CN114034747A - 一种检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器及其构建方法 - Google Patents

一种检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器及其构建方法 Download PDF

Info

Publication number
CN114034747A
CN114034747A CN202110747085.XA CN202110747085A CN114034747A CN 114034747 A CN114034747 A CN 114034747A CN 202110747085 A CN202110747085 A CN 202110747085A CN 114034747 A CN114034747 A CN 114034747A
Authority
CN
China
Prior art keywords
solution
nrs
apt1
beta
oligomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110747085.XA
Other languages
English (en)
Other versions
CN114034747B (zh
Inventor
杨晓燕
王坤
张梦杰
聂广明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhongkeyi Microbiology Technology Co ltd
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110747085.XA priority Critical patent/CN114034747B/zh
Publication of CN114034747A publication Critical patent/CN114034747A/zh
Application granted granted Critical
Publication of CN114034747B publication Critical patent/CN114034747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本申请公开了一种检测β‑淀粉样蛋白寡聚物的阴极光致电化学生物传感器及其构建方法,首先在ITO电极上滴加BP QDs分散液,真空过夜干燥,然后滴加PLL溶液,4℃孵育,使PLL包覆BP QDs,再取适量Apt2适体链滴加在偶联活化电极上,37℃环境下孵育过夜,使Apt2适体链中的氨基与PLL上的羧基结合,取适量6‑巯基己醇进行封板,最后将不同浓度的Aβ40寡聚体溶液与Au NRs‑Apt1探针溶液混合,滴加在电极上,37℃环境下孵育过夜。通过金纳米棒,增强大黑磷量子点在可见光和近红外区域的光电转换,提高稳定性,避免了空间位阻和表位的限制,其用于β‑淀粉样蛋白的检测,在10f mol·L‑1~100nmol·L‑1范围内具有良好线性。

Description

一种检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器 及其构建方法
技术领域
本发明属于阴极光致电化学检测领域,具体涉及一种基于金纳米颗粒增强阴极光电致电化学生物传感器,传感器中采用双适体链放大技术,用于检测类淀粉蛋白。
背景技术
光致电化学检测技术以其低成本、灵敏度高、易于小型化等优点而备受关注,在临床和环境等分析领域具有广泛的应用。其中,阴极光致电化学检测技术作为一种崭新的研究方向,在生物分析领域更具有应用潜力。在阴极光致电化学过程中,工作电极一般为p型半导体。
黑磷是一种p型半导体材料,它具有柔性和机械剥离能力。近年来,黑磷量子点被成功合成,并表现出许多优异的特性,如紫外-可见吸收、荧光、近红外光热转换性能(GaoL.F.,Xu J.Y.,Zhu Z.Y.,et al.,Nanoscale,2016,8(33),15132-6.)。
发明内容
为了克服现有技术中的缺陷,本发明的目的在于提供一种阴极光致电化学检测技术、一种基于纳米金棒作为载体的双适体放大技术用于检测β-淀粉样蛋白寡聚物。
术语“Aβ”是指:β-淀粉样蛋白。术语“BP QDs”是指:黑磷量子点。术语“AβOs”是指:β-淀粉样蛋白寡聚物。术语“PLL”是指:聚赖氨酸。术语“Au NRs”是指:金纳米棒。术语“Apt1”是指:适体1。术语“Apt2”是指:适体2。术语“ITO电极”是指:氧化铟锡玻璃电极。术语“MCH”是指:6-巯基己醇。术语“bulk BP QDs”是指:裸BP。术语“BP sheets”是指:BP纳米片。术语“large BP QDs”是指:大粒径BP QDs(12nm)。术语“small BP QDs”是指:小粒径BP QDs(5nm)。
为了实现上述目的,本发明采用以下技术方案:
一种检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器的构建方法,具体包括以下步骤:
(1)在ITO电极上滴加BP QDs分散液,真空过夜干燥,重复操作至少两次,增加BPQDs负载;
(2)将PLL溶液滴加在步骤(1)处理后的电极上,4℃孵育,使PLL包覆BP QDs;
(3)用1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺溶液在室温下偶联活化步骤(2)处理的电极;
(4)取适量Apt2适体链滴加在步骤(3)处理的电极上,37℃环境下孵育过夜,使Apt2适体链中的氨基与PLL上的羧基结合;
(5)取适量6-巯基己醇滴在步骤(4)处理的电极上,室温孵育封板;
(6)将不同浓度的Aβ40寡聚体(β-淀粉样蛋白寡聚物)溶液与Au NRs-Apt1探针溶液混合,滴加在步骤(5)处理的电极上,37℃环境下孵育过夜;
所述步骤(6)中Au NRs-Apt1探针的制备方法如下:
(101)将Au NRs分散于含0.01%十二烷基硫酸钠的超纯水中;
(102)取适量TCEP溶液和巯基修饰的Apt1溶液室温下反应一段时间,加入步骤(101)所得的Au NRs溶液和氯化钠溶液室温下反应,生成Au NRs-Apt1探针;
(103)将步骤(102)所得Au NRs-Apt1溶液离心,弃上清液,上述步骤重复三遍,将所得沉淀分散于TE缓冲液中;
所述Apt1序列为:5ˊ–SH–TTTTTTTTTGCTGCCTGTGGTGTTGGGGCGGGTGCG-3ˊ,所述Apt2序列为:5ˊ–NH2–GGTGGCTGGAGGGGGCGCGAACG-3ˊ。
具体地,所述BP QDs粒径范围为5-12nm,更优选地,所述BP QDs粒径为8nm。
进一步地,步骤(6)中Aβ40寡聚体溶液的制备方法,具体包括以下步骤:
(201)取一定量Aβ单体(β-淀粉样蛋白)溶液,在恒温摇床箱中孵育,形成Aβ40寡聚体(β-淀粉样蛋白寡聚物)溶液。
优选地,所述步骤(4)中,Apt2浓度为0.01~0.1μM,可以选择0.01μM、0.1μM;最优选地,Apt2最佳浓度为0.1μM。
优选地,所述步骤(102)中,所述Au NRs溶液中金纳米棒浓度为0~1.0M,可以选择0.1M、0.2M、0.3M、0.4M、0.5M、0.6M、0.7M、0.8M、0.9M、1.0M;最优选地,金纳米棒最佳浓度为0.2M。
优选地,所述步骤(102)中,所述Apt1溶液中Apt1浓度为0.01~100μM;最优选地,Apt1最佳浓度为5.0μM。
