以k折交叉验证方法来确定最优扩展因子,选取扩展因子范围和步长,将得到的扩展因子用于GRNN模型的优化:
步骤6:将均方根误差Root Mean Squard Error,RMSE作为估计结果的衡量指标;
其中,θi为第i个样本目标方位估计结果,θ为其对应实际方位,N为样本数量;
步骤7:将各个扩展因子作为GRNN模型的参数,首先输入训练集对GRNN模型进行训练,再输入验证集进行方位估计,并计算对应的RMSE;将每一折训练样本均作为一次验证集,重复上述过程,统计并计算k个RMSE的均值,即平均RMSE;
步骤8:对所有扩展因子,重复以上步骤,将平均RMSE的最小值对应的扩展因子作为最优扩展因子;
步骤9:将得到的最优扩展因子作为GRNN模型的参数,并将训练数据用于GRNN模型的训练,再输入多个信噪比下的测试数据进行方位估计,统计目标方位的估计值,并分析GRNN模型的估计性能,训练和验证以及测试后的GRNN模型用于实时数据的方位估计。
2.根据权利要求1所述基于广义回归神经网络的均匀线列阵目标方位估计方法,其特征在于:所述步骤3的比例为3/4的数据用于模型的训练和验证,剩余的1/4用于数据测试。
3.根据权利要求1所述基于广义回归神经网络的均匀线列阵目标方位估计方法,其特征在于:所述n角度为间隔为1度。
4.根据权利要求1所述基于广义回归神经网络的均匀线列阵目标方位估计方法,其特征在于:所述扩展因子范围小于1。
5.根据权利要求1所述基于广义回归神经网络的均匀线列阵目标方位估计方法,其特征在于:所述扩展因子步长0.001~0.1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111250654.6A CN114047474B (zh) | 2021-10-26 | 2021-10-26 | 基于广义回归神经网络的均匀线列阵目标方位估计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111250654.6A CN114047474B (zh) | 2021-10-26 | 2021-10-26 | 基于广义回归神经网络的均匀线列阵目标方位估计方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114047474A true CN114047474A (zh) | 2022-02-15 |
CN114047474B CN114047474B (zh) | 2024-10-15 |
Family
ID=80205886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111250654.6A Active CN114047474B (zh) | 2021-10-26 | 2021-10-26 | 基于广义回归神经网络的均匀线列阵目标方位估计方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114047474B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115825854A (zh) * | 2023-02-22 | 2023-03-21 | 西北工业大学青岛研究院 | 一种基于深度学习的水下目标方位估计方法、介质及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106028414A (zh) * | 2016-06-21 | 2016-10-12 | 清华大学深圳研究生院 | 一种反向水下定位方法和系统 |
CN107918399A (zh) * | 2017-11-06 | 2018-04-17 | 哈尔滨工程大学 | 一种适用于水下机器人的快速融合避障方法 |
CN109085531A (zh) * | 2018-08-27 | 2018-12-25 | 西安电子科技大学 | 基于神经网络的近场源到达角估计方法 |
CN112147589A (zh) * | 2020-08-18 | 2020-12-29 | 桂林电子科技大学 | 基于卷积神经网络的频率分集阵列的雷达目标定位方法 |
WO2021139208A1 (zh) * | 2020-01-08 | 2021-07-15 | 华南理工大学 | 一种基于特定频率组合信号的一维doa估计方法 |
-
2021
- 2021-10-26 CN CN202111250654.6A patent/CN114047474B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106028414A (zh) * | 2016-06-21 | 2016-10-12 | 清华大学深圳研究生院 | 一种反向水下定位方法和系统 |
CN107918399A (zh) * | 2017-11-06 | 2018-04-17 | 哈尔滨工程大学 | 一种适用于水下机器人的快速融合避障方法 |
CN109085531A (zh) * | 2018-08-27 | 2018-12-25 | 西安电子科技大学 | 基于神经网络的近场源到达角估计方法 |
WO2021139208A1 (zh) * | 2020-01-08 | 2021-07-15 | 华南理工大学 | 一种基于特定频率组合信号的一维doa估计方法 |
CN112147589A (zh) * | 2020-08-18 | 2020-12-29 | 桂林电子科技大学 | 基于卷积神经网络的频率分集阵列的雷达目标定位方法 |
Non-Patent Citations (1)
Title |
---|
程向红;周月华;: "基于改进粒子群优化的水下地形辅助导航方法", 中国惯性技术学报, no. 06, 15 December 2017 (2017-12-15) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115825854A (zh) * | 2023-02-22 | 2023-03-21 | 西北工业大学青岛研究院 | 一种基于深度学习的水下目标方位估计方法、介质及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN114047474B (zh) | 2024-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | DOA estimation based on CNN for underwater acoustic array | |
CN103954950B (zh) | 一种基于样本协方差矩阵稀疏性的波达方向估计方法 | |
CN108802683A (zh) | 一种基于稀疏贝叶斯学习的源定位方法 | |
CN108225536B (zh) | 基于水听器幅度与相位自校准的稳健自适应波束形成方法 | |
CN111639746A (zh) | 一种基于cnn神经网络的gnss-r海面风速反演方法及系统 | |
Xu et al. | Spatial information theory of sensor array and its application in performance evaluation | |
CN109298383A (zh) | 一种基于变分贝叶斯推断的互质阵波达方向角估计方法 | |
CN110687528B (zh) | 自适应波束形成器生成方法及系统 | |
CN108761380B (zh) | 一种用于提高精度的目标波达方向估计方法 | |
CN112255629B (zh) | 基于联合uca的序贯esprit二维不相干分布源参数估计方法 | |
CN111693937A (zh) | 一种基于稀疏重构的无需网格化的近场信号源定位方法 | |
CN113064147A (zh) | 一种低信噪比下新型匹配场被动定位方法 | |
CN111142063B (zh) | 一种基于降维优化的快速压缩感知低空目标测角方法 | |
CN114047474B (zh) | 基于广义回归神经网络的均匀线列阵目标方位估计方法 | |
CN115236584A (zh) | 基于深度学习的米波雷达低仰角估计方法 | |
CN117451055A (zh) | 一种基于基追踪降噪的水下传感器定位方法和系统 | |
CN113759303A (zh) | 一种基于粒子群算法的无网格波达角估计方法 | |
Khurjekar et al. | Sim-to-real localization: Environment resilient deep ensemble learning for guided wave damage localization | |
CN115097378A (zh) | 一种基于卷积神经网络的非相干散射源检测与定位方法 | |
Mahata | A subspace algorithm for wideband source localization without narrowband filtering | |
CN113238184B (zh) | 一种基于非圆信号的二维doa估计方法 | |
Soares et al. | Environmental inversion using high-resolution matched-field processing | |
Zhang et al. | Gridless DOA estimation for automotive millimeter-wave radar with a novel space-time network | |
Ma et al. | Measurement of echo reduction for passive-material samples using sparse Bayesian learning and least squares estimation | |
CN111505581A (zh) | 一种基于分布式传感器节点的被动目标检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |