CN114031084A - 硼类化合物修饰的硅胶材料、制备方法及应用 - Google Patents

硼类化合物修饰的硅胶材料、制备方法及应用 Download PDF

Info

Publication number
CN114031084A
CN114031084A CN202111315018.7A CN202111315018A CN114031084A CN 114031084 A CN114031084 A CN 114031084A CN 202111315018 A CN202111315018 A CN 202111315018A CN 114031084 A CN114031084 A CN 114031084A
Authority
CN
China
Prior art keywords
silica gel
boron compound
modified
gel material
hps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111315018.7A
Other languages
English (en)
Other versions
CN114031084B (zh
Inventor
盛骞莹
刘美艳
金郁
蓝闽波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202111315018.7A priority Critical patent/CN114031084B/zh
Publication of CN114031084A publication Critical patent/CN114031084A/zh
Application granted granted Critical
Publication of CN114031084B publication Critical patent/CN114031084B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
    • G01N27/628Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas and a beam of energy, e.g. laser enhanced ionisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种以硼类化合物为修饰相,槲皮素为连接臂键合至氨基硅胶的硅胶材料。同时公开了该硅胶材料的制备方法,以氨基硅胶与槲皮素反应制备槲皮素修饰的氨基硅胶(HPS‑NH2@SiO2);再将HPS‑NH2@SiO2与硼类化合物反应得到硼类化合物修饰的硅胶材料(B‑HPS‑NH2@SiO2)。对材料进行红外、SEM表征,并以人血清免疫球蛋白G/标准磷酸蛋白为模型样品,将硼类化合物修饰的硅胶材料装填至小型SPE柱中用于糖肽、磷酸化肽的富集。表现出良好的富集选择性,富集能力在负责样品体现得到验证。对其进行后修饰接入TiO2,可实现磷酸化肽的有效富集。本发明的B‑HPS‑NH2@SiO2及其衍生材料在亲水模式下实现糖肽/磷酸化肽的特异性富集的应用,在修饰化肽的选择性富集方面具有潜在的应用前景。

Description

硼类化合物修饰的硅胶材料、制备方法及应用
技术领域
本发明涉及一种硼类化合物修饰的硅胶材料及其制备方法,用于亲水模式糖肽特异性富集。
背景技术
糖基化是蛋白质翻译后修饰的重要形式,参与许多生命过程如细胞识别、免疫应答、细胞分化等。蛋白质糖基化的异常表达与许多疾病的发生密切相关,因此对糖蛋白/糖肽的研究是非常重要的。然而,由于糖肽的低丰度、糖基化位点的异质性、非糖肽对糖肽的离子抑制效应,从复杂样品中选择性富集糖蛋白/糖肽一直是蛋白组学的研究的巨大挑战(stationary phases for the enrichment of glycoproteins and glycopeptides)。因此,开发糖肽富集/分离策略以促进从复杂样品中特异性富集糖肽是必要的。目前糖肽富集/分离方法包括:亲和法、肼化学法、硼酸亲和法和亲水相互作用色谱法等(glycopetideenrichment and separation for protein glycosylationanalysis)。
硼酸法富集糖肽是利用硼羟基对糖肽链上顺式二羟基的特异性识别且可逆。碱性条件下,硼羟基与糖肽链上顺式二羟基形成五元环内酯,使材料保留住糖肽;但在酸性条件下,五元环内酯水解成硼羟基和糖肽从而释放糖肽,从而实现糖肽的特异性富集。因此发展新的材料用于糖肽的选择性富集应用前景广阔。
发明内容
因此,本发明要解决的技术问题是提供一种硼类化合物修饰硅胶材料。本发明要解决的另一个技术问题是,提供该硼类化合物修饰硅胶材料的制备方法。本发明还要解决的技术问题是,提供该硼类化合物修饰硅胶材料的应用。
本发明的技术方案是,一种硼类化合物修饰的硅胶材料,具有以下结构式:
Figure BDA0003343352290000021
本发明硅胶材料的特点是:槲皮素中的吡喃氧取代丙胺底物中的氮;硼类化合物与顺式二羟基特异性结合形成五元环内酯。
本发明的技术路线是:以氨基硅胶与槲皮素反应制备槲皮素修饰的氨基硅胶(HPS-NH2@SiO2);再将HPS-NH2@SiO2与硼类化合物反应得到硼类化合物修饰的硅胶材料(B-HPS-NH2@SiO2)。
本发明选取了氨基硅胶作为基质,槲皮素为连接臂,硼类化合物作为修饰相从而合成的材料。氨基硅胶上的氮置换槲皮素中吡喃氧得到槲皮素修饰的氨基硅胶(HPS-NH2@SiO2),再通过硼类化合物能与HPS-NH2@SiO2上槲皮素部分的邻二羟基发生酯化反应形成五元环状酯结构,得到硼类化合物修饰硅胶材料(B-HPS-NH2@SiO2)。
其合成示意图见图1:
其中Boron compounds为硼酸、四羟基硼烷或硼砂。
本发明还提供了一种硼类化合物修饰的硅胶材料的制备方法,包括如下步骤:
a.依次将槲皮素、氨基硅胶按4-6:1-2的质量比置于反应容器中,加入乙醇,70-90℃回流15-48h;
b.用乙醇洗涤产物2-4次、再用甲醇洗涤产物2-4次;
c.70-90℃干燥12-18h得到槲皮素修饰的氨基硅胶(HPS-NH2@SiO2);
d.再将HPS-NH2@SiO2、硼类化合物分别溶于有机溶剂后再混合,30-80℃下反应充分;HPS-NH2@SiO2与硼类化合物的质量比是4-6:1-2;
e.反应结束后抽滤再依次用二甲基亚砜、甲醇、乙醇洗涤,真空干燥。
根据本发明的一种硼类化合物修饰的硅胶材料的制备方法,优选的是,步骤a所述氨基硅胶和槲皮素的质量比为4-6:1。
根据本发明的一种硼类化合物修饰的硅胶材料的制备方法,优选的是,步骤a所述氨基硅胶的性质是:粒径2-10um,孔径
Figure BDA0003343352290000031
根据本发明的一种硼类化合物修饰的硅胶材料的制备方法,优选的是,步骤d所述硼类化合物选自以下中的一种:硼酸、四羟基二硼烷、硼砂;HPS-NH2@SiO2与硼类化合物的质量比是4-6:1。
根据本发明的一种硼类化合物修饰的硅胶材料的制备方法,优选的是,步骤d所述反应时间是15-48小时;
步骤d所述的有机溶剂选自二甲基亚砜,或是二氧六环和均三甲苯的混合溶剂;
步骤e中,用于洗涤第二步产物的溶剂依次是二氧六环、甲醇、乙醇。
步骤e的洗涤中,可以用二甲基六环替代二甲基亚砜。四羟基二硼烷的合成采用的溶剂为二氧六环和均三甲苯;硼砂和硼酸的合成采用的是二甲基亚砜。
步骤d所述的有机溶剂可以选自二甲基亚砜,第二种选择是二氧六环和均三甲苯的混合溶剂。二氧六环和均三甲苯的混合比例是10:1-1:10。(体积比)
根据本发明的一种硼类化合物修饰的硅胶材料的制备方法,优选的是,步骤e所述真空干燥时间是50-80℃。真空干燥的时间优选12-24小时。
二甲基亚砜、二氧六环和均三甲苯等溶剂用于溶解槲皮素修饰的氨基硅胶(HPS-NH2@SiO2)以及硼类化合物。溶剂(ml)与氨基硅胶(g)的用量比为2-1:1;溶剂(ml)与硼类化合物(g)的用量比为2-1:1。
本发明还提供了上述硼类化合物修饰的硅胶材料在亲水模式下糖肽的特异性富集的应用。将上述硼类化合物修饰硅胶材料作为富集材料,采用固相萃取(SPE)富集和纯化糖肽。亲水模式下糖肽、磷酸化肽富集后采用基质辅助激光解吸飞行时间质谱仪(MALDI-TOF)检测。
在本发明的上述应用中,采用柱固相萃取(SPE)模式富集糖肽。将混有材料的上样液装入SPE柱中,糖肽样品上样SPE柱,淋洗液洗出与材料结合的非糖肽,最后用洗脱液将糖肽洗脱下来,收集洗脱液。
在糖肽富集应用中,取适量硼类化合物修饰硅胶材料装填于SPE柱中,用上样液清洗平衡材料;将肽样品溶于上样液中缓慢推入装有材料的SPE柱中,保证材料与糖肽的充分结合。用淋洗液冲洗材料除去非糖肽,用洗脱液洗脱并收集馏分,进行质谱分析。
所述上样液为:ACN/H2O/TFA=85-92:7-14:1,v/v/v(ACN为乙腈,H2O为水,TFA为三氟乙酸);
淋洗液为:ACN/H2O/TFA=85-92:7.9-14.9:0.1,v/v/v(ACN为乙腈,H2O为水,TFA为三氟乙酸);
洗脱液为:ACN/H2O/TFA=0-1:97-99:1-3,v/v/v(ACN为乙腈,H2O为水,TFA为三氟乙酸)。
本发明还提供了上述硼类化合物修饰的硅胶材料在磷酸化肽富集方面的应用。对该硼类化合物修饰的硅胶材料进行后修饰接入TiO2,在磷酸化肽富集方面具有良好的应用前景。其原理是TiO2作为两性物质,酸性条件下,钛原子带正点,能结合磷酸化肽;碱性条件下钛原子带负电,释放磷酸化肽。
人血清免疫球蛋白G酶解液中糖肽的分子量及其聚糖结构见表一;α-酪蛋白酶解液中磷酸化肽的信息见表二。
本发明具有如下优点:
1:原材料价廉易得,合成方法简便,后处理简易。
2:硼类化合物修饰的硅胶材料高选择性的富集糖肽,实现糖肽的有效富集。
3:硼类化合物修饰的硅胶材料可被装填成不同长度、内径的柱子,操作简单,重复性好。
4:硼类化合物修饰的硅胶材料后修饰接入TiO2,在磷酸化肽富集方面的有良好的应用前景。
5:本发明富集得到的糖肽、磷酸化肽可直接通过基质辅助激光解吸飞行时间质谱仪(MALDI-TOF)检测,提高质谱的检测灵敏度。
附图说明
图1为硼类化合物修饰的硅胶材料的制备过程图。
图2为使用实施例1中的硼类化合物修饰的硅胶材料的糖肽富集图。
图3为使用实施例2中的硼类化合物修饰的硅胶材料的扫描电镜图。
图4为使用实施例2中的硼类化合物修饰的硅胶材料的糖肽富集图。
图5为使用实施例3中的硼类化合物修饰的硅胶材料的扫描电镜图。
图6为使用实施例3中的硼类化合物修饰的硅胶材料的糖肽富集图。
图7为使用实施例4中的硼类化合物修饰的硅胶材料的复杂样品(高非糖肽掺入比IgG:BSA=1:200)的糖肽富集图。
图8为使用实施例5中的硼类化合物修饰的硅胶材料的复杂样品(高非糖肽掺入比IgG:BSA=1:500)的糖肽富集图。
图9A为使用实施例6中的JR-TiO2-SA-B3-HPS-NH2@SiO2,洗脱液为0.4M氨水时的磷酸化肽富集图。
图9B为使用实施例6中的JR-TiO2-SA-B3-HPS-NH2@SiO2,洗脱液为10%氨水时的磷酸化肽富集图。
具体实施方式
上样液组成如下a-b任一之一所示:
a.ACN/H2O/TFA=90:9:1,v/v/v(ACN为乙腈,H2O为水,TFA为三氟乙酸)。
b.ACN/H2O/TFA=92:7:1,v/v/v(ACN为乙腈,H2O为水,TFA为三氟乙酸)。
淋洗液组成如下所示:
ACN/H2O/TFA=90:9.9:0.1,v/v/v(ACN为乙腈,H2O为水,TFA为三氟乙酸)。
洗脱液组成如下a-c任一之一所示:
a.ACN/H2O/TFA=0:97:3,v/v/v(ACN为乙腈,H2O为水,TFA为三氟乙酸)。
b.ACN/H2O/TFA=0:99:1,v/v/v(ACN为乙腈,H2O为水,TFA为三氟乙酸)。
c.0.4mol/L氨水、10%氨水。
肽样品浓度为1mg/ml、1mg/ml、5mg/ml。
所述肽样品为蛋白酶解液。
蛋白为人血清免疫球蛋白G(IgG)、标准磷酸化蛋白质(α-酪蛋白)或牛血清白蛋白(BSA)。
所述的酶为胰蛋白酶。
收集的洗脱液采用基质辅助激光解吸飞行时间质谱仪(MALDI-TOF)检测。
实施例1
1.称取5g的氨基硅胶、1g的槲皮素、200ml的乙醇于烧瓶中,80℃回流24h。乙醇洗涤3次,甲醇彻底洗涤。80℃干燥24h。得到槲皮素修饰的氨基硅胶(HPS-NH2@SiO2)。
1g HPS-NH2@SiO2于10ml二甲基亚砜超声溶解;0.2g硼酸 、10ml二甲基亚砜超声溶解。将溶有HPS-NH2@SiO2的二甲基亚砜溶液加入溶有硼酸的二甲基亚砜溶液混合均匀后在30℃下反应24h。反应结束后抽滤再用二甲基亚砜、甲醇、乙醇分别洗,60℃真空干燥得到硼酸修饰的硅胶材料(B1-HPS-NH2@SiO2)。
2.糖肽富集:取1mg B1-HPS-NH2@SiO2装填于SPE柱中,用上样液清洗平衡材料,上样液:ACN/H2O/TFA=92:7:1,v/v/v;将6ug IgG溶于上样液中缓慢推入装有材料的SPE柱中,保证材料与糖肽的充分结合;接着用30ul的淋洗液淋洗2次,淋洗液:ACN/H2O/TFA=90:9.9:0.1,v/v/v;以除去与材料结合的非糖肽;最后用5ul洗脱液洗两次以洗脱与材料结合的糖肽,洗脱液:ACN/H2O/TFA=0:99:1,v/v/v。收集洗脱液,用MALDI-TOF分析糖肽富集情况。
B1-HPS-NH2@SiO2的糖肽富集如图2,从图中可知富集糖肽数26条。
实施例2
1.称取5g的氨基硅胶、1g的槲皮素、200ml的乙醇于烧瓶中,80℃回流24h。乙醇洗涤3次,甲醇彻底洗涤。80℃干燥24h。得到槲皮素修饰的氨基硅胶(HPS-NH2@SiO2)。
1g HPS-NH2@SiO2于10ml均三甲苯超声溶解;0.2g四羟基二硼烷 、10ml二氧六环超声溶解。将溶有HPS-NH2@SiO2的均三甲苯溶液加入溶有四羟基二硼烷的二氧六环溶液混合均匀后在80℃下反应24h。反应结束后抽滤再用二氧六环、甲醇、乙醇分别洗,60℃真空干燥得到四羟基二硼烷修饰的硅胶材料(B2-HPS-NH2@SiO2)。
2.材料表征:图3为B2-HPS-NH2@SiO2的扫描电镜图。
3.糖肽富集:取1mg B2-HPS-NH2@SiO2装填于SPE柱中,用上样液清洗平衡材料,上样液:ACN/H2O/TFA=90:9:1,v/v/v;将6ug IgG溶于上样液中缓慢推入装有材料的SPE柱中,保证材料与糖肽的充分结合;接着用30ul的淋洗液淋洗2次,淋洗液:ACN/H2O/TFA=90:9.9:0.1,v/v/v;以除去与材料结合的非糖肽;最后用5ul洗脱液洗两次以洗脱与材料结合的糖肽,洗脱液:ACN/H2O/TFA=0:97:3,v/v/v。收集洗脱液,用MALDI-TOF分析糖肽富集情况。
B2-HPS-NH2@SiO2的糖肽富集如图4,从图中可知富集糖肽数35条。
实施例3
1.称取5g的氨基硅胶、1g的槲皮素、200ml的乙醇于烧瓶中,80℃回流24h。乙醇洗涤3次,甲醇彻底洗涤。80℃干燥24h。得到槲皮素修饰的氨基硅胶(HPS-NH2@SiO2)。
1g HPS-NH2@SiO2于10ml均三甲苯超声溶解;0.2g硼砂、10ml二甲基亚砜超声溶解。将溶有HPS-NH2@SiO2的二甲基亚砜溶液加入溶有硼砂的二甲基亚砜溶液混合均匀后在30℃下反应24h。反应结束后抽滤再用二甲基亚砜甲醇、乙醇分别洗,60℃真空干燥得到硼砂修饰的硅胶材料(B3-HPS-NH2@SiO2)。
2.材料表征:图5为B3-HPS-NH2@SiO2的扫描电镜图。
3.糖肽富集:取1mg B3-HPS-NH2@SiO2装填于SPE柱中,用上样液清洗平衡材料,上样液:ACN/H2O/TFA=92:7:1,v/v/v;将6ug IgG溶于上样液中缓慢推入装有材料的SPE柱中,保证材料与糖肽的充分结合;接着用30ul的淋洗液淋洗2次,淋洗液:ACN/H2O/TFA=90:9.9:0.1,v/v/v;以除去与材料结合的非糖肽;最后用5ul洗脱液洗两次以洗脱与材料结合的糖肽。洗脱液:ACN/H2O/TFA=0:99:1,v/v/v。收集洗脱液,用MALDI-TOF分析糖肽富集情况。