本发明的有益效果:
(1)本发明建立的阴极光致电化学检测技术可以用于β-淀粉样蛋白的检测,在10fmol·L-1~100nmol·L-1范围内具有良好线性。
(2)金纳米棒具有表面等离子体共振特性,可增强大黑磷量子点在可见光和近红外区域的光电转换,提高稳定性。
(3)基于双适体Au NRs传感器的优势,避免了空间位阻和表位的限制;操作简单,成本低廉;可用于检测Aβ40寡聚物。
附图说明
图1A为实施例1制备的AuNRs的透射电镜图。
图1B为实施例1中涉及的Apt1、Au NRs和Au NRs-Apt1的紫外吸收光谱图;其中,曲线a为Apt1的紫外吸收光谱,曲线b为Au NRs的紫外吸收光谱,c为Au NRs-Apt1的紫外吸收光谱。
图1C为实施例2中制备的Aβ寡聚物的粒径分布图。
图2为实施例3中PEC检测Aβ40寡聚体过程中不同步骤的光电响应图(A)和电化学阻抗谱表征图(B);其中,曲线a对应ITO电极,曲线b对应BP/ITO电极,曲线c对应PLL/BP/ITO电极,曲线d对应Apt2/PLL/BP/ITO电极,曲线e对应MCH/Apt2/PLL/BP/ITO,曲线f对应Au NRs-Apt1/AβOs/MCH/Apt2/PLL/BP/ITO电极。
图3为实施例2构建的阴极光致电化学生物传感器对不同浓度的Aβ寡聚体的定量分析结果图(A)及相应的标准曲线图(B)。
图4为实施例2构建的阴极光致电化学生物传感器检测Aβ寡聚体选择性实验结果图(A)和电化学检测Aβ寡聚体稳定性实验结果图(B)。
图5为不同形貌的黑磷和不同粒径的黑磷量子点的光电流响应图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
本发明试验中所使用到的材料以及试验方法进行一般性的描述。虽然为实现本发明目的所使用的许多材料和操作方法是公知的,但是本发明仍然在此作尽可能的详细描述。
除非特别指明,以下实施例中所用的β-淀粉样蛋白购自上海生工生物股份有限公司。Aβ40序列为:DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAILGLMVGGVV。
除非特别指明,实验所用化学试剂都是分析纯。实验所用溶液均用超纯水配制(Milli-Q水净化系统,18.2MΩ/cm)。
以下实施例中使用的试剂和仪器如下:
试剂:
NaCl购自博迪试剂有限公司;6-巯基己醇购自阿拉丁试剂有限公司。
仪器:
超声仪,型号SB-3200DT,购自新芝生物科技有限公司。
磁力加热搅拌器,型号CJJ78-1,购自山东鄄城华鲁电热仪器有限公司。
离心机,型号TG18KR,购自东旺仪器。
真空干燥箱,购自天津泰斯特仪器有限公司。
电化学工作站,型号CHI832B,购自上海辰华仪器有限公司。
实施例1
本实施例涉及的金纳米棒(Au NRs)及Au NRs-Apt1探针的制备方法,具体包括以下步骤:
(1)将0.1mL HAuCl4溶液(5mM)与1mL CTAB溶液(0.20M)混合并保持温度为28.0℃,得深橙色溶液。加入新鲜配制的0.12mL NaBH4溶液(0.01M),搅拌2min,溶液变成浅棕色,为Au NRs种子溶液。
(2)取5mL HAuCl4溶液(5mM)与5mL CTAB溶液(0.2M)和4mL水混合,加入0.1M抗坏血酸溶液65μL,0.01M AgNO3溶液0.125mL,搅拌约2min,得无色溶液。加入0.05mL Au NR种子液,轻轻搅拌约20s,室温下老化4h,生成Au NRs。
(3)将5mL Au NRs以10000rpm离心15min,再分散于2.5mL含0.01%十二烷基硫酸钠(SDS)的超纯水中。将巯基修饰的Apt1用10mM的TE缓冲液(含1mM EDTA,pH=8)溶解,95℃加热5分钟,冰箱冷却至室温备用。
(4)取50μL,10mM TCEP(摩尔比为1:100)和50μL巯基修饰的Apt1(10μM)室温下反应1h,断开二硫键,加入1mL Au NRs溶液和300μL,0.1M氯化钠在摇床中室温下反应12h。再以12000rpm/min的转速离心10min去除未结合的Au NRs,弃上清液,上述步骤重复三遍,所得沉淀即为Au NRs-Apt1探针,将其分散于200μL TE缓冲液中备用。
所述Apt1序列为:5ˊ–SH–TTTTTTTTTGCTGCCTGTGGTGTTGGGGCGGGTGCG-3ˊ。
实施例2
40寡聚体的制备:
40单体储备液用0.01mM PBS缓冲溶液稀释,在恒温摇床箱中孵育2h(37℃,300rpm)。
图1A是Au NRs的透射电镜图像。从图中可以看出Au NRs的平均直径为20nm,长度为70±5nm(长宽比约为3.5)。图1B为制备的Au NRs-Apt1探针和Au NRs的紫外-可见吸收光谱。可以看出Apt1的特征吸收峰位于260nm(曲线a)。Au NRs的特征吸收峰位于分别位于510nm和865nm(曲线b),Au NRs-Apt1探针的吸收峰在523nm处出现了红移(曲线c),这是由于Apt1与Au NRs发生了共价结合增强了金纳米棒的聚集。紫外-可见光谱证实成功制备了Au NRs-Apt1探针。图1C为Aβ寡聚物的粒径分布图,统计分析结果显示Aβ40寡聚物的大小约为26.8±0.65nm(图1C)。
实施例3
Aβ的光致电化学检测:
(1)在ITO电极上滴加20μL BP QDs分散液,真空过夜干燥,重复两次,得到BP/ITO电极。所述BP QDs的粒径优选为8nm。
(2)将20μL,2mg/mL的PLL(二次水配制)溶液滴加在BP/ITO电极上,4℃孵育12h,得到PLL/BP/ITO电极。
(3)用0.1M 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和0.025M N-羟基琥珀酰亚胺溶液在室温下偶联活化PLL/BP/ITO电极1h。
(4)移取20μL,0.1μM的Apt2适体链滴加在偶联活化后的PLL/BP/ITO电极上,37℃环境下孵育过夜,随后使用PBS缓冲液冲洗未结合的Apt2,得到Apt2/PLL/BP/ITO电极。
(5)取10μL,10mM MCH滴在电极上室温孵育1h封板,得到MCH/Apt2/PLL/BP/ITO电极。
(6)移取10μL,不同浓度的Aβ40寡聚体溶液与10μL实施例1制备的Au NRs-Apt1探针溶液混合,滴加在MCH/Apt/PLL/BP/ITO电极上,37℃环境下孵育过夜,得到PEC传感器。
所述Apt2序列为:5ˊ–NH2–GGTGGCTGGAGGGGGCGCGAACG-3ˊ。
图2为实施例3不同步骤制备电极的光电响应和电化学阻抗谱表征,说明了方法的可行性。
图3为实施例3制备的PEC传感器对不同浓度的Aβ40寡聚物进行定量测定的结果。光电流强度随样品中目标Aβ40寡聚物浓度的增加而增加(图3A),在10.0fM~100.0nM的范围内,光电信号强度与β-淀粉样蛋白浓度的对数呈良好的线性关系图(3B)。
图4为基于双适体放大阴极光致电化学检测Aβ寡聚体选择性和稳定性实验,说明此方法具有良好的选择性和稳定性。
为了研究PEC传感器的特异性和选择性,将实施例3步骤(6)中的Au NRs-Apt1与AuNRs-Apt1的混合溶液替换为人血清中一些可能存在的癌症标志物,如甲胎蛋白(AFP)、癌胚抗原(CEA)、Aβm、Aβf。如图4A所示,对非目标分析物产生的光电流与新制备的光电阴极传感器几乎相同(即在没有目标Aβ40寡聚体的情况下)。相反,靶标Aβ40寡聚体的存在导致PEC传感器的光电流强度大幅增加。更重要的是,非检测物与检测物Aβ40寡聚体共存时,光电流没有显著的变化,这表明基于PEC传感器能够以良好的特异性和选择性适用于复杂体系中靶标Aβ40寡聚体的检测。
此外,研究了PEC传感器在450W氙灯连续“开-关”状态下的再现性。从图4B中可以看出,PEC传感器在多次光照射下具有较高的稳定性和重现性。
实施例3中所述BP QDs粒径为8nm,如图5所示BP QDs粒径范围为5、12nm具有光电信号很微弱,粒径为8nm的BP QDs显示出较高的光电流信号。
序列表
<110> 青岛科技大学
<120> 一种检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器及其构建方法
<130> 1
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
tttttttttg ctgcctgtgg tgttggggcg ggtgcg 36
<210> 2
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ggtggctgga gggggcgcga acg 23