B3-HPS-NH2@SiO2的糖肽富集如图6,从图中可知富集糖肽数34条。
实施例4
取2mg实施例2所合成的材料B2-HPS-NH2@SiO2装填于SPE柱中,用上样液清洗平衡材料,上样液:ACN/H2O/TFA=90:9:1,v/v/v;将6ug IgG和106ug BSA溶于上样液中缓慢推入装有材料的SPE柱中,保证材料与糖肽的充分结合;接着用50ul的淋洗液淋洗6次,淋洗液:ACN/H2O/TFA=90:9.9:0.1,v/v/v;以除去与材料结合的非糖肽;最后用5ul洗脱液洗两次以洗脱与材料结合的糖肽。洗脱液:ACN/H2O/TFA=0:97:3,v/v/v。收集洗脱液,用MALDI-TOF分析糖肽富集情况。
图7为B2-HPS-NH2@SiO2的复杂样品(高非糖肽掺入比IgG:BSA=1:200)的糖肽富集图,从图中可知富集糖肽数20条。
实施例5
取2mg实施例3所合成的材料B3-HPS-NH2@SiO2装填于SPE柱中,用上样液清洗平衡材料,上样液:ACN/H2O/TFA=92:7:1,v/v/v;将6ug IgG和265ug BSA溶于上样液中缓慢推入装有材料的SPE柱中,保证材料与糖肽的充分结合;接着用50ul的淋洗液淋洗12次,淋洗液:ACN/H2O/TFA=90:9.9:0.1,v/v/v;以除去与材料结合的非糖肽;最后用5ul洗脱液洗两次以洗脱与材料结合的糖肽。洗脱液:ACN/H2O/TFA=0:99:1,v/v/v。收集洗脱液,用MALDI-TOF分析糖肽富集情况。
图8为B3-HPS-NH2@SiO2的复杂样品(高非糖肽掺入比IgG:BSA=1:500)的糖肽富集图,从图中可知富集糖肽数21条。
实施例6
1.将海藻酸钠(SA)1g用100ml热水溶解(或者直接用油浴锅40℃-50℃热溶);JR-400阳离子纤维素用100ml去离子水40℃水浴溶解。连续搅拌直至完全溶解。在超声的作用下,将JR-400阳离子纤维素水溶液滴加至海藻酸钠溶液中得到JR-SA。
将0.24g硫酸钛溶于15ml去离子水中搅拌溶解。在硫酸钛水溶液中加入5ml氨水(28wt%),室温搅拌20min。生成Ti(OH)4沉淀用去离子水洗涤至中性,离心(6000rpm)3次,去除NH4+,SO4 2-。在Ti(OH)4沉淀中加入0.5ml H2O2(30wt%)和适量水,室温下连续搅拌30min,得到透明的橙黄色胶体(过氧钛酸PTA)。PTA胶体与JR-SA室温混合连续搅拌3得到JR-TiO2-SA。
取0.5g实施例3所合成的材料B3-HPS-NH2@SiO2溶于10ml去离子中与JR-TiO2-SA混匀连续搅拌12h。水洗离心分离后重溶于甲苯溶液于75℃反应6h。甲苯、丙酮、甲苯依次洗涤。95℃烘箱中保温2h,使PTA水解,原位生成纳米TiO2。80℃烘干得到JR-TiO2-SA-B3-HPS-NH2@SiO2
2.磷酸化肽富集:取1mg JR-TiO2-SA-B3-HPS-NH2@SiO2装填于SPE柱中,用上样液清洗平衡材料,上样液:ACN/H2O/TFA=90:9:1,v/v/v;将6ugα-酪蛋白酶解液溶于上样液中缓慢推入装有材料的SPE柱中,保证材料与磷酸化肽的充分结合;接着用30ul的淋洗液淋洗2次,淋洗液:ACN/H2O/TFA=90:9.9:0.1,v/v/v;以除去与材料结合的非磷酸化肽;最后用5ul洗脱液分别洗两次以洗脱与材料结合的磷酸化肽。洗脱液:0.4mol/L氨水、10%氨水。收集洗脱液,用MALDI-TOF分析磷酸化肽富集情况。
JR-TiO2-SA-B3-HPS-NH2@SiO2的糖肽富集如图9,从图中可知富集磷酸化肽15条。
对材料进行红外、SEM表征,并以人血清免疫球蛋白G/标准磷酸蛋白为模型样品,将硼类化合物修饰的硅胶材料装填至小型SPE柱中用于糖肽、磷酸化肽的富集。表现出良好的富集选择性,富集能力在负责样品体现得到验证。对其进行后修饰接入TiO2,可实现磷酸化肽的有效富集。本发明的B-HPS-NH2@SiO2及其衍生材料在亲水模式下实现糖肽/磷酸化肽的特异性富集的应用,在修饰化肽的选择性富集方面具有潜在的应用前景。

Claims (10)

1.一种硼类化合物修饰的硅胶材料,其特征在于:具有以下结构式:
Figure FDA0003343352280000011
2.权利要求1所述的一种硼类化合物修饰的硅胶材料的制备方法,其特征在于:包括如下步骤:
a.依次将槲皮素、氨基硅胶按4-6:1-2的质量比置于反应容器中,加入乙醇,70-90℃回流15-48h;
b.用乙醇洗涤产物2-4次、再用甲醇洗涤产物2-4次;
c.70-90℃干燥12-18h得到槲皮素修饰的氨基硅胶(HPS-NH2@SiO2);
d.再将HPS-NH2@SiO2、硼类化合物分别溶于有机溶剂后再混合,30-80℃下反应充分;HPS-NH2@SiO2与硼类化合物的质量比是4-6:1-2;
e.反应结束后抽滤再依次用二甲基亚砜、甲醇、乙醇洗涤,真空干燥。
3.根据权利要求2所述的一种硼类化合物修饰的硅胶材料的制备方法,其特征在于:步骤a所述氨基硅胶和槲皮素的质量比为4-6:1。
4.根据权利要求2所述的一种硼类化合物修饰的硅胶材料的制备方法,其特征在于:步骤a所述氨基硅胶的性质是:粒径2-10um,孔径
Figure FDA0003343352280000012
5.根据权利要求2所述的一种硼类化合物修饰的硅胶材料的制备方法,其特征在于:步骤d所述硼类化合物选自以下中的一种:硼酸、四羟基二硼烷、硼砂;HPS-NH2@SiO2与硼类化合物的质量比是4-6:1。
6.根据权利要求2所述的一种硼类化合物修饰的硅胶材料的制备方法,其特征在于:步骤d所述反应时间是15-48小时;
步骤d所述的有机溶剂选自二甲基亚砜,或是二氧六环和均三甲苯的混合溶剂;
步骤e中,用于洗涤第二步产物的溶剂依次是二氧六环、甲醇、乙醇。
7.根据权利要求2所述的一种硼类化合物修饰的硅胶材料的制备方法,其特征在于:步骤e所述真空干燥温度是50-80℃。
8.权利要求1所述硼类化合物修饰的硅胶材料在亲水模式下糖肽的特异性富集的应用。
9.根据权利要求8所述的应用,其特征在于:采用柱固相萃取(SPE)模式富集糖肽。将混有材料的上样液装入SPE柱中,糖肽样品上样SPE柱,淋洗液洗出与材料结合的非糖肽,最后用洗脱液将糖肽洗脱下来,收集洗脱液。
10.权利要求1所述硼类化合物修饰的硅胶材料进行后修饰,在磷酸化肽富集方面的应用。
CN202111315018.7A 2021-11-08 2021-11-08 硼类化合物修饰的硅胶材料、制备方法及应用 Active CN114031084B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111315018.7A CN114031084B (zh) 2021-11-08 2021-11-08 硼类化合物修饰的硅胶材料、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111315018.7A CN114031084B (zh) 2021-11-08 2021-11-08 硼类化合物修饰的硅胶材料、制备方法及应用