Claims (10)

1.一种检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器的构建方法,其特征在于,具体包括以下步骤:
(1)在ITO电极上滴加BP QDs分散液,真空过夜干燥,重复操作至少两次,增加BP QDs负载;
(2)将PLL溶液滴加在步骤(1)处理后的电极上,4℃孵育,使PLL包覆BP QDs;
(3)用1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺溶液在室温下偶联活化步骤(2)处理的电极;
(4)取适量Apt2适体链滴加在步骤(3)处理的电极上,37℃环境下孵育过夜,使Apt2适体链中的氨基与PLL上的羧基结合;
(5)取适量6-巯基己醇滴在步骤(4)处理的电极上,室温孵育封板;
(6)将不同浓度的Aβ40寡聚体溶液与Au NRs-Apt1探针溶液混合,滴加在步骤(5)处理的电极上,37℃环境下孵育过夜;
所述步骤(6)中Au NRs-Apt1探针的制备方法如下:
(101)将Au NRs分散于含0.01%十二烷基硫酸钠的超纯水中;
(102)取适量TCEP溶液和巯基修饰的Apt1溶液室温下反应一段时间,加入步骤(101)所得的Au NRs溶液和氯化钠溶液室温下反应,生成Au NRs-Apt1探针;
(103)将步骤(102)所得Au NRs-Apt1溶液离心,弃上清液,上述步骤重复三遍,将所得沉淀分散于TE缓冲液中;
所述Apt1序列为:5ˊ–SH–TTTTTTTTTGCTGCCTGTGGTGTTGGGGCGGGTGCG-3ˊ,所述Apt2序列为:5ˊ–NH2–GGTGGCTGGAGGGGGCGCGAACG-3ˊ。
2.根据权利要求1所述的检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器的构建方法,其特征在于,所述BP QDs粒径为8nm。
3.根据权利要求1所述的检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器的构建方法,其特征在于,步骤(6)中Aβ40寡聚体溶液的制备方法,具体为:取一定量Aβ单体溶液,在恒温摇床箱中孵育,形成Aβ40寡聚体溶液。
4.根据权利要求1所述的检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器的构建方法,其特征在于,步骤(4)Apt2浓度为0.01~0.1μM。
5.根据权利要求1所述的检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器的构建方法,其特征在于,所述步骤(4)中Apt2浓度为0.1μM。
6.根据权利要求1所述的检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器的构建方法,其特征在于,步骤(102)所述Au NRs溶液浓度为0~1.0M。
7.根据权利要求1所述的检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器的构建方法,其特征在于,步骤(102)所述Au NRs溶液浓度为0.2M。
8.根据权利要求1所述的检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器的构建方法,其特征在于,步骤(102)所述Apt1溶液浓度为0.01~0.1μM。
9.根据权利要求1所述的检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器的构建方法,其特征在于,步骤(102)所述Apt1溶液浓度为5.0μM。
10.根据权利要求1-9任一项所述的构建方法构建的检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器。
CN202110747085.XA 2021-07-01 2021-07-01 一种检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器及其构建方法 Active CN114034747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110747085.XA CN114034747B (zh) 2021-07-01 2021-07-01 一种检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器及其构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110747085.XA CN114034747B (zh) 2021-07-01 2021-07-01 一种检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器及其构建方法

Publications (2)

Publication Number Publication Date
CN114034747A true CN114034747A (zh) 2022-02-11
CN114034747B CN114034747B (zh) 2023-10-31

Family

ID=80134295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110747085.XA Active CN114034747B (zh) 2021-07-01 2021-07-01 一种检测β-淀粉样蛋白寡聚物的阴极光致电化学生物传感器及其构建方法

Country Status (1)

Country Link
CN (1) CN114034747B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015352A (zh) * 2022-06-01 2022-09-06 青岛科技大学 一种检测β-淀粉样蛋白的抗污染生物传感器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918617A (zh) * 2018-07-31 2018-11-30 济南大学 一种基于多级纳米氧化锌微球复合材料的光电化学β-淀粉样蛋白传感器的制备方法及应用
CN109991290A (zh) * 2019-03-22 2019-07-09 河南大学 以异质结和金纳米粒子间能量共振转移为机理的光电化学适配体传感器的构建方法
CN110530950A (zh) * 2019-09-26 2019-12-03 济南大学 基于激子等离子体相互作用高效检测psa的纸基传感器的构建
CN111579611A (zh) * 2020-04-26 2020-08-25 重庆工商大学 基于dna修饰二维黑磷光电化学电极、制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918617A (zh) * 2018-07-31 2018-11-30 济南大学 一种基于多级纳米氧化锌微球复合材料的光电化学β-淀粉样蛋白传感器的制备方法及应用
CN109991290A (zh) * 2019-03-22 2019-07-09 河南大学 以异质结和金纳米粒子间能量共振转移为机理的光电化学适配体传感器的构建方法
CN110530950A (zh) * 2019-09-26 2019-12-03 济南大学 基于激子等离子体相互作用高效检测psa的纸基传感器的构建
CN111579611A (zh) * 2020-04-26 2020-08-25 重庆工商大学 基于dna修饰二维黑磷光电化学电极、制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINLING ZHANG ET AL: "Integrating CuO/g-C3N4 p-n heterojunctioned photocathode with MoS2 QDs@Cu NWs multifunctional signal amplifier for ultrasensitive detection of AβO", BIOSENSORS AND BIOELECTRONICS, vol. 176, pages 112945 *
MINGSHAN ZHU ET AL: "Noble metal-free near-infrared-driven photocatalyst for hydrogen production based on 2D hybrid of black Phosphorus/WS2", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 221, pages 645 - 651, XP085236181, DOI: 10.1016/j.apcatb.2017.09.063 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015352A (zh) * 2022-06-01 2022-09-06 青岛科技大学 一种检测β-淀粉样蛋白的抗污染生物传感器及其制备方法
CN115015352B (zh) * 2022-06-01 2023-10-10 青岛科技大学 一种检测β-淀粉样蛋白的抗污染生物传感器及其制备方法

Also Published As

Publication number Publication date
CN114034747B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
Wei et al. Dual-modal split-type immunosensor for sensitive detection of microcystin-LR: enzyme-induced photoelectrochemistry and colorimetry
Jia et al. Bioactivity-protected electrochemiluminescence biosensor using gold nanoclusters as the low-potential luminophor and Cu2S snowflake as co-reaction accelerator for procalcitonin analysis
Xu et al. Metal-enhanced fluorescence detection and degradation of tetracycline by silver nanoparticle-encapsulated halloysite nano-lumen
He et al. Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging
Yan et al. Dye-doped nanoparticles for bioanalysis
Rao et al. Silica-coated carbon dots conjugated to CdTe quantum dots: a ratiometric fluorescent probe for copper (II)
de Dios et al. Multifunctional nanoparticles: analytical prospects
Zhang et al. Spectrum-based electrochemiluminescent immunoassay with ternary CdZnSe nanocrystals as labels
Lv et al. Near-infrared electrogenerated chemiluminescence from simple copper nanoclusters for sensitive alpha-fetoprotein sensing
Xia et al. Biobar-coded gold nanoparticles and DNAzyme-based dual signal amplification strategy for ultrasensitive detection of protein by electrochemiluminescence
Li et al. Quenched electrochemiluminescence of Ag nanoparticles functionalized g-C3N4 by ferrocene for highly sensitive immunosensing
Runowski et al. Preparation of biocompatible, luminescent-plasmonic core/shell nanomaterials based on lanthanide and gold nanoparticles exhibiting SERS effects
Alibolandi et al. Synthesis of AS1411-aptamer-conjugated CdTe quantum dots with high fluorescence strength for probe labeling tumor cells
CN109187473B (zh) 基于上转换荧光的能量共振转移技术用于外泌体的检测
Liu et al. A novel electrochemiluminescent immunosensor based on CdS-coated ZnO nanorod arrays for HepG2 cell detection
Han et al. A novel sandwich-type immunosensor for detection of carcino-embryonic antigen using silver hybrid multiwalled carbon nanotubes/manganese dioxide
Zhao et al. Electrochemiluminescence solid-state imprinted sensor based on graphene/CdTe@ ZnS quantum dots as luminescent probes for low-cost ultrasensing of diethylstilbestrol
Ma et al. A label-free electrochemiluminescence immunosensor based on EuPO4 nanowire for the ultrasensitive detection of Prostate specific antigen
Zhang et al. Electrochemiluminescence immunosensor for highly sensitive detection of 8-hydroxy-2′-deoxyguanosine based on carbon quantum dot coated Au/SiO2 core–shell nanoparticles
Bhardwaj et al. Graphene quantum dots-based nano-biointerface platform for food toxin detection
Li et al. A label-free electrochemiluminescence immunosensor based on KNbO3–Au nanoparticles@ Bi2S3 for the detection of prostate specific antigen
Zhang et al. General strategy to fabricate electrochemiluminescence sandwich-type nanoimmunosensors using CdTe@ ZnS quantum dots as luminescent labels and Fe3O4@ SiO2 nanoparticles as magnetic separable scaffolds
JPWO2010016289A1 (ja) 量子ドットを含有する蛍光標識剤
JPWO2008032534A1 (ja) 蛍光半導体微粒子集合体、生体物質蛍光標識剤集合体、これらを用いたバイオイメージング法及び生体物質解析方法
Zhang et al. Label-free immunosensor based on Au@ Ag2S nanoparticles/magnetic chitosan matrix for sensitive determination of ractopamine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231201

Address after: Room 1203, 12th Floor, Building 3, No. 8 Haiying Road, Fengtai District, Beijing, 100071

Patentee after: Beijing Zhongkeyi Microbiology Technology Co.,Ltd.

Address before: 266061 Qingdao University of Science & Technology, 99 Songling Road, Laoshan District, Qingdao, Shandong

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right