Publications (2)

Publication Number Publication Date
CN114031084A true CN114031084A (zh) 2022-02-11
CN114031084B CN114031084B (zh) 2023-10-27

Family

ID=80143434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111315018.7A Active CN114031084B (zh) 2021-11-08 2021-11-08 硼类化合物修饰的硅胶材料、制备方法及应用

Country Status (1)

Country Link
CN (1) CN114031084B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101397139A (zh) * 2008-09-09 2009-04-01 苏州纳迪微电子有限公司 高纯度硅溶胶及其制备方法
WO2016189545A1 (en) * 2015-05-23 2016-12-01 Shoolini University Of Biotechnology And Management Sciences Compounds from vitex nigundo for enhancing antibiotic activity and overcoming drug resistance
CN107126943A (zh) * 2017-05-25 2017-09-05 华东理工大学 苯硼酸修饰硅胶功能色谱填料、制备方法与应用
CN108906007A (zh) * 2018-07-20 2018-11-30 河南中医药大学 一种糖基亲水磁性复合物微球的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101397139A (zh) * 2008-09-09 2009-04-01 苏州纳迪微电子有限公司 高纯度硅溶胶及其制备方法
WO2016189545A1 (en) * 2015-05-23 2016-12-01 Shoolini University Of Biotechnology And Management Sciences Compounds from vitex nigundo for enhancing antibiotic activity and overcoming drug resistance
CN107126943A (zh) * 2017-05-25 2017-09-05 华东理工大学 苯硼酸修饰硅胶功能色谱填料、制备方法与应用
CN108906007A (zh) * 2018-07-20 2018-11-30 河南中医药大学 一种糖基亲水磁性复合物微球的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
方奕珊;李来生;陈红;张杨;: "高效液相色谱槲皮素键合硅胶固定相分离极性化合物", 应用化学, vol. 30, no. 01, pages 79 - 86 *
易翔;张剑;翟云云;曾延波;李蕾;: "槲皮素键合纳米硅胶对牛血清蛋白吸附的研究", 化学研究与应用, vol. 22, no. 09, pages 1187 - 1190 *

Also Published As

Publication number Publication date
CN114031084B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
Wang et al. Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides
Ji et al. Efficient enrichment of glycopeptides using metal–organic frameworks by hydrophilic interaction chromatography
Chen et al. Interaction modes and approaches to glycopeptide and glycoprotein enrichment
US8501486B2 (en) Materials and methods for isolating phosphopeptides
Chen et al. Facile synthesis of zwitterionic polymer-coated core–shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides
Fang et al. One-pot synthesis of magnetic colloidal nanocrystal clusters coated with chitosan for selective enrichment of glycopeptides
Huang et al. Stationary phases for the enrichment of glycoproteins and glycopeptides
CN105254707B (zh) 基于二肽的聚合物材料及其在糖分离和糖肽富集中的应用
Trnka et al. Topographic studies of the GroEL-GroES chaperonin complex by chemical cross-linking using diformyl ethynylbenzene: the power of high resolution electron transfer dissociation for determination of both peptide sequences and their attachment sites
CN104374848B (zh) 一种苯硼酸材料富集糖肽的方法
Sun et al. Facile preparation of polysaccharide functionalized macroporous adsorption resin for highly selective enrichment of glycopeptides
CN108503853A (zh) 一种基于仲胺基键合的共价有机框架材料及其制备方法和应用
CN102133519B (zh) 限进手性色谱固定相材料及其制备方法
Xie et al. Post-synthesis modification of covalent organic frameworks for ultrahigh enrichment of low-abundance glycopeptides from human saliva and serum
CN107607640A (zh) 一种硼酸修饰的纳米复合材料的糖肽富集与质谱检测方法
Liu et al. Preparation of cotton wool modified with boric acid functionalized titania for selective enrichment of glycopeptides
CN104415740A (zh) 亲水色谱填料及其制备方法与应用
CN113083264A (zh) 二氧化硅-金属有机骨架核壳型复合材料及其在硫醇小分子检测方面的应用
Bodnar et al. Synthesis and evaluation of carboxymethyl chitosan for glycopeptide enrichment
Li et al. A dual-zwitterion functionalized ultra-hydrophilic metal–organic framework with ingenious synergy for enhanced enrichment of glycopeptides
Lin et al. Preparation of iminodiacetic acid functionalized silica capillary trap column for on-column selective enrichment of N-linked glycopeptides
CN113721028B (zh) 一种go@cs@zif-8泡沫材料的合成方法及应用
Zhang et al. One-step synthesis of hydrophilic microspheres for highly selective enrichment of N-linked glycopeptides
Sun et al. Au–cysteine modified macroporous adsorption resin: preparation and highly selective enrichment and identification of N-linked glycopeptides from the complex biological sample
Zhu et al. Post-synthesis of biomimetic chitosan with honeycomb-like structure for sensitive recognition of phosphorylated peptides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant