CN114025843A - 抗体纯化方法及其组合物 - Google Patents

抗体纯化方法及其组合物 Download PDF

Info

Publication number
CN114025843A
CN114025843A CN202080042562.6A CN202080042562A CN114025843A CN 114025843 A CN114025843 A CN 114025843A CN 202080042562 A CN202080042562 A CN 202080042562A CN 114025843 A CN114025843 A CN 114025843A
Authority
CN
China
Prior art keywords
antibody
resin
solution
cex
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080042562.6A
Other languages
English (en)
Inventor
S·F·奥本海姆
G·帕克斯
N·舒尔克
L·库尔特
M·E·多兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Pharmaceutical Co Ltd filed Critical Takeda Pharmaceutical Co Ltd
Publication of CN114025843A publication Critical patent/CN114025843A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/165Extraction; Separation; Purification by chromatography mixed-mode chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/005Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies constructed by phage libraries
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2839Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered

Abstract

本文描述了纯化在哺乳动物细胞培养物中产生的人源化α4β7抗体,诸如维多珠单抗的方法,以及由所述纯化方法得到的组合物。

Description

抗体纯化方法及其组合物
技术领域
本发明涉及用于纯化抗α4β7抗体或其片段的方法。
相关申请
本申请要求2019年6月10日提交的美国临时申请62/859,580的优先权。前述申请的全部内容以引用的方式并入本文。
序列表
本申请含有序列表,所述序列表已经以ASCII格式以电子方式提交,并且特此以引用的方式整体并入。所述ASCII副本于2020年6月5日创建,命名为T103022_1120WO_SL.txt且大小为10,015字节。
背景技术
蛋白质的大规模经济纯化已成为生物技术行业中越来越重要的问题。一般而言,生物药物为使用已工程化成大量产生目标治疗性蛋白质的原核(例如细菌)细胞系或真核(例如哺乳动物或真菌)细胞系,通过细胞培养而产生。由于所用细胞系为活生物体,所以必须对其饲喂包含糖、氨基酸和生长因子的复合细胞培养基,所述复合细胞培养基有时由动物血清制剂供应。将所需重组治疗性蛋白质与工艺相关杂质,包括例如细胞培养基组分、宿主细胞蛋白质(HCP)、宿主核酸和/或色谱材料,以及产物相关杂质诸如聚集体、错误折叠的物质或目标蛋白质的片段分离以实现足以用作人用治疗剂的纯度为巨大的挑战。
产物相关杂质和工艺相关杂质,包括聚集体在内,可能会干扰纯化工艺,在储存期间影响蛋白质,和/或在将抗体作为药物施用于受试者后,可能会引起不良反应(Shukla等人,J.Chromatogr.B.Analyt.Technol.Biomed.Life Sci.,848(1),28-39)。
因此,本领域中仍然需要将治疗性蛋白质,例如抗体纯化至高纯度,同时有效地移除杂质,提高蛋白质的回收率并维持治疗需求的改进的方法。
发明内容
本发明尤其提供用于例如从液体溶液纯化抗α4β7抗体,诸如维多珠单抗(vedolizumab)的方法。
在一个方面中,本发明的特征在于一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液获得包含抗α4β7抗体的组合物的方法,所述方法包括使包含蛋白质A的基质与包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液接触,由此使所述抗α4β7抗体结合至所述蛋白质A;用洗涤溶液洗涤包含蛋白质A的所述基质;以及通过使包含蛋白质A的所述基质与pH值为3.2至4的洗脱溶液接触,从所述基质洗脱所述抗α4β7抗体,由此获得包含所述抗α4β7抗体的组合物,其中所述抗α4β7抗体为人源化抗体,为IgG1抗体,包含含有如SEQID NO:4中所示的CDR3结构域、如SEQ ID NO:3中所示的CDR2结构域和如SEQ ID NO:2中所示的CDR1结构域的重链可变区;并且包含含有如SEQ ID NO:8中所示的CDR3结构域、如SEQID NO:7中所示的CDR2结构域和如SEQ ID NO:6中所示的CDR1结构域的轻链可变区。
在一个实施方案中,所述方法用于从包含所述抗α4β7抗体和一种或多种杂质的液体溶液获得包含少于1%的高分子量(HMW)聚集体的组合物,所述方法包括使包含蛋白质A的基质与包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液接触,由此使所述抗α4β7抗体结合至所述蛋白质A;所述用洗涤溶液洗涤包含蛋白质A的所述基质;以及所述通过使包含蛋白质A的所述基质与pH值为3.2至4的洗脱溶液接触,从所述基质洗脱所述抗α4β7抗体,由此获得包含少于1%HMW聚集体的组合物。
在一个实施方案中,所述蛋白质A固定于固相上。在一个实施方案中,所述固相包含珠粒、凝胶和树脂中的一者或多者。
在一个实施方案中,所述洗涤溶液的pH值为约7。在一个实施方案中,所述洗脱溶液包含柠檬酸。
在一个实施方案中,所述洗脱溶液的pH值为3.2至3.7。
在另一个方面中,本发明的特征在于一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液获得包含抗α4β7抗体的组合物的方法,所述方法包括使包含抗α4β7抗体和至少一种杂质的溶液与疏水相互作用色谱(HIC)树脂在允许所述抗α4β7抗体流动通过所述HIC树脂的条件下接触,由此获得包含所述抗α4β7抗体的组合物,其中所述HIC树脂被表征为高疏水性HIC树脂,其中所述抗α4β7抗体为人源化抗体,为IgG1抗体,包含含有如SEQ IDNO:4中所示的CDR3结构域、如SEQ ID NO:3中所示的CDR2结构域和如SEQ ID NO:2中所示的CDR1结构域的重链可变区;并且包含含有如SEQ ID NO:8中所示的CDR3结构域、如SEQ IDNO:7中所示的CDR2结构域和如SEQ ID NO:6中所示的CDR1结构域的轻链可变区。
在一个实施方案中,所述方法用于从包含抗α4β7抗体和一种或多种杂质的液体溶液获得包含所述抗α4β7抗体和少于0.6%HMW聚集体的组合物,所述方法包括所述使包含抗α4β7抗体和至少一种杂质的溶液与HIC树脂在允许所述抗α4β7抗体流动通过所述HIC树脂的条件下接触,由此获得包含所述抗α4β7抗体和少于0.6%HMW聚集体的组合物,其中所述抗α4β7抗体为人源化抗体,为IgG1抗体,包含含有如SEQ ID NO:4中所示的CDR3结构域、如SEQ ID NO:3中所示的CDR2结构域和如SEQ ID NO:2中所示的CDR1结构域的重链可变区;并且包含含有如SEQ ID NO:8中所示的
CDR3结构域、如SEQ ID NO:7中所示的CDR2结构域和如SEQ ID NO:6中所示的CDR1结构域的轻链可变区。
在一个实施方案中,所述HIC树脂用pH值小于约7.2的磷酸盐缓冲液平衡。在一个实施方案中,所述磷酸盐缓冲液包含约0.35mM至约0.15mM的磷酸钾。
在一个实施方案中,树脂负载量为约55至75mg/ml。
在一个实施方案中,所述组合物包含少于约0.22ppm的残留蛋白质A。
在一个实施方案中,所述组合物含有少于约0.3ppm的宿主细胞蛋白质(HCP)。
在一个实施方案中,所述高疏水性HIC树脂的平均孔径为约50至150μm。
在一个实施方案中,所述高疏水性HIC树脂的平均孔径为约100nm和/或孔径为约100μm。
在另一个方面中,本发明的特征在于一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液产生包含抗α4β7抗体的制剂的方法,所述方法包括使包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液与混合模式色谱树脂接触,由此使所述抗α4β7抗体结合至所述树脂;用洗涤溶液洗涤所述混合模式色谱树脂;以及通过使所述混合模式色谱树脂与pH值等于或高于pH 3.9的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含纯化的抗α4β7抗体的制剂,其中所述抗α4β7抗体包含SEQ ID NO:1中所示的重链可变区和SEQ ID NO:2中所示的轻链可变区。
在前述方面的一个实施方案中,所述方法用于从包含抗α4β7抗体和一种或多种杂质的液体溶液获得包含少于1%HMW聚集体的制剂,所述方法包括使包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液与混合模式色谱树脂接触,由此使所述抗α4β7抗体结合至所述树脂;所述用洗涤溶液洗涤所述混合模式色谱树脂;以及所述通过使所述混合模式色谱树脂与pH值等于或高于pH 3.9的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含少于1%HMW聚集体的制剂。
在一个实施方案中,所述洗脱溶液的pH值等于或高于pH 4.1。在另一个实施方案中,所述洗脱溶液的pH值为约pH 3.9至约pH 4.4。
在一些实施方案中,所述洗脱溶液的电导率为30mS/cm或更低。在某些实施方案中,所述洗脱溶液的电导率为约20mS/cm至约30mS/cm。
在一些实施方案中,所述洗脱溶液包含浓度为约160mM至约240mM的NaCl。
在某些实施方案中,所述混合模式色谱树脂为Capto Adhere ImpRes。
在上述方面的一些实施方案中,所述方法还包括使用阳离子交换(CEX)树脂纯化所述抗α4β7抗体。在一些此类实施方案中,所述CEX树脂以结合/洗脱模式操作。
在另一个方面中,本发明的特征在于一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液产生包含抗α4β7抗体的制剂的方法,所述方法包括使包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液与混合模式色谱树脂接触,由此使所述抗α4β7抗体结合至所述树脂;用洗涤溶液洗涤所述混合模式色谱树脂;以及通过使所述混合模式色谱树脂与pH值等于或低于pH 4.2且电导率等于或低于28mS/cm的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含纯化的抗α4β7抗体的制剂,其中所述抗α4β7抗体包含SEQ IDNO:1中所示的重链可变区和SEQ ID NO:2中所示的轻链可变区。
在前述方面的一些实施方案中,所述方法用于从包含抗α4β7抗体和一种或多种杂质的液体溶液获得包含产率增加的抗α4β7抗体的制剂,所述方法包括所述使包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液与混合模式色谱树脂接触,由此使所述抗α4β7抗体结合至所述树脂;所述用洗涤溶液洗涤所述混合模式色谱树脂;以及所述通过使所述混合模式色谱树脂与pH值等于或低于pH 4.2且电导率等于或低于28mS/cm的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含产率增加的抗α4β7抗体的制剂。
在一些实施方案中,所述洗脱溶液的pH值等于或低于4.0。在其他实施方案中,所述洗脱溶液的pH值为约pH 4.2至约pH 3.8。
在一些实施方案中,所述洗脱溶液的电导率为约18mS/cm至约28mS/cm。
在一些实施方案中,所述洗脱溶液包含浓度为约160mM至约240mM的NaCl。
在前述方面的一些实施方案中,所述混合模式色谱树脂与每升树脂至少55g的抗α4β7抗体接触。在某些实施方案中,所述混合模式色谱树脂与每升树脂约55g至约80g的抗α4β7抗体接触。
在前述方面的一些实施方案中,所述混合模式色谱树脂为Capto Adhere ImpRes。
在上述方面的一些实施方案中,所述方法还包括使用阳离子交换(CEX)树脂纯化所述抗α4β7抗体。在一些此类实施方案中,所述CEX树脂以结合/洗脱模式操作。
在另一个方面中,本发明的特征在于一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液产生包含抗α4β7抗体的制剂的方法,所述方法包括使包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液与阳离子交换(CEX)树脂接触,由此使所述抗α4β7抗体结合至所述树脂;用洗涤溶液洗涤所述CEX树脂;以及通过使所述CEX树脂与电导率等于或低于16mS/cm的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含纯化的抗α4β7抗体的制剂,其中所述抗α4β7抗体包含SEQ ID NO:1中所示的重链可变区和SEQ ID NO:2中所示的轻链可变区。
在前述方面的一些实施方案中,所述方法用于从包含抗α4β7抗体和一种或多种杂质的液体溶液获得包含降低水平的HMW聚集体的制剂,所述方法包括所述使包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液与CEX树脂接触,由此使所述抗α4β7抗体结合至所述树脂;所述用洗涤溶液洗涤所述CEX树脂;以及所述通过使所述CEX树脂与电导率等于或低于16mS/cm的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含降低水平的HMW聚集体的制剂。
在上述方面的一些实施方案中,所述洗脱溶液的电导率等于或低于14mS/cm。在其他实施方案中,所述洗脱溶液的电导率为约11-16mS/cm。在又一些其他实施方案中,所述洗脱溶液的电导率为约12-14mS/cm。
在上述方面的一些实施方案中,所述洗脱溶液包含浓度为约70mM至约110mM的NaCl。
在上述方面的一些实施方案中,所述洗脱溶液的pH值为约pH 5至约pH 6。在某些实施方案中,所述洗脱溶液的pH值为约pH 5.1至约pH 5.8。
在上述方面的一些实施方案中,所述抗α4β7抗体以每升树脂约25-70g抗体的浓度负载于所述CEX树脂上。在某些实施方案中,所述抗α4β7抗体以每升树脂约30-60g抗体的浓度负载于所述CEX树脂上。
在上述方面的一些实施方案中,所述CEX树脂为Nuvia HR-S。
在上述方面的一些实施方案中,所述方法还包括使用混合模式色谱树脂纯化所述抗α4β7抗体。在一些此类实施方案中,所述混合模式色谱树脂以结合/洗脱模式操作。
在另一个方面中,本发明的特征在于一种用于从包含抗α4β7抗体的主要同种型和一种或多种碱性同种型种类的液体溶液产生包含抗α4β7抗体的制剂的方法,所述方法包括使包含所述抗α4β7抗体和一种或多种碱性同种型种类的所述液体溶液与阳离子交换(CEX)树脂接触,由此使所述抗α4β7抗体结合至所述树脂;用洗涤溶液洗涤所述CEX树脂;以及通过使所述CEX树脂与电导率等于或高于11mS/cm的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含纯化的抗α4β7抗体的制剂,其中所述抗α4β7抗体包含SEQ ID NO:1中所示的重链可变区和SEQ ID NO:2中所示的轻链可变区。
在前述方面的一些实施方案中,所述方法用于从包含抗α4β7抗体的主要同种型和一种或多种碱性同种型种类的液体溶液获得包含降低水平的α4β7抗体的碱性同种型种类的制剂,所述方法包括使包含所述抗α4β7抗体和一种或多种碱性同种型种类的所述液体溶液与CEX树脂接触,由此使所述抗α4β7抗体结合至所述树脂;所述用洗涤溶液洗涤所述CEX树脂;以及所述通过使所述CEX树脂与电导率等于或高于11mS/cm的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含降低水平的碱性同种型种类的制剂。
在一个实施方案中,纯化的组合物包含约4%至约20%的碱性同种型。
在上述方面的一些实施方案中,所述洗脱溶液的电导率等于或高于12mS/cm。在其他实施方案中,所述洗脱溶液的电导率为约11-16mS/cm。在又一些其他实施方案中,所述洗脱溶液的电导率为约12-14mS/cm。
在上述方面的一些实施方案中,所述洗脱溶液的pH值为约pH 5至约pH 6。在某些实施方案中,所述洗脱溶液的pH值为约pH 5.1至约pH 5.8。
在上述方面的一些实施方案中,所述抗α4β7抗体以每升树脂约25-70g抗体的浓度负载于所述CEX树脂上。在某些实施方案中,所述抗α4β7抗体以每升树脂约30-60g抗体的浓度负载于所述CEX树脂上。
在一些实施方案中,所述洗脱溶液包含氯化钠,例如70至110mM的氯化钠。
在上述方面的一些实施方案中,所述CEX树脂为Nuvia HR-S。
在上述方面的一些实施方案中,所述方法还包括使用混合模式色谱树脂纯化所述抗α4β7抗体。在一些此类实施方案中,所述混合模式色谱树脂以结合/洗脱模式操作。
在任何上述方面的一个实施方案中,所述抗体在中国仓鼠卵巢(CHO)宿主细胞中产生。
在一个实施方案中,所述宿主细胞为GS-CHO细胞。
在任何上述方面的一个实施方案中,所述抗α4β7抗体包含如SEQ ID NO:1中所示的重链可变区序列和如SEQ ID NO:5中所示的轻链可变区序列。
在任何上述方面的一个实施方案中,所述抗α4β7抗体为维多珠单抗。
另外,本发明还包括以下实施方案:
1.一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液获得包含少于1%HMW聚集体的组合物的方法,所述方法包括
使包含蛋白质A的基质与包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液接触,由此使所述抗α4β7抗体结合至所述蛋白质A;
用洗涤溶液洗涤包含蛋白质A的所述基质;以及
通过使包含蛋白质A的所述基质与pH值为3.2至4的洗脱溶液接触,从所述基质洗脱所述抗α4β7抗体,由此获得包含少于1%HMW聚集体的组合物,
其中所述抗α4β7抗体为人源化抗体,为IgG1抗体,包含含有如SEQ ID NO:4中所示的CDR3结构域、如SEQ ID NO:3中所示的CDR2结构域和如SEQ ID NO:2中所示的CDR1结构域的重链可变区;并且包含含有如SEQ ID NO:8中所示的CDR3结构域、如SEQ ID NO:7中所示的CDR2结构域和如SEQ ID NO:6中所示的CDR1结构域的轻链可变区。
2.如项目1的方法,其中所述蛋白质A固定于固相上。
3.如项目2的方法,其中所述固相包含珠粒、凝胶和树脂中的一者或多者。
4.如项目1至3中任一项的方法,其中所述洗涤溶液的pH值为约7。
5.如项目1至4中任一项的方法,其中所述洗脱溶液包含柠檬酸。
6.如项目1至5中任一项的方法,其中所述洗脱溶液的pH值为3.2至3.7。
7.一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液获得包含抗α4β7抗体和少于0.6%HMW聚集体的组合物的方法,所述方法包括
使包含抗α4β7抗体和至少一种杂质的溶液与疏水相互作用色谱(HIC)树脂在允许所述抗α4β7抗体流动通过所述HIC树脂的条件下接触,由此获得包含所述抗α4β7抗体和少于0.6%HMW聚集体的组合物,
其中所述HIC树脂被表征为高疏水性HIC树脂,
其中所述抗α4β7抗体为人源化抗体,为IgG1抗体,包含含有如SEQ ID NO:4中所示的CDR3结构域、如SEQ ID NO:3中所示的CDR2结构域和如SEQ ID NO:2中所示的CDR1结构域的重链可变区;并且包含含有如SEQ ID NO:8中所示的CDR3结构域、如SEQ ID NO:7中所示的CDR2结构域和如SEQ ID NO:6中所示的CDR1结构域的轻链可变区。
8.如项目7的方法,其中所述HIC树脂用pH值小于约7.2的磷酸盐缓冲液平衡。
9.如项目8的方法,其中所述磷酸盐缓冲液包含约0.35mM至约0.15mM的磷酸钾。
10.如项目7至9中任一项的方法,其中所述树脂负载量为约55至75mg/ml。
11.如项目7至10中任一项的方法,其中所述组合物包含少于约0.22ppm的残留蛋白质A。
12.如项目7至11中任一项的方法,其中所述组合物含有少于约0.3ppm的宿主细胞蛋白质(HCP)。
13.如项目7至12中任一项的方法,其中所述高疏水性HIC树脂的平均孔径为约50至150μm。
14.如项目7至12中任一项的方法,其中所述高疏水性HIC树脂的平均孔径为约100nm和/或孔径为约100μm。
15.如项目1至14中任一项的方法,其中所述抗体在中国仓鼠卵巢(CHO)细胞中产生。
16.如项目15的方法,其中所述宿主细胞为GS-CHO细胞。
17.如项目1至16中任一项的方法,其中所述抗α4β7抗体包含如SEQ ID NO:1中所示的重链可变区序列和如SEQ ID NO:5中所示的轻链可变区序列。
18.如项目1至16中任一项的方法,其中所述抗α4β7抗体为维多珠单抗。
附图说明
图1描绘聚集体随蛋白质A洗脱液pH值的变化。
图2为描绘预测剖析图测定的结果,针对性能输出进行筛选的图。
图3以图形方式描绘维多珠单抗与三种其他IgG抗体的比较以及用于从阳离子交换柱洗脱每种抗体的pH特性。
图4为描绘Capto Adhere ImpRes步骤回收率对比洗脱缓冲液pH值和电导率的线性回归模型表面图。
图5为描绘Capto Adhere ImpRes步骤回收率对比洗脱缓冲液pH值和负载量的线性回归模型表面图。
图6为描绘Capto Adhere ImpRes的HMW物质%对比洗脱缓冲液pH值和电导率的线性回归模型表面图。
图7为描绘Capto Adhere ImpRes的HMW物质%对比洗脱缓冲液pH值和负载量的线性回归模型表面图。
图8为描绘洗脱缓冲液pH值和洗脱缓冲液电导率对HMW物质%的影响的HMW表面图。
图9为描绘洗脱缓冲液pH值和洗脱缓冲液电导率对HMW清除率的影响的HMW清除率表面图。
图10为描绘洗脱缓冲液pH值和洗脱缓冲液电导率对单体物质%的影响的单体表面图。
图11为描绘洗脱缓冲液pH值和洗脱缓冲液电导率对酸性同种型种类%的影响的酸性种类表面图。
图12为描绘洗脱缓冲液pH值和洗脱缓冲液电导率对主要同种型种类%的影响的主要表面图。
图13为描绘洗脱缓冲液pH值和洗脱缓冲液电导率对碱性同种型种类%的影响的碱性种类表面图。
具体实施方式
本发明尤其涉及用于控制抗α4β7抗体或其抗原结合片段,例如维多珠单抗的纯化制剂中存在的产物相关物质(例如聚集体,诸如高分子量(HMW)聚集体、错误折叠的物质或蛋白质片段)和/或工艺相关杂质(例如宿主细胞蛋白质(HCP)、宿主细胞核酸、病毒、色谱材料和/或培养基组分)的量的纯化方法。
I.定义
为了能更容易地理解本发明,首先定义某些术语。
细胞表面分子“α4β7整联蛋白”或“α4β7”(通篇可互换使用)为α4链(CD49D、ITGA4)与β7链(ITGB7)的异二聚体。人α4整联蛋白和β7整联蛋白基因GenBank(National Centerfor Biotechnology Information,Bethesda,Md.)RefSeq登录号分别为NM_000885和NM_000889)由B淋巴细胞和T淋巴细胞,特别是记忆性CD4+淋巴细胞表达。许多整联蛋白的典型,即α4β7可以静止或活化状态存在。α4β7的配体包括血管细胞粘附分子(VCAM)、纤连蛋白和粘膜地址素(MAdCAM(例如MAdCAM-1))。结合至α4β7整联蛋白的抗体在本文中称为“抗α4β7抗体”。
如本文所使用,“对α4β7复合物具有结合特异性”的抗体或其抗原结合片段结合至α4β7,但不结合至α4β1或αEB7。维多珠单抗为对α4β7复合物具有结合特异性的抗体的一个实例。
如本文所使用,术语“抗体”旨在指包含通过二硫键相互连接的四条多肽链,两条重(H)链和两条轻(L)链的免疫球蛋白分子。每条重链包含重链可变区(本文缩写为HCVR或VH)和重链恒定区(CH)。重链恒定区包含三个结构域,CH1、CH2和CH3。每条轻链包含轻链可变区(本文缩写为LCVR或VL)和轻链恒定区。轻链恒定区包含一个结构域,即CL。VH区和VL区可进一步细分为高变区,称为互补决定区(CDR),其间散布有更为保守的区域,称为框架区(FR)。VH和VL各自包含三个CDR和四个FR,从氨基末端至羧基末端按以下顺序排列:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。在一些实施方案中,抗体具有可结晶片段(Fc)区。在某些实施方案中,所述抗体为IgG1同型并具有κ轻链。
“CDR”或“互补决定区”为散布于称为“框架区”(FR)的更为保守的区域内的高变区。
如本文所使用,术语抗体的“抗原结合片段”或“抗原结合部分”是指Fab、Fab'、F(ab')2和Fv片段、单链抗体、功能性重链抗体(纳米抗体),以及与完整抗体竞争特异性结合的抗体的对至少一个所需表位具有特异性的任何部分(例如具有足够框架序列以便特异性结合至表位的互补决定区的经分离部分)。抗原结合片段可通过重组技术或通过酶裂解或化学裂解抗体来产生。
非人(例如啮齿动物)抗体的“人源化”形式为含有来源于非人抗体的最小序列的嵌合抗体。在大多数情况下,人源化抗体为人免疫球蛋白(受体抗体),其中来自受体高变区的残基被具有所需特异性、亲和力和能力的来自非人物种(供体抗体),诸如小鼠、大鼠、兔或非人灵长类动物的高变区的残基置换。在一些情况下,人抗体的框架区(FR)残基被相应的非人残基置换。此外,人源化抗体可包含在受体抗体或供体抗体中未发现的残基。进行这些修饰以进一步改善抗体性能。一般而言,人源化抗体将包含基本上全部的至少一个且通常两个可变结构域,其中全部或基本上全部的高变CDR环对应于非人抗体的高变CDR环且全部或基本上全部的FR为人抗体序列的FR。人源化抗体还任选地包含抗体恒定区(Fc)的至少一部分,通常为人抗体的一部分。关于进一步细节,参见Jones等人,Nature 321:522-525(1986);Riechmann等人,Nature 332:323-329(1988);以及Presta,Curr.Op.Struct.Biol.2:593-596(1992)。
如本文所使用,术语“重组抗体”是指由引入宿主细胞,例如哺乳动物宿主细胞中的重组表达载体上携带的基因的转录和翻译而产生的抗体。在某些实施方案中,重组蛋白为选自由以下组成的组的同型的抗体:IgG(例如IgG1、IgG2、IgG3、IgG4)、IgM、IgA1、IgA2、IgD或IgE。在某些实施方案中,重组抗体为IgG1。
术语“重组宿主细胞”(在本文中与术语“宿主细胞”可互换使用)包括已引入重组表达载体的细胞。应理解,此类术语不仅旨在指特定受试者细胞,而且还指此类细胞的后代。因为某些修饰可能因突变或环境影响而在后代中出现,所以此类后代实际上可能与亲本细胞不同,但仍包括在本文所使用的术语“宿主细胞”的范围内。此外,应理解,除非另外说明,否则在使用术语“细胞”,例如宿主细胞或哺乳动物细胞或哺乳动物宿主细胞时,意图包括细胞群体。
如本文所使用,术语“载体”是指这样一种核酸分子,所述核酸分子能够繁殖与其连接的另一核酸。所述术语包括呈自我复制核酸结构的载体,以及并入宿主细胞基因组中的载体,所述宿主细胞中已引入所述载体。某些载体能够引导与其可操作连接的核酸的表达。此类载体在本文中称为“表达载体”。
如本文所使用,在蛋白质(例如抗体)制剂的情况下,术语“上游工艺”是指涉及从宿主细胞产生和收集蛋白质(例如抗体)的活动(例如在细胞培养后产生目标蛋白质,例如抗体)。
如本文所使用,术语“下游工艺”是指在上游工艺之后所使用的纯化目标蛋白质,例如抗体的一种或多种技术。例如,下游工艺技术包括使用例如亲和色谱法(包括蛋白质A亲和色谱法)、离子交换色谱法(诸如阴离子或阳离子交换色谱法)、尺寸排阻色谱法、混合模式色谱法、疏水相互作用色谱法(HIC)或置换色谱法纯化蛋白质产物。
如本文所使用,术语“培养”和“细胞培养”一般是指使细胞在受控条件下生长的过程,一般指在其自然环境之外生长。“培养”细胞是指使细胞与细胞培养基在适合细胞存活和/或生长和/或增殖的条件下接触。在某些实施方案中,细胞培养是指用于产生和维持能够产生目标重组蛋白,例如抗α4β7抗体的宿主细胞群体的方法,以及用于产生和收集目标蛋白质的方法和技术。举例而言,在将表达载体并入适当宿主,例如培养中的宿主细胞中后,就可将所述宿主维持在适于表达相关核苷酸编码序列以及收集和纯化所需重组蛋白的条件下。“细胞培养物”还可指含有细胞的溶液。
如本文所使用,术语“澄清的收获物”是指含有目标蛋白质,例如含有抗α4β7抗体的液体材料,其在经历一个或多个加工步骤以从所述材料移除固体粒子,诸如细胞碎片和颗粒状杂质后,从细胞培养物,例如发酵生物反应器提取。在细胞培养后,通常使用分离技术,诸如离心和过滤来纯化收获物,以移除细胞和细胞碎片。最初的澄清、颗粒移除步骤产生“澄清的收获物”,其例如可用于后续的色谱步骤(下游加工)中。澄清的收获物一般用于下游加工的起始材料,诸如本文所描述的下游加工步骤。
如本文所使用,“色谱载体”是指具有特定化学组成或特定三维结构的固体或多孔基质,或在其上可固定特定化学基团或大分子以便执行色谱法,包括亲和色谱法、凝胶过滤(尺寸排阻色谱法)或离子交换色谱法。色谱载体的实例包括但不限于树脂(例如琼脂糖)或膜。如本文所使用,“色谱壳体”是指容纳色谱载体的结构。色谱壳体的实例包括柱或滤筒或其他容器。
如本文所使用,术语“缓冲液”是指通过酸-碱缀合物组分的作用来抵抗pH变化的水溶液。缓冲液用于建立一组特定条件,以介导对加工步骤或色谱载体,诸如色谱树脂或膜的控制。
如本文所使用,术语“平衡溶液”是指配制成用于建立用于加工步骤或色谱载体,诸如色谱操作的初始操作条件的水性液体。平衡溶液用于制备例如供负载目标蛋白质(例如抗体)的固相,例如色谱载体,例如树脂或膜。
如本文所使用,术语“洗涤液”或“洗涤溶液”是指配制用于从色谱载体,诸如树脂或膜置换未结合的污染物的水性液体。在一些实施方案中,在负载目标蛋白质(例如抗体)之后,并且在洗脱目标蛋白质(例如抗体)之前,使洗涤液通过固体载体,例如树脂或膜。在一个实施方案中,洗涤液具有类似于平衡溶液的生物化学特性。
如本文所使用,“流通操作”是指蛋白质基本上不结合至基质,例如疏水性色谱树脂,和/或在洗涤过程中洗脱,而杂质仍与色谱载体缔合在一起的工艺。
如本文所使用,术语“洗脱溶液”或“洗脱液”是指配制用于从色谱载体,例如树脂或膜置换目标蛋白质(例如抗体)的水性液体。在一个实施方案中,洗脱溶液具有不同于平衡溶液和/或洗涤溶液的生物化学特性,由此使目标蛋白质(例如抗体)更倾向于与洗脱溶液缔合,而不是与色谱载体,例如与树脂或膜缔合。
如本文关于在包含待纯化抗体的溶液中所含的杂质所使用,术语“杂质”包括工艺相关杂质和产物相关杂质。
如本文所使用,术语“工艺相关杂质”是指存在于包含蛋白质的组合物,例如溶液中但不来源于蛋白质本身的一种或多种杂质。例如,工艺相关杂质包括但不限于细胞培养基组分、宿主细胞组分(诸如蛋白质(HCP)、宿主细胞核酸或含脂质的亚细胞结构或其片段)、病毒、来自缓冲液的痕量金属或离子、来自材料处理容器或色谱载体的可浸出材料。在蛋白质,例如抗体的制备(上游和/或下游加工)期间可能形成工艺相关杂质。
如本文所使用,术语“宿主细胞杂质”是指由宿主细胞系、细胞培养液或细胞培养物引入的任何蛋白质、核酸污染物、脂质污染物或副产物。杂质的实例包括但不限于中国仓鼠卵巢蛋白(CHOP)、大肠杆菌(E.coli)蛋白、酵母蛋白、猿猴COS蛋白或骨髓瘤细胞蛋白(例如NS0蛋白(来源于BALB/c小鼠的小鼠浆细胞瘤细胞))。
如本文所使用,术语“产物相关杂质”包括来源于目标蛋白质(例如抗体)本身的杂质。举例而言,产物相关杂质包括但不限于目标抗体的聚集体(例如HMW)、错误折叠的物质、氧化或去酰胺的物质或低分子量片段。
如本文所使用,术语“聚集体(aggregate/aggregates)”是指两个或更多个抗体或抗体片段的缔合。举例而言,聚集体可为抗体和/或抗体片段的二聚体、三聚体、四聚体或大于四聚体的多聚体。抗体聚集体可为可溶或不可溶的。聚集分子之间的缔合可为共价的或非共价的,而与其缔合的机制无关。缔合可为聚集分子之间的直接缔合,或经由其他分子将所述聚集分子连接在一起的间接缔合。后者的实例包括但不限于与其他蛋白质的二硫键联、与脂质的疏水性缔合、与DNA的电荷缔合、与浸出的蛋白质A的亲和缔合、或与多种组分的混合模式缔合。聚集体可在细胞培养中的蛋白质表达期间、下游加工中的蛋白质纯化期间或药物产品的储存期间不可逆地形成。溶液中聚集体的存在可使用例如尺寸排阻色谱法(SEC)(例如具有UV检测的SEC、具有光散射检测的SEC(SEC-LSD))、场流分级分离、分析型超速离心沉降速率或毛细管电泳-十二烷基硫酸钠(CE-SDS,还原型和非还原型)确定。
术语“高分子量”或“HMW”用于指示分子量大于单体抗体的抗体复合物。在一个实施方案中,HMW聚集体的分子量大于约147kDa。高分子量聚集体的存在可通过本领域中已知的标准方法,例如尺寸排阻色谱法(SEC)确定。
关于所需蛋白质,“基本上纯化”是指包含所述蛋白质的纯化样品包含至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少97.5%、至少98%、至少98.5%、或至少99%的所需重组蛋白和少于3%、少于2.5%、少于2%、少于1.5%、少于1%、或少于0.5%的杂质。
术语“约”表示此后的值并非精确值,而是所述值的+/-5%的范围的中心点。如果所述值为以百分比给出的相对值,则术语“约”还表示此后的值并非精确值,而是所述值的+/-5%的范围的中心点,由此所述范围的上限不能超过100%的值。
II.与抗体纯化相关的方法和组合物
本文提供用于例如从液体溶液,例如从哺乳动物细胞培养物的澄清收获物纯化抗α4β7抗体,诸如维多珠单抗的方法。本发明至少部分地基于抗体纯化工艺的某些方面,其减少抗体溶液中存在的杂质的水平,包括例如工艺相关杂质,诸如细胞培养基组分、宿主细胞蛋白质(HCP)、宿主细胞核酸、病毒和色谱材料;以及产物相关杂质,诸如聚集体(包括HMW聚集体)、错误折叠的物质和目标抗体的片段。本发明的方法可用于纯化抗α4β7抗体,特别是维多珠单抗或具有维多珠单抗的结合区,即CDR或可变区的抗体,由此所述抗体可配制用于人患者。
特别地,本文所公开的方法可用于实现较低水平的抗体聚集,例如HMW抗体聚集体。在某些实施方案中,本文所公开的方法提供具有约0%至5.0%(例如0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.7%、3.8%、3.9%、4%、4.1%、4.2%、4.3%、4.4%、4.5%、4.6%、4.7%、4.8%、4.9%或5%)聚集体,例如HMW聚集体的组合物。在特定实施方案中,本文所公开的方法提供具有约0%至2%、≤2%、≤1.9%、≤1.8%、≤1.7%、≤1.6%、≤1.5%、≤1.4%、≤1.3%、≤1.2%、≤1.1%、≤1%、≤0.9%、≤0.8%、≤0.7%、≤0.6%或≤0.5%聚集体,例如HMW聚集体的组合物。本发明还包括包含抗α4β7抗体和所述低水平的HMW聚集体的组合物。
特别地,本文所公开的方法可用于产生抗α4β7抗体维多珠单抗或具有维多珠单抗的抗原结合区的抗体。维多珠单抗还以其商品名
Figure BDA0003402392520000181
(Takeda Pharmaceuticals,Inc.)为人所知。维多珠单抗为人源化抗体,其包含人IgG1框架区和恒定区以及来自鼠类抗体Act-1的抗原结合CDR。维多珠单抗的CDR、可变区和突变的Fc区(突变成消除Fc效应物功能)描述于以引用的方式并入本文中的美国专利号7,147,851中。
维多珠单抗为人源化单克隆抗体,其特异性地结合至α4β7整联蛋白,例如α4β7复合物,并阻断α4β7整联蛋白与粘膜地址素细胞粘附分子-1(MAdCAM-1)的相互作用,并且抑制记忆性T淋巴细胞迁移穿过内皮进入发炎的胃肠实质组织中。维多珠单抗不结合α4β1和αEβ7整联蛋白或抑制α4β1和αEβ7整联蛋白的功能,并且不拮抗α4整联蛋白与血管细胞粘附分子-1(VCAM-1)的相互作用。
α4β7整联蛋白在一小组不同的记忆性T淋巴细胞的表面上表达,所述记忆性T淋巴细胞优先迁移至胃肠道中。MAdCAM-1主要在肠道内皮细胞上表达,并在T淋巴细胞归巢至肠道淋巴组织中起关键作用。α4β7整联蛋白与MAdCAM-1的相互作用已被认为是粘膜炎症,诸如作为溃疡性结肠炎和克罗恩氏病(Crohn’s disease)的标志的慢性炎症的重要促成因素。维多珠单抗可用于治疗炎症性肠病,包括克罗恩氏病和溃疡性结肠炎、结肠袋炎(包括慢性结肠袋炎)、移植物抗宿主病和HIV。
维多珠单抗的重链可变区在本文中以SEQ ID NO:1提供,并且维多珠单抗的轻链可变区在本文中以SEQ ID NO:5提供。维多珠单抗包含含有SEQ ID NO:2的CDR1、SEQ IDNO:3的CDR2和SEQ ID NO:4的CDR3的重链可变区。维多珠单抗包含含有SEQ ID NO:6的CDR1、SEQ ID NO:7的CDR2和SEQ ID NO:8的CDR3的轻链可变区。在一个实施方案中,所述抗体包含含有SEQ ID NO:9的氨基酸序列的重链和包含SEQ ID NO:10的氨基酸序列的轻链。维多珠单抗和维多珠单抗的序列在美国专利公布号2014/0341885和美国专利公布号2014-0377251中也有描述,所述专利各自的完整内容明确地以引用的方式整体并入本文中。本文所公开的方法可使用包含上文和所附序列表中陈述的结合区,例如CDR或可变区的抗体来执行。
产生抗体的方法为本领域中已知的。哺乳动物宿主细胞经工程化成稳定表达抗α4β7抗体(例如维多珠单抗)。用于产生单克隆抗体,诸如维多珠单抗的完整细胞培养方法和考虑描述于以引用的方式并入本文中的Li等人.(2010)mAbs 2:5,466-477;以及Birch和Racher(2006)Adv.Drug Delivery Rev.58:671-685中。
当使用细胞培养技术时,抗α4β7抗体可在细胞内产生,在周质空间中产生,或直接分泌至培养基中。在细胞内产生抗α4β7抗体的实施方案中,宿主细胞或溶解细胞的颗粒状碎片(例如由均质化产生)可通过多种方式移除,包括但不限于离心或过滤。在将抗α4β7抗体分泌至培养基中的情况下,可首先使用市售蛋白质浓缩过滤器浓缩来自此类表达系统的上清液。
培养基或溶解产物可经历一个或多个加工步骤,诸如沉降、絮凝、离心和/或过滤,以移除颗粒状细胞碎片,由此形成澄清的细胞培养物上清液,或澄清的收获物。随后,如下文详细描述,抗体,例如抗α4β7抗体(例如维多珠单抗或具有对应于维多珠单抗的结合区的抗体)进行纯化,以移除杂质,例如工艺相关杂质,诸如细胞培养基组分、宿主细胞蛋白质(HCP)、宿主细胞核酸、病毒和色谱材料,以及产物相关杂质,诸如聚集体(包括HMW聚集体)、错误折叠的物质和目标抗体的片段。
纯化工艺可在使用上述上游生产方法和/或通过本领域中常规的替代性生产方法产生抗体后开始。在获得了包含抗体的澄清溶液或混合物之后,就可将目标抗体与工艺相关杂质,诸如由细胞产生的其他蛋白质以及产物相关物质分离。在某些非限制性实施方案中,此类分离使用CEX、AEX和/或MM色谱执行。在某些实施方案中,还可采用一种或多种不同纯化技术的组合,包括亲和分离步骤、离子交换分离步骤、混合模式步骤和/或疏水相互作用分离步骤。此类额外纯化步骤基于抗体的电荷、疏水程度和/或大小分离抗体混合物。在本发明的一个方面中,此类额外分离步骤使用色谱法,包括疏水相互作用、阴离子相互作用或阳离子相互作用(或其组合)执行。对于这些技术中的每一种,许多色谱树脂均为市售的,由此允许针对所涉及的特定抗体准确地定制纯化方案。每种分离方法允许抗体以不同速率横过柱,由此实现物理分离,所述分离随着抗体进一步穿过柱而增加,或者选择性地粘附至分离树脂(或介质)。接着,使用不同洗脱液差异地洗脱抗体。在一些情况下,当杂质特异性地粘附至柱的树脂上且目标抗体未粘附至树脂上,即目标抗体包含在流通物中时,目标抗体就会与杂质分离,而在其他情况下,目标抗体将粘附至柱的树脂上,而杂质和/或产物相关物质在洗涤循环期间从柱的树脂挤出,之后,抗体因树脂周围液体的变化而释放且目标抗体从柱洗脱。
在某些实施方案中,在“捕获步骤”中,包含抗体的溶液经历亲和色谱以纯化抗体去除杂质。在某些实施方案中,色谱材料能够选择性地或特异性地结合至目标抗体(“捕获”)。此类色谱材料的非限制性实例包括:蛋白质A、蛋白质G、包含例如目标抗体所结合的抗原的色谱材料、以及包含Fc结合蛋白的色谱材料。
在具体实施方案中,本文所述的亲和色谱步骤涉及使包含抗α4β7抗体的澄清收获物经历蛋白质A基质,例如包含蛋白质A树脂的色谱柱。在某些实施方案中,蛋白质A树脂可用于多种抗体同型,特别是IgG1、IgG2和IgG4的亲和纯化和分离。蛋白质A为细菌细胞壁蛋白,主要经由其Fc区结合至哺乳动物IgG。在天然状态下,蛋白质A具有五个IgG结合结构域以及其他功能未知的结构域。
使用蛋白质A树脂纯化抗α4β7抗体
在一个方面中,本文所描述的方法包括使用蛋白质A从包含抗体和一种或多种杂质的液体溶液,例如澄清收获物纯化抗α4β7抗体(例如维多珠单抗)。所述方法包括使抗α4β7抗体结合至亲和色谱基质,诸如蛋白质A。在某些实施方案中,超过10g/L,诸如10至50g/L、20至45g/L或30至40g/L的抗体溶液可负载至亲和色谱基质上。举例而言,可将约10g/L、11g/L、12g/L、13g/L、14g/L、15g/L、16g/L、17g/L、18g/L、19g/L、20g/L、21g/L、22g/L、23g/L、24g/L、25g/L、26g/L、27g/L、28g/L、29g/L、30g/L、31g/L、32g/L、33g/L、34g/L、35g/L、36g/L、37g/L、38g/L、39g/L、40g/L、41g/L、42g/L、43g/L、44g/L、45g/L、46g/L、47g/L、48g/L、49g/L或50g/L抗体溶液负载至蛋白质A亲和色谱基质上。
蛋白质A树脂存在若干商业来源。一种适合的树脂为来自GE Healthcare的MabSelectTM。适合的树脂包括但不限于来自GE Healthcare的MabSelect SuReTM、MabSelect SuRe LX、MabSelect、MabSelect Xtra、rProtein A Sepharose;来自EMDMillipore的MabSelectTM ProA树脂、ProSep HC、ProSep Ultra和ProSep Ultra Plus;来自Life Technologies的MabCapture。
在负载样品之前,蛋白质A柱可用合适的平衡溶液平衡。柱负载之后,可使用一组合适的溶液将柱洗涤一次或多次,以减少一种或多种杂质,其中抗α4β7抗体仍结合至蛋白质A。
在一些实施方案中,将蛋白质A基质洗涤多于一次。在一些实施方案中,将蛋白质A基质洗涤三次。在一个实施方案中,一种或多种洗涤液包含磷酸盐。在一个实施方案中,亲和柱可用包含PBS的初始洗涤溶液洗涤,随后用包含NaCl和PBS的第二洗涤溶液洗涤,随后用包含PBS的第三洗涤溶液洗涤。在一个实施方案中,第一洗涤溶液与第三洗涤溶液为相同的。在一个实施方案中,第二洗涤溶液包含NaCl(例如1M NaCl)和PBS,并且pH值为7.2。在另一个实施方案中,一种或多种洗涤溶液的pH值为约7.0-7.4。在一个实施方案中,一种或多种洗涤溶液的pH值为约7.2。
在其他实施方案中,亲和柱用包含PBS的初始洗涤溶液洗涤,随后用包含缓冲液,诸如柠檬酸盐、乙酸盐或磷酸盐的第二溶液和第三溶液洗涤。在一个实施方案中,第二溶液和第三溶液包含柠檬酸钠缓冲液。在一个实施方案中,第二洗涤溶液和第三洗涤溶液中的柠檬酸钠缓冲液为相同的。在另一个实施方案中,第二洗涤溶液与第三洗涤溶液中的柠檬酸钠缓冲液为不同的。在一个实施方案中,第二洗涤溶液中柠檬酸钠缓冲液的摩尔浓度高于第三洗涤溶液中柠檬酸钠缓冲液的摩尔浓度。在一个实施方案中,第二洗涤溶液中柠檬酸钠缓冲液的摩尔浓度为75mM至125mM或100mM且第三洗涤溶液中柠檬酸钠缓冲液的摩尔浓度为15mM至40mM或25mM。在一个实施方案中,最后的洗涤液的pH值为5.6至6.2。在一个实施方案中,洗脱溶液具有与最后的洗涤液大致相同的电导率。
接着,可使用适当的洗脱溶液洗脱蛋白质A柱。举例而言,甘氨酸-HCl、乙酸或柠檬酸均可用作洗脱溶液。在一个实施方案中,洗脱溶液为柠檬酸,例如柠檬酸钠洗脱溶液。在一些实施方案中,洗脱溶液的pH值可为约3.0至4.0(例如约3.1至4.0、3.2至4.0、3.3至4.0、3.4至4.0、3.5至4.0、3.6至4.0、3.7至4.0、3.8至4.0、或3.9至4.0)。在某些实施方案中,洗脱溶液的pH值为约3.0至3.4。在一些实施方案中,洗脱溶液的pH值可为约3.0、约3.1、约3.2、约3.3、约3.4、约3.5、约3.6、约3.7、约3.8、约3.9或约4.0。在一些实施方案中,所述洗脱溶液的pH值等于或高于3.3。在一些实施方案中,所述洗脱溶液的pH值等于或高于3.4。在一些实施方案中,所述洗脱溶液的pH值等于或高于3.5。在一些实施方案中,所述洗脱溶液的pH值等于或高于3.6。在一些实施方案中,所述洗脱溶液的pH值等于或高于3.7。在一些实施方案中,所述洗脱溶液的pH值等于或高于3.8。在一些实施方案中,所述洗脱溶液的pH值等于或高于3.9。洗脱液可使用本领域的技术人员熟知的技术监测。可收集目标洗脱液级分且接着制备用于进一步加工。
如实施例中所示,与蛋白质A亲和柱洗脱缓冲液pH具有较低pH值,例如2.9至3.3的实施方案相比,蛋白质A亲和柱洗脱缓冲液pH具有较高pH值,例如3.3至4.0的实施方案,包含抗α4β7抗体的洗脱液具有较少的杂质,诸如HMW聚集体。在一些实施方案中,洗脱液含有抗α4β7抗体且含有约0%至5.0%(例如0%-0.1%、0%-0.2%、0%-0.3%、0%-0.4%、0%-0.5%、0%-0.6%、0%-0.7%、0%-0.8%、0%-0.9%、0%-1%、0%-1.1%、0%-1.2%、0%-1.3%、0%-1.4%、0%-1.5%、0%-1.6%、0%-1.7%、0%-1.8%、0%-1.9%、0%-2%、0%-2.5%、0%-3%、0%-3.5%、0%-4%、0%-4.5%或0%-5%)的HMW聚集体。在一些实施方案中,洗脱液含有抗α4β7抗体且含有约2%或更少(例如约1.9%或更少、1.8%或更少、1.7%或更少、1.6%或更少、1.5%或更少、1.4%或更少、1.3%或更少、1.2%或更少、1.1%或更少、1%或更少、0.9%或更少、0.8%或更少、0.7%或更少、0.6%或更少、0.5%或更少、0.4%或更少、0.3%或更少、0.2%或更少、或0.1%或更少)的HMW聚集体。在特定实施方案中,蛋白质A树脂洗脱液含有抗α4β7抗体且含有约0%至2%、≤2%、≤1.9%、≤1.8%、≤1.7%、≤1.6%、≤1.5%、≤1.4%、≤1.3%、≤1.2%、≤1.1%、≤1%、≤0.9%、≤0.8%、≤0.7%、≤0.6%、≤0.5%、≤0.4%、≤0.3%、≤0.2%或≤0.1%的聚集体,例如HMW聚集体。在一个实施方案中,洗脱液含有抗α4β7抗体且含有约1.2%或更少的HMW聚集体。在一个实施方案中,洗脱液含有抗α4β7抗体且含有约1.1%或更少的HMW聚集体。在一个实施方案中,洗脱液含有抗α4β7抗体且含有约1%或更少(例如约0.9%或更少、0.8%或更少、0.7%或更少、0.6%或更少、0.5%或更少、0.4%或更少、0.3%或更少、0.2%或更少、或0.1%或更少)的HMW聚集体。在一个实施方案中,洗脱液含有抗α4β7抗体且含有约0.9%或更少的HMW聚集体。
本文所述的缓冲液和方法可降低组合物,诸如含有从蛋白质A树脂洗脱的抗α4β7抗体的组合物中宿主细胞蛋白质(HCP)的水平,这是相对于使用不具有本文所描述的一个或多个参数的洗脱缓冲液时的HCP的水平而言。在一些实施方案中,蛋白质A树脂洗脱液包含含有抗α4β7抗体和少于约250ppm(例如少于约240ppm、230ppm、220ppm、210ppm、200ppm、190ppm、180ppm、170ppm、160ppm、150ppm、140ppm、130ppm、120ppm、100ppm、90ppm、80ppm、70ppm、60ppm、50ppm、40ppm、30ppm、20ppm、10ppm、9ppm、8ppm、7ppm、6ppm、5ppm、4ppm、3ppm、2ppm或1ppm)的HCP的组合物。在一些实施方案中,蛋白质A树脂洗脱液包含含有抗α4β7抗体和约1-250ppm(例如约1-240ppm、1-230ppm、1-220ppm、1-210ppm、1-200ppm、1-190ppm、1-180ppm、1-170ppm、1-160ppm、1-150ppm、1-140ppm、1-130ppm、1-120ppm、1-100ppm、1-90ppm、1-80ppm、1-70ppm、1-60ppm、1-50ppm、1-40ppm、1-30ppm、1-20ppm、1-10ppm、1-9ppm、1-8ppm、1-7ppm、1-6ppm、1-5ppm、1-4ppm、1-3ppm或1-2ppm)的HCP的组合物。
在一个实施方案中,用pH值大于3.3(例如pH 3.3-4.0、pH 3.4-4.0、pH 3.5-4.0、pH 3.6-4.0、pH 3.7-4.0、pH 3.8-4.0或pH 3.9-4.0)的洗脱缓冲液洗脱结合至蛋白质A的抗α4β7抗体产生包含抗α4β7抗体和降低水平的HMW聚集体的洗脱液和/或包含抗α4β7抗体和降低水平的HCP的洗脱液。在一个实施方案中,所述洗脱溶液的pH值为3.3至3.9。在一个实施方案中,所述洗脱缓冲液的pH值为3.3至3.8。在一个实施方案中,所述洗脱缓冲液的pH值为3.4至3.6。在一个实施方案中,洗脱缓冲液的pH值为3.4-4.0。在一个实施方案中,洗脱缓冲液包含柠檬酸,例如柠檬酸钠,例如100mM柠檬酸或25mM柠檬酸。在一个实施方案中,蛋白质A亲和色谱柱在包含25mM柠檬酸钠的缓冲液中洗涤和洗脱,其中洗涤缓冲液的pH值为5.6至6.2、5.7至5.9或5.8,并且洗脱缓冲液的pH值为3.3至3.9、3.4至3.6或3.5。
在某些实施方案中,负载至蛋白质A树脂上的材料为例如来自表达抗α4β7抗体的重组细胞系的澄清细胞培养物收获物。在一些实施方案中,重组细胞系(即,宿主细胞系)可为中国仓鼠卵巢(CHO)细胞。在一些实施方案中,CHO细胞可为缺乏编码谷氨酰胺合成酶的基因的GS-CHO细胞。在一些实施方案中,CHO细胞可为缺乏编码二氢叶酸还原酶的基因的DHFR-CHO细胞。
可调整蛋白质A洗脱液的pH值和/或电导率,以用于后续纯化步骤。蛋白质A洗脱液还可经由深层过滤器进行过滤以在额外色谱精制步骤之前,从目标抗体移除混浊和/或各种杂质。
使用HIC树脂纯化抗α4β7抗体
如下文所详述且如实施例2中所陈述,抗体,例如抗α4β7抗体(例如维多珠单抗或具有对应于维多珠单抗的结合区的抗体),也可在蛋白质A纯化后使用下游工艺技术进行纯化。稍后在下游工艺中的纯化步骤通常称为“精制”步骤,并提出独特的挑战,即杂质的水平可能相对较低,但考虑到预定用于人用途的抗体的性质,希望甚至更低的水平。
在一个方面中,本文所描述的方法包括使用疏水相互作用色谱(HIC)树脂从包含抗α4β7抗体和一种或多种杂质的液体溶液,例如澄清收获物纯化所述抗体。
在一个实施方案中,本发明提供减少抗α4β7抗体溶液中的高分子量
(HMW)聚集体的方法,所述方法包括使所述抗体溶液与疏水相互作用色谱(HIC)树脂接触。疏水相互作用色谱(HIC)通过利用蛋白质与HIC树脂(例如用疏水性配体改性的聚合物基质)的疏水表面之间的可逆相互作用,根据蛋白质表面疏水性的差异分离这些蛋白质。鉴于抗α4β7抗体,如维多珠单抗的疏水性,在纯化工艺期间可使用高疏水性HIC树脂移除杂质,包括HMW聚集体、残留蛋白质A和/或宿主细胞蛋白质(HCP)污染物,其中所述抗α4β7抗体流动通过HIC树脂且并未结合。在一些实施方案中,适用于本文所述的方法中的高疏水性HIC树脂包含与C6基团键合的聚甲基丙烯酸酯基础材料,诸如Toyopearl Hexyl-650C(Tosoh Biosciences)。
在一些实施方案中,HIC以“流通模式”使用。因此,如本文所使用,“流通级分”是指移动相缓冲液中以级分收集的蛋白质,其已通过如本文所提供的含有树脂的柱。
在一些实施方案中,包含抗α4β7抗体和至少一种杂质的溶液与疏水相互作用色谱(HIC)树脂在允许所述抗α4β7抗体流动通过所述HIC树脂的条件下接触。在一个实施方案中,所述HIC树脂的平均孔径为约100nm和/或孔径为约100μm。在一个实施方案中,所述HIC树脂用pH值小于约7.2的缓冲液平衡。在一个实施方案中,所述HIC树脂用pH值为约5.5至约7.2的缓冲液平衡。在一个实施方案中,所述HIC树脂用pH值为约5.5至约7的缓冲液平衡。在一个实施方案中,所述缓冲液为磷酸盐缓冲液。在一个实施方案中,所述磷酸盐缓冲液包含约0.35M至约0.15M磷酸钾。在一个实施方案中,树脂负载量为约55至75mg/ml。
在一个实施方案中,用HIC柱纯化抗α4β7抗体的方法包括使含抗α4β7抗体的溶液流动通过柱,即,所述纯化包括将抗α4β7抗体收集于柱流通物中且污染物仍结合至柱,其中抗α4β7抗体和柱是在包含150至300mM、175至250mM或约200mM浓度的磷酸盐,例如磷酸钾且pH值为5.2至6.5、5.7至6.2或约5.9的溶液中。
在一些实施方案中,使用高疏水性HIC树脂的此类方法可用于获得包含α4β7抗体和约0%至2.0%(例如少于0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、或低于2%)的HMW聚集体的组合物。在一些实施方案中,使用高疏水性HIC树脂的此类方法可用于获得包含抗α4β7抗体和约2%或更少(例如约1.9%或更少、1.8%或更少、1.7%或更少、1.6%或更少、1.5%或更少、1.4%或更少、1.3%或更少、1.2%或更少、1.1%或更少、1%或更少、0.9%或更少、0.8%或更少、0.7%或更少、0.6%或更少、0.5%或更少、0.4%或更少、0.3%或更少、0.2%或更少、或0.1%或更少)的HMW聚集体的组合物。在特定实施方案中,使用高疏水性HIC树脂的此类方法可用于获得包含抗α4β7抗体和约0%至2%、≤2%、≤1.9%、≤1.8%、≤1.7%、≤1.6%、≤1.5%、≤1.4%、≤1.3%、≤1.2%、≤1.1%、≤1%、≤0.9%、≤0.8%、≤0.7%、≤0.6%、≤0.5%、≤0.4%、≤0.3%、≤0.2%、或≤0.1%的HMW聚集体的组合物。在某些实施方案中,使用高疏水性HIC树脂的此类方法可用于获得包含抗α4β7抗体和少于0.6%的HMW聚集体的组合物。在一个实施方案中,获得包含抗α4β7抗体和少于0.5%的HMW聚集体的组合物。在一个实施方案中,获得包含抗α4β7抗体和少于0.4%的HMW聚集体的组合物。此外,所述组合物可含有少于约0.3ppm的宿主细胞蛋白质(HCP),其中所述宿主细胞为中国仓鼠卵巢(CHO)细胞,例如GS-CHO细胞。在一个实施方案中,所述组合物包含少于约0.22ppm的残留蛋白质A。
使用混合模式色谱树脂纯化抗α4β7抗体
在一个方面中,本文提供使用混合模式色谱树脂,以结合/洗脱模式从包含抗α4β7抗体(例如维多珠单抗)和一种或多种杂质的液体溶液,例如澄清的细胞培养物收获物纯化所述抗体的方法。在一些实施方案中,混合模式色谱树脂具有适于高杂质去除和高容量的性质。在一个实施方案中,用于纯化抗α4β7抗体的混合模式色谱树脂包含强阴离子交换、氢键合和疏水键合能力。在另一个实施方案中,用于纯化抗α4β7抗体的混合模式色谱树脂包含在较小珠粒,例如约35-45μm直径的珠粒上发挥强阴离子交换、氢键合和疏水键合能力。在某些实施方案中,本文所描述的方法和组合物中使用的混合模式色谱树脂为CAPTOTMAdhere ImpRes(GE Healthcare Life Sciences,现为Global Life Sciences Solutions,LLC)。在某些实施方案中,本文所描述的方法和组合物中使用的混合模式色谱树脂为CAPTOTM Adhere(GE Healthcare Life Sciences,现为Global Life Sciences Solutions,LLC)。澄清的细胞培养物收获物可来源于重组表达抗α4β7抗体的宿主细胞。在某些实施方案中,宿主细胞可为中国仓鼠卵巢(CHO)细胞,如GS-CHO细胞或DHFR-CHO细胞。
本文所提供的混合模式色谱方法包括使抗α4β7抗体结合至混合模式色谱树脂。在本文所描述的混合模式色谱方法之前和/或之后,可使用额外纯化步骤,包括但不限于亲和色谱(例如蛋白质A色谱)、阴离子交换(AEX)色谱、阳离子交换(CEX)色谱和疏水相互作用色谱(HIC)。因此,在一些实施方案中,用于混合模式色谱法的负载材料可包含蛋白质A洗脱液、AEX洗脱液、CEX洗脱液或HIC洗脱液或收集的HIC流通材料。在一些实施方案中,本文所提供的混合模式色谱法可还包括用洗涤溶液洗涤混合模式树脂,并从所述树脂洗脱抗体。
在某些实施方案中,可将至少25g/L(例如至少25g/L、30g/L、35g/L、40g/L、45g/L、50g/L、55g/L、60g/L、65g/L、70g/L、75g/L、80g/L、85g/L、90g/L、95g/L、或100g/L)抗体溶液负载至混合模式色谱树脂上。举例而言,可将至少55g/L抗体溶液负载至混合模式色谱树脂上。在某些实施方案中,可将约25g/L至约100g/L,诸如约25g/L至约95g/L、约25g/L至约90g/L、约25g/L至约85g/L、约25g/L至约80g/L(例如约30g/L至约80g/L、约35g/L至约80g/L、约40g/L至约80g/L、约45g/L至约80g/L、约50g/L至约80g/L、约55g/L至约80g/L、约60g/L至约80g/L、约65g/L至约80g/L、约70g/L至约80g/L、或约75g/L至约80g/L)抗体溶液负载至混合模式色谱树脂上。举例而言,可将约55g/L至约80g/L抗体溶液负载至混合模式色谱树脂上。
树脂可任选地用合适的洗涤缓冲液洗涤,所述缓冲液不会从树脂洗脱所结合的抗体。在一个实施方案中,树脂可任选地用磷酸钠洗涤缓冲液洗涤。在一些实施方案中,洗涤缓冲液可包含10mM磷酸钠、25mM磷酸钠、50mM磷酸钠或75mM磷酸钠,其pH为中性或接近中性(例如pH 6-8)。与混合模式色谱法相容的其他合适的洗涤缓冲液为广泛可用的。
本文描述了增加从混合模式色谱树脂洗脱后抗α4β7抗体制剂中抗α4β7抗体的产率和/或降低其聚集体的水平(例如HMW物质%)的缓冲液。为了增加抗α4β7抗体的产率和/或降低聚集体的水平(例如HMW物质%),可调节混合模式洗脱缓冲液的pH值和/或电导率。与混合模式色谱法相容的合适洗脱溶液为广泛可用的。在一些实施方案中,混合模式色谱法洗脱溶液包含缓冲液,诸如柠檬酸盐、乙酸盐或磷酸盐。
在一些实施方案中,在本文所述的方法中与混合模式色谱树脂一起使用的洗脱缓冲液的pH值等于或高于pH 3.5(例如等于或高于pH 3.6、等于或高于pH 3.7、等于或高于pH3.8、等于或高于pH 3.9、等于或高于pH 4.0、等于或高于pH 4.1、等于或高于pH 4.2、等于或高于pH 4.3、等于或高于pH 4.4、或等于或高于pH 4.5)。举例而言,与混合模式色谱树脂一起使用的洗脱缓冲液的pH值可等于或高于pH 3.9。在某些实施方案中,在本文所述的方法中与混合模式色谱树脂一起使用的洗脱缓冲液的pH值为约pH 3.9至约pH 4.5(例如pH值为约pH 3.9至约pH 4.5、约pH 3.9至约pH 4.4、约pH 3.9至约pH 4.3、约pH 3.9至约pH4.2、约pH 3.9至约pH 4.1或约pH 3.9至约pH 4.0)。在一些实施方案中,用于本文所提供的混合模式色谱法的洗脱缓冲液的pH值可为约pH 3.9至约pH 4.4。
在另外的或替代实施方案中,在本文所述的方法中与混合模式色谱树脂一起使用的洗脱缓冲液的pH值等于或低于pH 4.5(例如等于或低于pH 4.4、等于或低于pH 4.3、等于或低于pH 4.2、等于或低于pH 4.1、等于或低于pH 4.0、等于或低于pH 3.9、等于或低于pH3.8、等于或低于3.7、等于或低于pH 3.6、或等于或低于pH 3.5)。举例而言,与混合模式色谱树脂一起使用的洗脱缓冲液的pH值可等于或低于pH 4.2。在某些实施方案中,在本文所述的方法中与混合模式色谱树脂一起使用的洗脱缓冲液的pH值为约pH 4.2至约pH 3.5(例如约pH 4.2至约pH 3.6、约pH 4.2至约pH 3.7、约pH 4.2至约pH 3.8、约pH 4.2至约pH3.9、约pH 4.2至约pH 4.0、或约pH 4.2至约pH 4.1)。举例而言,与混合模式色谱树脂一起使用的洗脱缓冲液的pH值可为约pH 4.2至约pH 3.8。
在一些实施方案中,在本文所述的方法中与混合模式色谱树脂一起使用的洗脱缓冲液的电导率为约40mS/cm或更低(例如约39mS/cm、38mS/cm、37mS/cm、36mS/cm、35mS/cm、34mS/cm、33mS/cm、32mS/cm、31mS/cm、30mS/cm、29mS/cm、28mS/cm、27mS/cm、26mS/cm、25mS/cm、24mS/cm、23mS/cm、22mS/cm、21mS/cm、20mS/cm、19mS/cm、18mS/cm、17mS/cm、16mS/cm、15mS/cm、14mS/cm、13mS/cm、12mS/cm、11mS/cm、或10mS/cm或更低)。举例而言,与混合模式色谱树脂一起使用的洗脱缓冲液的电导率可为约30mS/cm或更低。在某些实施方案中,在本文所述的方法中与混合模式色谱树脂一起使用的洗脱缓冲液的电导率为约10mS/cm至约40mS/cm,例如约15mS/cm至约35mS/cm或约20mS/cm至约30mS/cm。举例而言,与混合模式色谱树脂一起使用的洗脱缓冲液的电导率可为约20mS/cm至约30mS/cm。
在另外的或替代实施方案中,在本文所述的方法中与混合模式色谱树脂一起使用的洗脱缓冲液的电导率等于或低于30mS/cm(例如等于或低于29mS/cm、28mS/cm、27mS/cm、26mS/cm、25mS/cm、24mS/cm、23mS/cm、22mS/cm、21mS/cm、20mS/cm、19mS/cm、18mS/cm、17mS/cm、16mS/cm、15mS/cm、14mS/cm、13mS/cm、12mS/cm、11mS/cm、或10mS/cm)。举例而言,与混合模式色谱树脂一起使用的洗脱缓冲液的电导率可等于或低于28mS/cm。在某些实施方案中,在本文所述的方法中与混合模式色谱树脂一起使用的洗脱缓冲液的电导率为约10mS/cm至约40mS/cm(例如约15mS/cm至约35mS/cm、约18mS/cm至约35mS/cm、约11mS/cm至约30mS/cm、约12mS/cm至约30mS/cm、约13mS/cm至约30mS/cm、约14mS/cm至约30mS/cm、约15mS/cm至约30mS/cm、约16mS/cm至约30mS/cm、约17mS/cm至约30mS/cm、约18mS/cm至约30mS/cm、约19mS/cm至约30mS/cm、约20mS/cm至约30mS/cm、约21mS/cm至约30mS/cm、约22mS/cm至约30mS/cm、约23mS/cm至约30mS/cm、约24mS/cm至约30mS/cm、约25mS/cm至约30mS/cm、约26mS/cm至约30mS/cm、或约27mS/cm至约30mS/cm)。举例而言,在一些实施方案中,与混合模式色谱树脂一起使用的洗脱缓冲液的电导率可为约18mS/cm至约28mS/cm。
在一些实施方案中,在本文所述的方法中与混合模式色谱树脂一起使用的洗脱缓冲液可包含浓度为约100-300mM(例如约110-290mM、120-280mM、130-270mM、140-260mM、150-250mM、160-240mM、170-230mM、180-220mM或190-210mM)的离子盐,例如NaCl。举例而言,与混合模式色谱树脂一起使用的洗脱缓冲液可具有浓度为约160mM至约240mM的NaCl。在某些实施方案中,在本文所述的方法中与混合模式色谱树脂一起使用的洗脱缓冲液具有浓度为约100mM、110mM、120mM、130mM、140mM、150mM、160mM、170mM、180mM、190mM、200mM、210mM、220mM、230mM、240mM、250mM、260mM、270mM、280mM、290mM或300mM的NaCl。
在一些实施方案中,使用混合模式色谱树脂从液体溶液,例如澄清的细胞培养物收获物纯化抗α4β7抗体,例如维多珠单抗的方法包括将抗α4β7抗体以每升树脂40至90g、50至80g或约65g蛋白质的浓度负载至包含混合模式树脂的柱上,洗涤所述柱并用pH值为3.5至4.5、3.9至4.4或约4.1的洗脱缓冲液,例如柠檬酸钠缓冲液洗脱所述柱。在一些实施方案中,所述方法还包括包含离子盐,例如NaCl,因此洗脱缓冲液的电导率为15至35mS/cm、20至30mS/cm或约24mS/cm。在一些实施方案中,所述方法包括将抗体以每升树脂53-77g蛋白质的浓度负载至包含混合模式树脂的柱上。在一些实施方案中,所述方法包括使用pH值为约3.9-4.4且电导率为约20-28mS/cm的洗脱缓冲液从柱洗脱抗体。
在一些实施方案中,抗α4β7抗体的纯化可使用本文所述的混合模式色谱法结合阳离子交换(CEX)色谱法来实现。
在一些实施方案中,相对于使用不具有本文所描述的一个或多个参数的洗脱缓冲液的适合对照工艺的产率,例如相对于使用pH值为3.7或更低、3.6或更低、3.5或更低、3.3或更低、或3.0或更低的洗脱缓冲液执行的工艺,本文所述的方法可提高从混合模式色谱柱洗脱的抗α4β7抗体的产率。在一些实施方案中,产率增加至少1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%、或更高百分比。在一些实施方案中,本文所述的缓冲液和方法可从混合模式色谱柱洗脱的抗α4β7抗体的回收率为50%或更高(例如55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高)。在某些实施方案中,本文所述的缓冲液和方法可从混合模式色谱柱洗脱的抗α4β7抗体的回收率为50%-95%(例如55%-95%、60%-95%、65%-95%、70%-95%、75%-95%、80%-95%、85%-95%、90%-95%、或更高)。
在一些实施方案中,使用混合模式色谱树脂的此类组合物和方法可用于获得包含抗α4β7抗体和约0%至2.0%(例如0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%或2%)的HMW聚集体的组合物。在一些实施方案中,使用混合模式色谱树脂的此类方法可用于获得包含抗α4β7抗体和约2%或更少(例如约1.9%或更少、1.8%或更少、1.7%或更少、1.6%或更少、1.5%或更少、1.4%或更少、1.3%或更少、1.2%或更少、1.1%或更少、1%或更少、0.9%或更少、0.8%或更少、0.7%或更少、0.6%或更少、0.5%或更少、0.4%或更少、0.3%或更少、0.2%或更少、或0.1%或更少)的HMW聚集体的组合物。在特定实施方案中,使用混合模式色谱树脂的此类方法可用于获得包含抗α4β7抗体和约0%至2%、≤2%、≤1.9%、≤1.8%、≤1.7%、≤1.6%、≤1.5%、≤1.4%、≤1.3%、≤1.2%、≤1.1%、≤1%、≤0.9%、≤0.8%、≤0.7%、≤0.6%、≤0.5%、≤0.4%、≤0.3%、≤0.2%或≤0.1%聚集体的组合物。在其他实施方案中,相对于负载材料中HMW聚集体的水平,HMW聚集体的水平降低至少1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高百分比。在一些实施方案中,相对于从使用不具有本文所述的一个或多个参数的洗脱缓冲液的适合对照工艺获得的HMW聚集体的水平,例如相对于使用pH值为3.7或更低、3.6或更低、3.5或更低、3.3或更低、或3.0或更低的洗脱缓冲液执行的工艺,本文所提供的混合模式色谱方法可用于降低包含抗α4β7抗体的组合物中HMW聚集体的水平。在一些实施方案中,HMW聚集体的水平相对于适合对照降低至少1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高百分比。
使用阳离子交换(CEX)树脂纯化抗α4β7抗体
在一个方面中,本文提供使用阳离子交换(CEX)树脂,以结合/洗脱模式从包含抗α4β7抗体,例如维多珠单抗和一种或多种杂质的液体溶液,例如澄清的细胞培养物收获物纯化所述抗体的方法。在一些实施方案中,用于纯化抗α4β7抗体的CEX树脂为强阳离子交换树脂。在某些实施方案中,适合用于本文所述的方法和组合物中的CEX树脂包含-SO3-官能团。举例而言,在一些实施方案中,CEX树脂为Nuvia HR-S。澄清的细胞培养物收获物可来源于重组表达抗α4β7抗体的宿主细胞。在某些实施方案中,宿主细胞可为中国仓鼠卵巢(CHO)细胞,诸如GS-CHO细胞或DHFR-CHO细胞。
本文所提供的CEX法包括使抗α4β7抗体结合至阳离子交换色谱树脂。在本文所述的CEX法之前和/或之后,可使用额外纯化步骤,包括但不限于亲和色谱(例如蛋白质A色谱)、阴离子交换(AEX)色谱、混合模式色谱和疏水相互作用色谱(HIC)。因此,在一些实施方案中,用于CEX色谱法的负载材料可包含蛋白质A洗脱液、AEX洗脱液、混合模式洗脱液或HIC洗脱液。在一些实施方案中,本文所提供的CEX法可还包括用洗涤溶液洗涤CEX树脂,并从所述树脂洗脱抗体。与CEX色谱法相容的适于例如负载、洗涤和洗脱蛋白质,例如抗α4β7抗体的溶液为广泛可用的。在一些实施方案中,CEX色谱溶液包含缓冲液,诸如柠檬酸盐、乙酸盐或磷酸盐。
在某些实施方案中,可将至少20g/L(例如至少20g/L、25g/L、30g/L、35g/L、40g/L、45g/L、50g/L、55g/L、60g/L、65g/L、70g/L、75g/L、80g/L、85g/L、90g/L、95g/L、或100g/L)的抗体溶液负载至CEX树脂上。举例而言,可将至少25g/L抗体溶液负载至CEX树脂上。在某些实施方案中,可将约25-100g/L(例如约25-90g/L、25-80g/L、25-70g/L、25-60g/L、25-50g/L、25-40g/L、或25-30g/L)的抗体溶液负载至CEX树脂上。在某些实施方案中,可将约25-70g/L(例如约25-65g/L、30-60g/L、35-55g/L、或40-50g/L)的抗体溶液负载至CEX树脂上。举例而言,可将约30-60g/L的抗体溶液负载至CEX树脂上。
树脂可任选地用合适的洗涤缓冲液洗涤,所述缓冲液不会从树脂洗脱所结合的抗体。在一些实施方案中,洗涤缓冲液具有与用于将抗体负载至树脂上的缓冲液相同的组成。在一个实施方案中,树脂可任选地用乙酸钠缓冲液,例如25mM乙酸钠、50mM乙酸钠、75mM乙酸钠或100mM乙酸钠洗涤。在一些实施方案中,洗涤缓冲液的pH值范围为pH 5-7,例如pH 5-6、pH 5.5-6.5、pH 5.1-5.8、pH 5.3-5.6、pH 6-7或pH 5.4。与CEX色谱法相容的其他合适的洗涤缓冲液为广泛可用的。
洗脱缓冲液的pH值和/或电导率可经调整以调节从CEX树脂洗脱的抗α4β7抗体制剂中HMW聚集体的水平、主要(主导)同种型种类的水平、酸性同种型种类的水平和/或碱性同种型种类的水平。在一些实施方案中,在本文所述的方法中与CEX树脂一起使用的洗脱缓冲液的pH值等于或低于pH 6.0(例如等于或低于pH 4.5、pH 4.6、pH 4.7、pH 4.8、pH 4.9、pH 5.0、pH 5.1、pH 5.2、pH 5.3、pH 5.4、pH 5.5、pH 5.6、pH 5.7、pH 5.8、pH 5.9或pH6.0)。在某些实施方案中,在本文所述的方法中与CEX树脂一起使用的洗脱缓冲液的pH值为约pH 4.5至约pH 6.0(例如pH值为约pH 4.5至约pH 5.8、约pH 4.9至约pH 5.9、约pH 5.0至约pH 6.0、约pH 5.0至约pH 5.9、约pH 5.0至约pH 5.8、约pH 5.0至约pH 5.7、约pH 5.0至约pH 5.6、或约pH 5.0至约pH 5.5)。举例而言,与CEX树脂一起使用的洗脱缓冲液的pH值可为约pH 5.1至约pH 5.8。在一些实施方案中,CEX洗脱缓冲液的pH值与洗涤缓冲液相同。
在另外的或替代实施方案中,在本文所述的方法中与CEX树脂一起使用的洗脱缓冲液的电导率等于或低于20mS/cm(例如等于或低于19mS/cm、18mS/cm、17mS/cm、16mS/cm、15mS/cm、14mS/cm、13mS/cm、12mS/cm、11mS/cm或10mS/cm)。举例而言,与CEX树脂一起使用的洗脱缓冲液的电导率可等于或低于16mS/cm。在一些实施方案中,在本文所述的方法中与CEX树脂一起使用的洗脱缓冲液的电导率为约10mS/cm至约20mS/cm(例如约10mS/cm至约19mS/cm、约10mS/cm至约18mS/cm、约10mS/cm至约17mS/cm、约10mS/cm至约16mS/cm、约10mS/cm至约15mS/cm、约10mS/cm至约14mS/cm、约10mS/cm至约13mS/cm、或约10mS/cm至约12mS/cm)。在一些实施方案中,与CEX树脂一起使用的洗脱缓冲液的电导率可为约11mS/cm至约16mS/cm。另外或替代地,与CEX树脂一起使用的洗脱缓冲液的电导率可等于或低于14mS/cm。在某些实施方案中,在本文所述的方法中与CEX树脂一起使用的洗脱缓冲液的电导率为约11mS/cm至约14mS/cm,诸如为约12mS/cm至约14mS/cm或约13mS/cm至约14mS/cm。举例而言,与CEX树脂一起使用的洗脱缓冲液的电导率可为约12mS/cm至约14mS/cm。另外或替代地,与CEX树脂一起使用的洗脱缓冲液的电导率可等于或高于11mS/cm(例如等于或高于12mS/cm、13mS/cm、14mS/cm、15mS/cm、16mS/cm、17mS/cm、18mS/cm、19mS/cm或20mS/cm)。举例而言,在一些实施方案中,与CEX树脂一起使用的洗脱缓冲液的电导率可等于或高于12mS/cm。
在一些实施方案中,在本文所述的方法中与CEX树脂一起使用的洗脱缓冲液可具有浓度为约50mM、60mM、70mM、80mM、90mM、100mM、110mM、120mM、130mM、140mM或150mM的NaCl。举例而言,与CEX树脂一起使用的洗脱缓冲液可具有浓度为约90-120mM的NaCl。在某些实施方案中,在本文所述的方法中与CEX树脂一起使用的洗脱缓冲液具有浓度为约50-150mM(例如约50-140mM、60-130mM、70-120mM、80-110mM、或90-100mM)的NaCl。在特定实施方案中,在本文所述的方法中与CEX树脂一起使用的洗脱缓冲液具有浓度为约70-120mM(例如约70-110mM、70-100mM、70-90mM、或70-80mM)的NaCl。举例而言,与CEX树脂一起使用的洗脱缓冲液可具有浓度为约70-110mM的NaCl。
在一些实施方案中,使用CEX树脂,例如强阳离子交换树脂从液体溶液,例如澄清的细胞培养物收获物纯化抗α4β7抗体,例如维多珠单抗的方法包括将抗α4β7抗体以每升树脂40至90g、50至65g或约57g蛋白质的浓度负载至包含CEX树脂的柱上,洗涤所述柱并用pH值为5至6、5.2至5.6或约5.4的缓冲液,例如乙酸钠缓冲液洗脱柱。在一些实施方案中,所述方法还包括包含离子盐,例如NaCl,因此洗脱缓冲液的电导率为5至25mS/cm、10至17mS/cm或约13mS/cm。在其他实施方案中,使用CEX树脂,例如强阳离子交换树脂从液体溶液,例如澄清的细胞培养物收获物纯化抗α4β7抗体,例如维多珠单抗的方法包括用pH值为5至6、5.2至5.6或约5.4且电导率为5至25mS/cm、10至15mS/cm或约13mS/cm的缓冲液,例如乙酸钠缓冲液洗脱柱。在一个实施方案中,所述方法包括用pH值为约5.4且电导率为约13mS/cm的洗脱缓冲液洗脱柱。在一些实施方案中,CEX树脂以每升树脂约57g蛋白质负载抗体。
在一些实施方案中,抗α4β7抗体的纯化可使用本文所述的CEX树脂结合混合模式色谱法来实现。
在一些实施方案中,本文所述的CEX法可用于获得包含抗α4β7抗体和约0%至2.0%(例如约0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%或2%)的HMW聚集体的组合物。在一些实施方案中,使用CEX树脂的此类方法可用于获得包含抗α4β7抗体和约2%或更少(例如约1.9%或更少、1.8%或更少、1.7%或更少、1.6%或更少、1.5%或更少、1.4%或更少、1.3%或更少、1.2%或更少、1.1%或更少、1%或更少、0.9%或更少、0.8%或更少、0.7%或更少、0.6%或更少、0.5%或更少、0.4%或更少、0.3%或更少、0.2%或更少、0.1%或更少、0.09%或更少、0.08%或更少、0.07%或更少、0.06%或更少、0.05%或更少、0.04%或更少、0.03%或更少、0.02%或更少、或0.01%或更少)的HMW聚集体的组合物。在特定实施方案中,使用CEX树脂的此类方法可用于获得包含抗α4β7抗体和约0%至2%、≤2%、≤1.9%、≤1.8%、≤1.7%、≤1.6%、≤1.5%、≤1.4%、≤1.3%、≤1.2%、≤1.1%、≤1%、≤0.9%、≤0.8%、≤0.7%、≤0.6%、≤0.5%、≤0.4%、≤0.3%、≤0.2%、≤0.1%、≤0.09%、≤0.08%、≤0.07%、≤0.06%、≤0.05%、≤0.04%、≤0.03%、≤0.02%、或≤0.01%聚集体,例如HMW聚集体的组合物。在其他实施方案中,HMW聚集体的水平相对于负载材料中HMW聚集体的水平降低至少1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高百分比。在一些实施方案中,相对于使用所用洗脱缓冲液不具有本文所述的一个或多个参数的适合对照CEX法获得的抗α4β7抗体制剂中HMW聚集体的水平,例如相对于使用pH值为6.3或更高、6.5或更高、6.7或更高、或6.9或更高和/或电导率为18mS/cm或更高、19mS/cm或更高、20mS/cm或更高、22mS/cm或更高、或24mS/cm或更高的洗脱缓冲液执行的方法,本文所提供的CEX方法可用于降低包含抗α4β7抗体的组合物中HMW聚集体的水平。在一些实施方案中,HMW聚集体的水平相对于适合对照降低至少1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高百分比。
在本文提供的方法的一些实施方案中,用于从CEX树脂洗脱抗α4β7抗体的洗脱缓冲液的pH值和/或电导率可用于调节洗脱液中存在的抗α4β7抗体的同种型分布。举例而言,洗脱缓冲液的pH值和/或电导率可用于增加主要(主导)抗体同种型的百分比,降低酸性同种型种类的百分比,和/或降低碱性同种型种类的百分比。
在一些实施方案中,选择的洗脱缓冲液的pH值可为6.0或更低,例如5.9或更低、5.8或更低、5.7或更低、5.6或更低、5.5或更低、5.4或更低、5.3或更低、或5.2或更低,例如pH 4.5-6.0、pH 4.5-5.5或pH 5.0-6.0。在一些实施方案中,选择的洗脱缓冲液的电导率可为至少10mS/cm,例如至少11mS/cm、至少12mS/cm、至少13mS/cm、至少14mS/cm、至少15mS/cm、至少16mS/cm或更高,例如10-17mS/cm、12-17mS/cm、13-17mS/cm、14-17mS/cm、15-17mS/cm、16-17mS/cm、10-16mS/cm、12-16mS/cm、13-16mS/cm、14-16mS/cm、或15-16mS/cm。在一些实施方案中,前述洗脱缓冲液条件可用于获得含有至少60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%或更多的抗α4β7抗体的主要同种型的组合物。在一些实施方案中,前述洗脱缓冲液条件可用于获得含有20%或更少(例如约19%或更少、18%或更少、17%或更少、16%或更少、15%或更少、14%或更少、13%或更少、12%或更少、11%或更少、10%或更少、9%或更少、8%或更少、7%或更少、6%或更少、5%或更少、4%或更少、3%或更少、2%或更少、或1%或更少)的碱性同种型种类的组合物。在特定实施方案中,使用CEX树脂的此类方法可用于获得包含抗α4β7抗体的主要同种型和约≤20%、≤19%、≤18%、≤17%、≤16%、≤15%、≤14%、≤13%、≤12%、≤11%、≤10%、≤9%、≤8%、≤7%、≤6%、≤5%、≤4%、≤3%、≤2%或≤1%碱性同种型种类的组合物。在其他实施方案中,碱性同种型种类的水平相对于负载材料中碱性同种型种类的水平降低至少1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高百分比。
III.分析方法
在某些实施方案中,对使用本文所描述的技术产生的色谱样品中聚集体、单体和片段的水平进行分析。在某些实施方案中,使用尺寸排阻色谱法(SEC)针对每个分子测量聚集体、单体和片段。举例而言但非限制,TSK-gel G3000SWxL,5μm,
Figure BDA0003402392520000361
7.8×300mm柱(Tosoh Bioscience)可与某些实施方案结合使用,而TSK-gel Super SW3000,4μm,
Figure BDA0003402392520000371
4.6×300mm柱(Tosoh Bioscience)可用于替代实施方案中。在某些实施方案中,前述柱与Agilent或Shimazhu HPLC系统一起使用。在某些实施方案中,在等度洗脱条件下,使用由例如pH 6.8的100mM硫酸钠和100mM磷酸钠组成的移动相进行样品注射,并在214nm下检测UV吸光度。在某些实施方案中,移动相将由pH 7.4的1X PBS组成,并用在280nm下的UV吸收度检测洗脱曲线。在某些实施方案中,定量是基于所检测的峰的相对面积进行。
任何额外技术,诸如质谱法,均可用于测定大小变体。
本文所报告的抗体或其抗原结合部分的各种参数可使用标准分析方法和技术,诸如下文所述的分析方法和技术测量。
在本文所阐述的各种实施方案中,可使用阳离子交换色谱法(CEX)确定一组抗体或其抗原结合部分,例如维多珠单抗中存在的主要同种型、碱性同种型和酸性同种型的相对量。CEX方法根据总表面电荷对抗体种类进行分级分离。在使用移动相稀释至低离子强度后,可将测试样品注射至在适合缓冲液,例如pH 6.6的10mM磷酸钠中平衡的CEX柱,诸如Dionex Pro-PacTM WCX-10柱(Thermo Fisher Scientific,Waltham,MA(USA))上。抗体可在相同缓冲液中使用氯化钠梯度洗脱。可在280nm下监测蛋白质洗脱,并将峰指定为酸性种类、碱性种类或主要同种型类别。从柱洗脱的酸性种类峰的保留时间短于主要同种型峰,而从柱洗脱的碱性种类峰的保留时间长于主要同种型峰。主要同种型百分比、酸性种类百分比的总和和碱性种类百分比的总和均有报告。将样品主要同种型的保留时间与参考标准品的保留时间相比较以确定一致性。在一个实施方案中,CEX测定法包括将测试样品稀释至低离子强度,将其注射至在10mM磷酸钠pH 6.6中平衡的CEX柱上,在此缓冲液中用NaCl梯度洗脱所述柱,在280nm下监测峰并将峰指定为酸性种类峰、主要种类峰或碱性种类峰,其中酸性种类峰首先以最短保留时间洗脱,主要种类峰第二洗脱,并且碱性种类峰以最长保留时间洗脱,并且对峰面积进行定量并以占所有峰面积的百分比计算其量。
在本文所阐述的各种实施方案中,尺寸排阻色谱法(SEC)可用于确定一组抗体或其抗原结合部分,例如维多珠单抗中存在的单体、高分子量(HMW)聚集体和低分子量(LMW)降解产物的相对水平。SEC方法基于尺寸将抗体单体与HMW物质和LMW降解产物分离。可使用市售SEC柱,使用适当缓冲液分析测试样品和参考标准品。举例而言,在一些实施方案中,SEC分析可使用一个G3000 SWxl柱(Tosoh Bioscience,King of Prussia,PA(USA))或串联连接的两个G3000 SWxl柱和pH 6.8的等度磷酸盐-氯化钠缓冲系统执行。在280nm下监测蛋白质种类的洗脱。评估主要种类峰(单体)和总峰面积以确定纯度。在一个实施方案中,SEC分析包括将样品注射到串联连接的两个G3000SWxl柱上,并在等度磷酸盐-氯化钠缓冲系统,pH 6.8中运行,其中在280nm下监测蛋白质种类的洗脱并测量主要种类峰(单体)和总峰面积。样品的纯度(%)(以单体%计算)、HMW聚集体%和/或LMW降解产物%均有报告。
必要时,可使用标准技术,通过酶联免疫吸附测定(ELISA)测量抗体制剂中存在的残留CHO宿主细胞蛋白质(HCP)杂质。设计用于此目的的许多ELISA试剂盒为市售的,诸如来自Cygnus Technologies(Southport,NC(USA))的CHO HCP ELISA试剂盒3G。可使用固定化多克隆抗CHO HCP抗体捕获测试样品中的宿主细胞蛋白质。接着,可使用适合检测剂,例如同一抗体的辣根过氧化物酶标记型式检测捕获的蛋白质。在此示例性实施方案中,可使用过氧化物酶底物3,3',5,5'-四甲基联苯胺(TMB),在450nm下以比色方式测量所捕获的过氧化物酶的量,所述过氧化物酶的量与CHO HCP的浓度呈正比。因此,CHO HCP测定包括使用多克隆抗CHO HCP抗体来捕获HCP,所述HCP在结合多克隆抗CHO HCP抗体的辣根过氧化物酶标记型式后检测,所述多克隆抗CHO HCP抗体将过氧化物酶底物3,3',5,5'-四甲基联苯胺(TMB)转化为在450nm处以比色方式定量的物质。HCP浓度可通过与CHO HCP标准曲线,诸如测试试剂盒中包括的标准曲线相比较来确定,并以占抗体制剂中总蛋白质水平的百分比报告。
IV.下游加工和配制
抗α4β7抗体(例如维多珠单抗或具有对应于维多珠单抗的结合区的抗体)可从污染物可溶性蛋白质和多肽进一步纯化,并且以下程序为适合纯化程序的实例,其可任选地单独使用或与本文所提供的一种或多种方法结合使用:亲和色谱,例如使用结合抗体Fc区的树脂,诸如蛋白质A的亲和色谱;在离子交换柱或树脂,诸如阳离子交换色谱(CEX),例如SP-SepharoseTM或CM-SepharoseTM羟基磷灰石上进行的分级分离;阴离子交换色谱(AEX);疏水相互作用色谱(HIC);混合模式色谱;乙醇沉淀;色谱聚焦;硫酸铵沉淀;使用例如Sephadex G-75TM进行的凝胶过滤;超滤和/或渗滤,或前述的组合。纯化方法的实例描述于Liu等人,mAbs,2:480-499(2010)中。在纯化过程结束时,重组蛋白具有高纯度,并且适于人治疗用途,例如用于下文所述的药物抗体制剂中。纯化后,高纯度重组蛋白可经超滤/渗滤(UF/DF)制成适于人施用的药物制剂。
渗滤和超滤后,抗体制剂可保留液体形式或冻干成干燥的抗体制剂。在一个方面中,干燥的冻干抗体制剂提供于单剂量小瓶中,其包含180mg、240mg、300mg、360mg、450mg或600mg抗α4β7抗体,并且可用液体,诸如无菌水复原以供施用。在另一个方面中,抗α4β7抗体(例如维多珠单抗)呈在约2℃-8℃下储存于容器,例如小瓶、注射器或药筒中的稳定的液体药物组合物形式,直至将其施用有需要的受试者。在一些实施方案中,抗α4β7抗体的复原的冻干制剂或稳定的液体药物组合物包含约0%至5.0%、0%至2%、≤2%、≤1%、≤0.6%或≤0.5%聚集体。
因此,在一些实施方案中,本文提供一种复原的冻干抗体制剂或稳定的液体药物组合物,所述组合物包含人源化抗α4β7抗体或其抗原结合部分。包含抗α4β7抗体,例如维多珠单抗的冻干制剂的实例描述于美国专利号9,764,033中,所述专利的内容以引用的方式并入本文中。包含抗α4β7抗体,例如维多珠单抗的液体制剂的实例描述于美国专利号10,040,855中,所述专利的内容以引用的方式并入本文中。在一些实施方案中,抗α4β7抗体的复原的冻干制剂或稳定的液体药物组合物包含约11%至16%、12%至15%、
≤14%、≤13%、≤12%、或≤11%的碱性同种型种类。在一些实施方案中,抗α4β7抗体的复原的冻干制剂或稳定的液体药物组合物包含65%至75%、66%至74%、67%至73%、至少65%、至少66%、至少67%、至少68%、至少69%、或至少70%的主要同种型。
纯化的抗体,例如抗α4β7抗体(例如维多珠单抗或具有对应于维多珠单抗的结合区的抗体)可进行浓缩以提供浓缩的蛋白质组合物,例如抗体浓度为至少100mg/mL或125mg/mL或150mg/mL或浓度为约100mg/mL或125mg/mL或150mg/mL的组合物。应当理解,浓缩的抗体产物可浓缩至浓缩条件下允许的水平,例如浓缩至多肽不再溶于溶液中的浓度。
在一些实施方案中,本文获得的组合物包含纯化的抗α4β7抗体,如维多珠单抗,并且随后配制成供人使用。在一个实施方案中,将纯化的抗体配制成干燥的冻干制剂,所述冻干制剂可用液体,诸如无菌水复原以供施用。复原的制剂可通过上述途径之一,通过胃肠外注射施用。静脉内注射可通过输注,诸如通过用无菌等张盐水、缓冲液例如磷酸盐缓冲盐水或林格氏(乳酸或葡萄糖)溶液进一步稀释来进行。在一些实施方案中,将纯化的抗体配制成液体制剂,由此通过皮下注射施用例如约54mg、108mg或约165mg或约216mg剂量的抗α4β7抗体。
可用于储存和冷冻本文所述的纯化组合物的容器包括聚碳酸酯瓶(用于IV制剂)或PETG瓶(用于皮下制剂)。将所述制剂等分至瓶中后,可进行冷冻(例如在-60℃或更低温度下)。
以下实施例举例说明用于纯化抗体的改进的方法和组合物。以下实施例1-5描述可用于获得抗α4β7抗体,特别是维多珠单抗的纯化组合物的各种方法和组合物。本文包括以下实施例中所描述的方法,包括其中所描述的各种参数。
实施例
以下实施例描述了在使用CHO细胞作为表达系统的细胞培养物中产生的维多珠单抗的纯化方法。
实施例1:洗脱缓冲液对使用蛋白质A树脂纯化维多珠单抗的影响
此实施例展示使用蛋白质A树脂的抗体纯化方法,所述方法可用于产生治疗性抗α4β7抗体,例如维多珠单抗。如本文所述,调节蛋白质A树脂的洗脱pH值使得纯化的维多珠单抗组合物中聚集体的水平降低。
通过对遗传工程化成表达抗体的重组中国仓鼠卵巢(CHO)细胞(GS-CHO)进行细胞培养,产生维多珠单抗(关于一般细胞培养方法,参见Li等人(2010)mAbs,2:5,466-477)。
在CHO细胞中进行细胞培养后,使用蛋白质A亲和柱初步回收后,对维多珠单抗进行选择性捕获。使用重组蛋白质A树脂进行亲和色谱,以从来源于上游初步回收程序的澄清收获物中选择性地移除抗体。所述步骤还移除工艺相关杂质,诸如宿主细胞蛋白质(HCP)。
首先,用PBS平衡溶液(pH 7.2)平衡蛋白质A树脂。接着,负载澄清的收获物。进行三次洗涤。第1次洗涤用与平衡溶液相同的PBS洗涤溶液(pH 7.2)进行;第2次洗涤用含1MNaCl的PBS洗涤溶液(pH 7.2)进行;并且第3次洗涤用与第1次洗涤(PBS)和用于平衡的溶液相同的洗涤溶液进行。洗涤用于从抗体洗去杂质,此时抗体仍结合至树脂。接着,使用pH值在一定范围内的洗脱缓冲液从树脂洗脱抗体。如图1中所述,测试pH值为3至3.5的洗脱缓冲液。图1中提供的结果显示,随着pH值增加,聚集体%降低。如图1中所述,在pH 3下,从蛋白质A洗脱维多珠单抗得到具有较高水平的聚集体,即具有约1%-1.2%聚集体的洗脱液,而使用pH值较高,例如pH值为约3.5的洗脱缓冲液,通过洗脱抗体而获得的洗脱液具有约0.6%-0.85%的聚集体。
执行另一项研究,以鉴定与蛋白质A纯化相关的工艺参数,所述参数对维多珠单抗的产物质量具有重大影响。将来自重组表达维多珠单抗的GS-CHO细胞的澄清收获物负载于MabSelect SuReLX树脂(GE Healthcare,Pittsburgh,PA)上。将结合的抗体用PBS和柠檬酸钠缓冲液洗涤,然后进行洗脱。评价在pH 3.3至pH 3.9的范围内的洗脱pH值。使用柠檬酸钠缓冲液进行洗脱。洗脱缓冲液pH值对纯化的维多珠单抗组合物中聚集体水平(HMW物质%)和HCP水平的影响描述于表1和图2中。
如表1中所述,线性回归模型显示,洗脱pH值对所有测定结果都有显著影响(p<0.05)。尽管关于LMW%和HCP的数据变化略大,但负载量影响HCP清除率。负载量和负载流量的组合对LMW%具有较小影响。
·单体%:
洗脱pH值对单体%具有显著影响(p<0.05)。并无其他输入参数与单体%显示出相关性。随着洗脱pH值升高,单体%增加。
·HMW%:
洗脱pH值对HMW%具有显著影响(p<0.05)。并无其他输入参数与HMW%显示出相关性。随着洗脱pH值升高,HMW%降低。
·LMW%:
洗脱pH值、以及负载量与负载流量的组合影响LMW%(p<0.05),然而,输入参数对LMW%的影响被认为是极小的。
·HCP:
洗脱pH值和负载量对HCP具有显著影响,并且二者以ppm和降低因子的对数表示(p<0.05)。
表1.使用蛋白质A亲和色谱纯化维多珠单抗–输入参数评价
洗脱pH值 单体(%) HMW(%) LMW(%) HCP(ppm) HCPLRF
负载材料 - - - 152590 -
3.34 97.55 1.61 0.84 113 3.13
3.34 97.38 1.76 0.86 88 3.24
3.34 97.35 1.81 0.84 101 3.18
3.34 97.26 1.93 0.81 179 2.93
3.34 97.36 1.83 0.80 85 3.25
3.34 97.38 1.81 0.82 94 3.21
3.34 97.27 1.88 0.85 139 3.04
3.34 97.22 1.95 0.83 108 3.15
3.60 97.65 1.57 0.78 105 3.16
3.60 97.31 1.88 0.81 122 3.10
3.95 98.67 0.62 0.72 168 2.96
3.95 98.78 0.42 0.79 115 3.12
3.95 98.74 0.47 0.79 157 2.99
3.95 98.92 0.38 0.71 217 2.85
3.95 98.60 0.60 0.80 185 2.92
3.95 98.60 0.62 0.78 116 3.12
3.95 98.45 0.71 0.84 123 3.09
3.95 98.55 0.66 0.79 207 2.87
维多珠单抗具有使其不同于其他IgG抗体的特有特性,例如高疏水性。图3提供维多珠单抗与其他三种IgG抗体的比较,并提供当使用pH值递增(pH值从左至右增加)的洗脱缓冲液从阳离子交换柱(Nuvia S;Bio Rad)洗脱各抗体(维多珠单抗(MLN0002)、IgG A、IgGB或IgG C)时洗脱液中所发现的聚集体的量(HMW%)。维多珠单抗清除聚集体的性能变化要高于其他三种测试IgG各自在最佳条件下的性能变化。因此,如在图3中所观察到的,在维多珠单抗的纯化期间,pH值可影响聚集水平。
实施例2:使用疏水性HIC树脂纯化维多珠单抗
鉴于维多珠单抗的疏水性质,在下游纯化期间减少HMW聚集体可具有挑战性。此外,当在哺乳动物,例如CHO细胞中产生维多珠单抗时,最大程度地减少宿主细胞蛋白质(HCP)的量也很重要。使用高通量方法,针对性能筛选HIC、混合模式以及阴离子交换树脂和膜。随后,在各种平衡、负载和洗脱条件下测试八种HIC树脂各自在维多珠单抗纯化中减少聚集和使HCP减至最少的能力。Toyopearl己基-650C(Tosoh Biosciences)疏水性HIC树脂为能够展示可接受的聚集体清除率以及使HCP减至最少的唯一树脂。更具体地,在适合的结合条件(例如0.5M(NH4)2SO4,pH 6.7)下,己基-650C使聚集水平从约1.5%HMW聚集体降低至0.35%。所测试的其他树脂包括丁基-650M、丁基-600M、超丁基-55C、苯基-650M、苯基-600M、PPG-600M和醚-650M,并且无法达到如此低的聚集体水平。
相较于测试的其他树脂,包括醚、PPG、苯基和丁基,己基-650C为疏水性最强的树脂。己基-650C具有约1,000A的平均孔径和约100μm的平均粒度。
利用己基-650C,以结合/洗脱和流通模式执行进一步实验。对于结合/洗脱实验,己基-650C能够将聚集体减少至约0.30%HMW,但结合能力较低(约20mg/ml树脂)。相比之下,使用己基-650C和维多珠单抗的流通模式既减少聚集体,又增加负载能力。流通实验用108mg/ml的初始未调整负载和含0.2M氯化钠的10mM磷酸钠pH 6.7执行。流通实验中的这些条件使HMW从1.39%减少至0.71%。增加盐,包括用磷酸钾代替氯化钠,甚至进一步改善聚集体的减少。使用250mM磷酸钾、50mM氯化钾(用于平衡和负载调整)以及67.5mg/ml树脂的减少的负载使聚集体从约0.72%HMW减少至约0.3%(且回收率为95.5%)。
执行基于柱的实验设计(DOE)研究,以进一步评价己基-650C在流通模式下降低聚集体水平以纯化维多珠单抗的能力。如表2中所述,低HMW%和低HCP水平(ppm)是使用低pH值和增加的磷酸盐负载/平衡条件获得。表2中的实验是使用60mg/ml树脂负载量执行。低pH值条件均使HMW从1.0%HMW减少至小于或等于0.34%的值。抗体的平均回收率为约91.5%。高pH值加上高磷酸钾看起来增加维多珠单抗主要种类与树脂的亲和力,使得回收率降低。相比之下,较高的磷酸盐水平和低pH值使得HMW清除率增加。在低磷酸盐和低pH值下观察到低HMW、低HCP和低残留蛋白质A浸出(例如参见以下第12行)。因此,高疏水性HIC树脂能够成功地清除聚集体(HMW)维多珠单抗,达到低于0.5%的水平。
表2.DOE设计和数据
Figure BDA0003402392520000441
实施例3:柱负载量、洗脱缓冲液pH值和电导率对使用混合模式色谱树脂纯化维多珠单抗的影响
产生表达高维多珠单抗抗体效价(≥5.0g/L)的生产性CHO细胞系,由此需要开发一种纯化方法,所述方法被设计成适应大量这种高疏水性抗体。
Capto Adhere ImpRes为混合模式(MXM)色谱树脂,所述树脂在较小的珠粒尺寸上具有强阴离子交换、氢键合和疏水相互作用功能,从而允许改善杂质移除且提高容量。
以流通模式操作的Capto Adhere ImpRes混合模式树脂能够纯化维多珠单抗,但产率和杂质移除量低于所希望的。使用Capto Adhere ImpRes以结合-洗脱模式进行的预表征实验表明,步骤产率和/或杂质移除能力的显著降低与以下三个工艺输入参数相关:树脂负载容量、洗脱缓冲液pH值和洗脱缓冲液电导率。此实施例描述一项研究,所述研究被设计用于进一步检查这些参数的变化对用于纯化维多珠单抗的Capto Adhere ImpRes的性能的影响和其对各种产物质量属性的影响。
材料和方法
经蛋白质A纯化后,将澄清的细胞培养物收获物负载至Capto Adhere ImpRes(GEHealthcare,Chicago,IL,USA)色谱柱上。使用pH 7.8的磷酸钠缓冲液洗涤混合模式树脂,并如下文所述,在不同条件下从所述柱洗脱抗体。
样品立即提交SEC进行分析,在2℃-8℃下储存,并在1周内加工。其余测定(CEX、CHO HCP ELISA)使用冷冻保留液(-80℃)进行。用于分析的方法列于以下表3中,并在下文详细描述。对在一系列运行后取样的负载材料进行分析,以确认所述负载材料的质量属性未发生实质性变化。
表3.分析方法
Figure BDA0003402392520000451
实验设计
针对树脂负载量、洗脱缓冲液pH值和洗脱缓冲液电导率,在三个层面上利用全因子设计。在这些实验中使用柠檬酸钠洗脱缓冲液。所得的实验设计包括在三个中心点条件下进行的三十次运行。附加的中心点条件为表5中指明为DOE模式222的实验设计的一部分。所有其他工艺输入参数均保持中心点条件。使用洗脱缓冲液氯化钠浓度设计实验,并且洗脱缓冲液电导率测量值用作统计分析的输入参数值。表4和表5分别描述所述设计所研究的参数范围和设计概述。
表4.评价的参数范围
参数 单位 评价的范围 注释
蛋白质负载量/树脂体积 g/L 53-77 -
洗脱缓冲液pH值 pH 3.8-4.4 -
洗脱缓冲液电导率 mS/cm 19.7–28.9 NaCl浓度范围160-240mM
表5.实验设计
Figure BDA0003402392520000461
Figure BDA0003402392520000471
DOE模式(3):高水平;(2):中等水平;(1):低水平;(0):每个输入参数范围的中心点。使用NaCl浓度作为输入参数设计实验,并使用实际电导率测量值进行统计分析。
计算
HMW清除率%=(1-(洗脱液HMW/负载物HMW))*100
对数降低因子(LRF)如下确定:
LRF=log10{残留负载物/残留洗脱液}
[残留洗脱液]为洗脱液中CHO HCP或蛋白质A的浓度,[残留负载物]为在相同运行的负载物中CHO HCP或蛋白质A的浓度,两种浓度均相对于相应的MLN0002浓度以ppm为单位。
统计分析
使用JMP 11统计软件(SAS Institute,Cary,NC)分析所述设计中指示所有实验的测定结果和KPI的产物质量。经由拟合至线性模型来分析每个反应,如等式1所示:
等式1通用线性回归模型
Figure BDA0003402392520000481
其中yu为在第u次观察时的反应,xiu为独立变量,并且各种β项为模型系数估计。
在统计分析和建模中,将相对较小的数据集拟合至含有相对较大量潜在输入的模型通常会导致过拟合。过拟合的标志为具有高R2值,而且具有几个无科学意义(且不具统计显著性)项的模型。为了确定最佳的统计显著模型,同时避免过拟合,使用输入参数和目标反应之前向回归来研发每个模型。回归的停止规则为p值临限值,其中如果所述模型的p值≤0.05,则将输入参数并入所述模型中。所述分析算法生成的模型(i)达到可能的最高R2值,(ii)包括尽可能少的输入参数,并且(iii)描述经历多峰色谱加工的抗体在物理上可能的行为(即使所述发现看来与最初的技术期望不一致)。
结果与讨论
实验结果描述于表6和7中,其中含有经由统计分析确定的每个反应的模型的参数估计值、相应p值和R2值。
表6.统计模型、预测表达式系数和p值的概述–过程性能
Figure BDA0003402392520000491
表7.统计模型、预测表达式系数和p值的概述—产物品质(SEC和CEX)
Figure BDA0003402392520000492
洗脱缓冲液的pH值和电导率对抗体产率的影响
洗脱缓冲液pH值和洗脱缓冲液电导率对维多珠单抗步骤回收率或产率的影响描述于图4和图5中。如图4和图5中所描述,观察到的步骤回收率数据也很好地拟合至线性回归模型,如R2值为0.930所指示。
图4和图5显示Capto Adhere ImpRes步骤回收率与洗脱缓冲液pH值和电导率或负载量的关系图。回收率明显受洗脱缓冲液pH值(p<0.0001)和树脂负载量(p=0.0021)影响且受洗脱缓冲液电导率的影响较小(p=0.0189)。在任何水平的洗脱缓冲液电导率和负载量下,洗脱缓冲液pH值为约4.40产生的步骤产率≤83.91%(运行1、4、11-14、16、19和27)。较低树脂负载量对回收率有负面影响。在样品负载后的洗涤步骤期间,在负载量为77g/L树脂的所有运行中均观察到突破(breakthrough)。负载量的影响取决于洗脱缓冲液pH值(p=0.0170)。在低洗脱缓冲液pH值(即,pH 3.8)下,负载量对回收率没有实际影响,而随着洗脱缓冲液pH值升高,树脂负载量减少使得回收率降低(当洗脱缓冲液pH值为约4.4时,在53g/L树脂下回收率为73.36%-78.84%对比在77g/L树脂负载量下回收率为81.94%-83.91%)。根据实验结果和模型预测,洗脱缓冲液电导率对回收率的影响很小。当洗脱缓冲液pH值为4.40,洗脱缓冲液电导率为28.89mS/cm和负载量为53g/L树脂时,观察到最低回收率为73.36%(运行13,所述模型预测的回收率为76.22%)。
因此,如图4和图5中所描述,当混合模式色谱树脂与具有最佳pH值和电导率的洗脱缓冲液一起使用时,维多珠单抗的产率增加。
洗脱缓冲液pH值和电导率对HMW聚集体的影响
洗脱缓冲液pH值和电导率对聚集体量的影响描述于图6和图7中,图中显示出输入参数对HMW量的影响。
根据线性回归模型(R2=0.962),洗脱液中HMW物质的量受洗脱缓冲液pH值(p<0.0001)、洗脱缓冲液电导率(p<0.0001)和负载量(p=0.0015)影响。洗脱pH值和电导率增加使洗脱液中HMW物质的量减少,而负载量增加使其量变高。所述模型还预测在洗脱缓冲液pH值与电导率之间具有统计显著(p=0.0462)的相互作用。
如下图6和图7中所述,在洗脱缓冲液pH值为约3.80时观察到约1%或更高的HMW物质含量。洗脱pH值为3.80、洗脱电导率为19.67mS/cm(160mM NaCl)和负载量为65g/L树脂(操作2)产生1.23%的最高HMW含量(所述模型预测含量为1.19%)。在相同洗脱缓冲液条件下,在77g/L下预测的最坏情况HMW含量为1.24%。
根据线性回归模型,洗脱缓冲液pH值(p<0.0001)、洗脱缓冲液电导率(p=0.0003)和负载量(p=0.0016)各自对HMW清除能力具有统计显著影响。在本研究中评价的任何条件下,均达到一定程度的清除率(12.50%-72.79%)。在所述输入中,洗脱pH值影响最大。洗脱缓冲液pH值增加使HMW清除率改善,与其对回收率的影响相反。根据所述模型,洗脱缓冲液电导率增加和负载量减少使HMW清除率增加。
因此,如图6和图7中所述,纯化的维多珠单抗组合物中聚集体的水平(HMW物质%)可通过选择用于从混合模式色谱树脂洗脱抗体的洗脱缓冲液pH值和洗脱缓冲液电导率进行调节。此外,当混合模式色谱树脂与具有较高pH值和/或较高电导率的洗脱缓冲液一起使用时,可降低聚集体的水平。
实施例4:洗脱缓冲液对使用阳离子交换(CEX)树脂纯化维多珠单抗的影响
阳离子交换(CEX)色谱法也被开发作为进一步降低维多珠单抗制剂中聚集体的水平的手段。本文描述的研究致力于将使用Nuvia HR-S树脂(Bio-Rad,Hercules,CA,USA)的CEX色谱法适于纯化维多珠单抗,特别是旨在降低这种疏水性抗体中的聚集体水平。对以结合/洗脱模式操作的CEX程序的洗脱条件进行评估。采用实验设计(DoE)方法评价包括洗脱缓冲液pH值和洗脱缓冲液电导率在内的若干参数对工艺输出的影响。
材料和方法
本研究中使用的负载材料和分析方法与以上实施例3中所描述的类似。
实验设计
初始筛选研究和初步风险评估确定,当树脂以结合/洗脱模式操作时,洗脱缓冲液pH值和洗脱缓冲液电导率对Nuvia HR-S工艺性能输出(PPO)具有已知或潜在影响。本研究旨在表征这些工艺参数的影响。研究参数范围和实验设计分别列于表8和表9中。通过调节氯化钠(NaCl)的浓度来改变洗脱缓冲液的电导率,并且所评价的NaCl范围提供于表8中。
表8.研究工艺参数
参数 评价的范围
负载量 30–65g mAb/L树脂
洗脱缓冲液pH值 5.1–5.7
洗脱缓冲液电导率 10.59–16.08mS/cm
洗脱缓冲液[NaCl] 70–110mM
表9.实验设计
Figure BDA0003402392520000521
Figure BDA0003402392520000531
结果与讨论
洗脱缓冲液pH值和洗脱缓冲液电导率对Nuvia HR-S工艺性能输出(PPO)的影响描述于图8-13中。
洗脱缓冲液pH值和电导率对HMW聚集体的影响
洗脱缓冲液pH值和电导率对聚集体水平的影响描述于图8-10中,图中显示出输入参数对HMW量的影响。
如图8-10中所述,洗脱液HMW、单体和LMW的变化分别为0.01%至0.88%、98.33%至99.27%和0.62%至1.35%。HMW模型除含有洗脱缓冲液pH值和电导率的相互作用项外,还对两个参数具有较强的线性依赖性。模型表面(如图8中所示)表明,在洗脱缓冲液pH值和电导率值极低的情况下,HMW最低,而在洗脱缓冲液pH值和电导率值极高的情况下,HMW最高。
确定每次运行的HMW清除率,以说明在整个研究中负载材料HMW含量的变化。与洗脱液HMW一样,在整个研究中HMW清除率差异很大(-30.65%至98.61%),并且HMW清除率模型含有洗脱缓冲液pH值和电导率的线性项和相互作用项。图9显示出模型表现:虽然在降低的洗脱缓冲液pH值和电导率条件下获得最高的HMW清除率值,但许多测试条件展示>70%的HMW清除率。然而,所报告的运行9、20和24的负HMW清除率值(分别为-1.18%、-20.55%和-30.65%)指示,在所评价的多种条件下观察到聚集体移除的显著变化,并且有一些条件可能会产生而不是移除聚集体物质。
运行40至42采用Capto Adhere ImpRes洗脱液作为负载材料,其含有的聚集体水平高于在中心点条件下CEX加工期间负载材料中通常使用的聚集体水平。HMW和HMW清除率模型表明,增加洗脱缓冲液pH值和电导率产生HMW含量增加的洗脱液。选择用于运行40至42的条件旨在使用CEX负载材料的“最坏情况”聚集体水平探测可能的洗脱条件。对于洗脱缓冲液pH值为5.50和5.54且洗脱缓冲液电导率为13.40mS/cm而言,所得洗脱液的HMW为0.31%至0.34%。然而,当采用pH 5.60的洗脱缓冲液(而电导率保持不变)时,洗脱液HMW增加至0.59%。在所述聚集体水平下,进一步加工将有不满足维多珠单抗关于HMW的接受标准的风险。
已发现,LMW随着洗脱缓冲液pH值或洗脱缓冲液电导率增加而线性地降低。所述模型还含有洗脱缓冲液pH值/洗脱缓冲液电导率、洗脱缓冲液pH值/负载量和洗脱缓冲液电导率/负载量的相互作用项。与关于HMW的模型中相同,单体模型对呈线性项和相互作用项形式的洗脱缓冲液pH值和电导率有很强的依赖性。模型表面(在图10中显示为鞍型函数)表明,在洗脱缓冲液pH值与电导率的组合极高条件下,获得最少的单体。
因此,如图8-10中所述,洗脱缓冲液pH值和电导率可用于调节使用CEX树脂纯化的包含维多珠单抗的组合物中聚集体的水平(HMW物质%)。此外,如图8-10中所示,当CEX树脂与pH值较低和/或电导率较低的洗脱缓冲液一起使用时,可降低纯化的维多珠单抗组合物中聚集体的水平。
洗脱缓冲液pH值和电导率对碱性同种型种类的影响
洗脱缓冲液pH值和电导率对碱性同种型种类的量的影响描述于图11-13中,图中显示输入参数对酸性、主要和碱性同种型种类的含量的影响。
如图11-13中所述,酸性、主要和碱性含量结果的范围分别从12.49%至30.27%、64.32%至73.82%和5.42%至18.04%。除全部三个参数的相互作用项外,酸性含量模型还含有洗脱缓冲液pH值、洗脱缓冲液电导率和负载量的线性项。洗脱缓冲液pH值和洗脱缓冲液电导率对酸性含量的影响最大。在图11中的模型表面可看出,在洗脱缓冲液pH值和电导率的极低值组合下操作时,酸性含量最高。
所开发的关于主要同种型含量的模型含有洗脱缓冲液pH值、洗脱缓冲液电导率与负载量之间的相互作用项,其中洗脱缓冲液pH值/洗脱缓冲液电导率相互作用对模型表达的影响最大。如图12中所示,在最高洗脱缓冲液电导率和最低洗脱缓冲液pH值相结合的条件下,获得最高主要同种型含量;在极低洗脱缓冲液pH值和电导率值相结合下,预测到最低的主要同种型含量。
洗脱缓冲液pH值、洗脱缓冲液电导率和负载量的线性项对洗脱液碱性同种型含量的影响最大;相互作用项显示出极小的贡献。在图13中的模型表面可看出,碱性同种型含量响应于洗脱缓冲液pH值和洗脱缓冲液电导率的增加而增加。
因此,如图11-13中所述,洗脱缓冲液pH值和电导率可用于调节使用CEX树脂纯化的包含维多珠单抗的组合物中带电荷同种型的分布。如图11中所示,当CEX树脂与pH值增加和/或电导率增加的洗脱缓冲液一起使用时,可降低纯化的维多珠单抗组合物中酸性同种型种类的水平。此外,如图13中所示,当CEX树脂与pH值减小和/或电导率减小的洗脱缓冲液一起使用时,可降低纯化的维多珠单抗组合物中碱性同种型种类的水平。
实施例5:产物质量属性的确定
以下分析测定和方法用于前述实施例中以确定维多珠单抗的产物质量属性。
阳离子交换色谱法(CEX)根据总表面电荷对维多珠单抗抗体种类(主要同种型、碱性种类和酸性种类)进行分级分离。在使用移动相稀释至低离子强度后,将测试样品注射至在10mM磷酸钠pH 6.6中平衡的Dionex Pro-PacTM WCX-10柱(Thermo Fisher Scientific,Waltham,MA(USA))上,并在相同缓冲液中使用氯化钠梯度进行洗脱。在280nm下监测蛋白质洗脱,并将各峰指定为酸性种类、碱性种类或主要同种型类别。主要同种型百分比、酸性种类百分比的总和和碱性种类百分比的总和均有报告。将样品主要同种型的保留时间与参考标准品的保留时间相比较以确定一致性。
使用尺寸排阻色谱法(SEC)确定维多珠单抗的纯度。使用串联连接的两个G3000SWxl柱(Tosoh Bioscience,King of Prussia,PA(USA))和pH 6.8的等度磷酸盐-氯化钠缓冲系统分析参考标准品和测试样品(75μg)。所述方法使得抗体单体与高分子量(HMW)物质以及低分子量(LMW)降解产物得以分离。在280nm下监测蛋白质种类的洗脱。评估主要种类峰(单体)和总峰面积以确定纯度。样品的纯度(%)(以单体%计算)和聚集体%均有报告。
等效方案
本领域的技术人员仅仅使用常规实验将认识到或者能够确定本文所述的发明的具体实施方案的许多等效方案。此类等效方案意图由以下权利要求书涵盖。本申请通篇引用的所有参考文献、专利和公布的专利申请的内容以引用的方式并入本文。
序列表
Figure BDA0003402392520000561
Figure BDA0003402392520000571
Figure IDA0003402392580000011
Figure IDA0003402392580000021
Figure IDA0003402392580000031
Figure IDA0003402392580000041
Figure IDA0003402392580000051
Figure IDA0003402392580000061
Figure IDA0003402392580000071
Figure IDA0003402392580000081

Claims (71)

1.一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液获得包含所述抗α4β7抗体的组合物的方法,所述方法包括
使包含蛋白质A的基质与包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液接触,由此使所述抗α4β7抗体结合至所述蛋白质A;
用洗涤溶液洗涤包含蛋白质A的所述基质;以及
通过使包含蛋白质A的所述基质与pH值为3.2至4的洗脱溶液接触,从所述基质洗脱所述抗α4β7抗体,由此获得包含所述抗α4β7抗体的组合物,
其中所述抗α4β7抗体为人源化抗体,为IgG1抗体,包含含有如SEQ ID NO:4中所示的CDR3结构域、如SEQ ID NO:3中所示的CDR2结构域和如SEQ ID NO:2中所示的CDR1结构域的重链可变区;并且包含含有如SEQ ID NO:8中所示的CDR3结构域、如SEQ ID NO:7中所示的CDR2结构域和如SEQ ID NO:6中所示的CDR1结构域的轻链可变区。
2.如权利要求1所述的方法,其中包含所述抗α4β7抗体的所述组合物包含少于1%的高分子量(HMW)聚集体。
3.如权利要求1或2所述的方法,其中所述蛋白质A固定于固相上。
4.如权利要求3所述的方法,其中所述固相包含珠粒、凝胶和树脂中的一者或多者。
5.如权利要求1至4中任一项所述的方法,其中所述洗涤溶液的pH值为约7。
6.如权利要求1至5中任一项所述的方法,其中所述洗脱溶液包含柠檬酸。
7.如权利要求1至6中任一项所述的方法,其中所述洗脱溶液的pH值为3.2至3.7或3.3至3.8。
8.一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液获得包含抗α4β7抗体的组合物的方法,所述方法包括
使包含抗α4β7抗体和至少一种杂质的溶液与疏水相互作用色谱(HIC)树脂在允许所述抗α4β7抗体流动通过所述HIC树脂的条件下接触,由此获得包含所述抗α4β7抗体的组合物,
其中所述HIC树脂被表征为高疏水性HIC树脂,
其中所述抗α4β7抗体为人源化抗体,为IgG1抗体,包含含有如SEQ ID NO:4中所示的CDR3结构域、如SEQ ID NO:3中所示的CDR2结构域和如SEQ ID NO:2中所示的CDR1结构域的重链可变区;并且包含含有如SEQ ID NO:8中所示的CDR3结构域、如SEQ ID NO:7中所示的CDR2结构域和如SEQ ID NO:6中所示的CDR1结构域的轻链可变区。
9.如权利要求8所述的方法,其中包含所述抗α4β7抗体的所述组合物包含少于0.6%的HMW聚集体。
10.如权利要求8或9所述的方法,其中所述HIC树脂用pH值小于约7.2的磷酸盐缓冲液平衡。
11.如权利要求10所述的方法,其中所述磷酸盐缓冲液包含约0.35M至约0.15M磷酸钾。
12.如权利要求8至11中任一项所述的方法,其中所述树脂负载量为约55至75mg/ml。
13.如权利要求8至12中任一项所述的方法,其中所述组合物包含少于约0.22ppm的残留蛋白质A。
14.如权利要求8至13中任一项所述的方法,其中所述组合物含有少于约0.3ppm的宿主细胞蛋白质(HCP)。
15.如权利要求8至14中任一项所述的方法,其中所述高疏水性HIC树脂的平均孔径为约50至150μm。
16.如权利要求8至14中任一项所述的方法,其中所述高疏水性HIC树脂的平均孔径为约100nm和/或孔径为约100μm。
17.一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液产生包含所述抗α4β7抗体的组合物的方法,所述方法包括
使包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液与混合模式色谱树脂接触,由此使所述抗α4β7抗体结合至所述树脂;
用洗涤溶液洗涤所述混合模式色谱树脂;以及
通过使所述混合模式色谱树脂与pH值等于或高于pH 3.9的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含所述抗α4β7抗体的组合物,
其中所述抗α4β7抗体包含SEQ ID NO:1中所示的重链可变区和SEQ ID NO:2中所示的轻链可变区。
18.如权利要求17所述的方法,其中包含所述抗α4β7抗体的所述组合物包含少于1%的HMW聚集体。
19.如权利要求17或18所述的方法,其中所述洗脱溶液的pH值等于或高于pH 4.1。
20.如权利要求17至19中任一项所述的方法,其中所述洗脱溶液的pH值为约pH 3.9至约pH 4.4。
21.如权利要求17至20中任一项所述的方法,其中所述洗脱溶液的电导率为30mS/cm或更低。
22.如权利要求21所述的方法,其中所述洗脱溶液的电导率为约20mS/cm至约30mS/cm。
23.如权利要求17至22中任一项所述的方法,其中所述洗脱溶液包含浓度为约160mM至约240mM的NaCl。
24.如权利要求17至23中任一项所述的方法,其中所述混合模式色谱树脂为CaptoAdhere ImpRes。
25.如权利要求17至24中任一项所述的方法,其中所述方法还包括使用阳离子交换(CEX)树脂纯化所述抗α4β7抗体。
26.如权利要求26所述的方法,其中所述CEX树脂以结合/洗脱模式操作。
27.一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液产生包含抗α4β7抗体的组合物的方法,所述方法包括
使包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液与混合模式色谱树脂接触,由此使所述抗α4β7抗体结合至所述树脂;
用洗涤溶液洗涤所述混合模式色谱树脂;以及
通过使所述混合模式色谱树脂与pH值等于或低于pH 4.2且电导率等于或低于28mS/cm的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含所述抗α4β7抗体的组合物,
其中所述抗α4β7抗体包含SEQ ID NO:1中所示的重链可变区和SEQ ID NO:2中所示的轻链可变区。
28.如权利要求27所述的方法,其中相对于使用pH值高于pH 4.2和/或对照电导率高于28mS/cm的对照洗脱溶液以类似方式获得的包含抗α4β7抗体的对照组合物,所述组合物包含产率增加的所述抗α4β7抗体。
29.如权利要求27或28所述的方法,其中所述洗脱溶液的pH值等于或低于4.0。
30.如权利要求27或28所述的方法,其中所述洗脱溶液的pH值为约pH 4.2至约pH 3.8。
31.如权利要求27至30中任一项所述的方法,其中所述洗脱溶液的电导率为约18mS/cm至约28mS/cm。
32.如权利要求27至31中任一项所述的方法,其中所述洗脱溶液包含浓度为约160mM至约240mM的NaCl。
33.如权利要求27至32中任一项所述的方法,其中所述混合模式色谱树脂与每升树脂至少55g的所述抗α4β7抗体接触。
34.如权利要求33所述的方法,其中所述混合模式色谱树脂与每升树脂约55g至约80g的所述抗α4β7抗体接触。
35.如权利要求27至34中任一项所述的方法,其中所述混合模式色谱树脂在较小的珠粒尺寸上具有强阴离子交换、氢键合和疏水相互作用功能,任选地其中所述混合模式色谱树脂为Capto Adhere ImpRes。
36.如权利要求27至35中任一项所述的方法,其中所述方法还包括使用阳离子交换(CEX)树脂纯化所述抗α4β7抗体。
37.如权利要求36所述的方法,其中所述CEX树脂以结合/洗脱模式操作。
38.一种用于从包含抗α4β7抗体和一种或多种杂质的液体溶液产生包含抗α4β7抗体的组合物的方法,所述方法包括
使包含所述抗α4β7抗体和一种或多种杂质的所述液体溶液与阳离子交换(CEX)树脂接触,由此使所述抗α4β7抗体结合至所述树脂;
用洗涤溶液洗涤所述CEX树脂;以及
通过使所述CEX树脂与电导率等于或低于16mS/cm的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含所述抗α4β7抗体的组合物,
其中所述抗α4β7抗体包含SEQ ID NO:1中所示的重链可变区和SEQ ID NO:2中所示的轻链可变区。
39.如权利要求38所述的方法,其中包含所述抗α4β7抗体的所述组合物包含约1%或更少的HMW聚集体。
40.如权利要求38或39所述的方法,其中所述洗脱溶液的电导率等于或低于14mS/cm。
41.如权利要求38或39所述的方法,其中所述洗脱溶液的电导率为约11-16mS/cm。
42.如权利要求38或39所述的方法,其中所述洗脱溶液的电导率为约12-14mS/cm。
43.如权利要求38至42中任一项所述的方法,其中所述洗脱溶液包含浓度为约70mM至约110mM的NaCl。
44.如权利要求38至43中任一项所述的方法,其中所述洗脱溶液的pH值为约pH 5至约pH 6。
45.如权利要求44所述的方法,其中所述洗脱溶液的pH值为约pH 5.1至约pH 5.8。
46.如权利要求38至45中任一项所述的方法,其中所述抗α4β7抗体以每升树脂约25-70g抗体的浓度负载于所述CEX树脂上。
47.如权利要求38至46中任一项所述的方法,其中所述抗α4β7抗体以每升树脂约30-60g抗体的浓度负载于所述CEX树脂上。
48.如权利要求38至47中任一项所述的方法,其中所述CEX树脂为强CEX树脂,任选地其中所述CEX树脂为Nuvia HR-S。
49.如权利要求38至48中任一项所述的方法,其中所述方法还包括使用混合模式色谱树脂纯化所述抗α4β7抗体。
50.如权利要求49所述的方法,其中所述混合模式色谱树脂以结合/洗脱模式操作。
51.一种用于从包含抗α4β7抗体的主要同种型和一种或多种碱性同种型种类的液体溶液产生包含抗α4β7抗体的组合物的方法,所述方法包括
使包含所述抗α4β7抗体和一种或多种碱性同种型种类的所述液体溶液与阳离子交换(CEX)树脂接触,由此使所述抗α4β7抗体结合至所述树脂;
用洗涤溶液洗涤所述CEX树脂;以及
通过使所述CEX树脂与电导率等于或高于11mS/cm的洗脱溶液接触,从所述树脂洗脱所述抗α4β7抗体,由此获得包含所述抗α4β7抗体的组合物,
其中所述抗α4β7抗体包含SEQ ID NO:1中所示的重链可变区和SEQ ID NO:2中所示的轻链可变区。
52.如权利要求51所述的方法,其中包含所述抗α4β7抗体的所述组合物包含约4%至约20%的碱性同种型。
53.如权利要求51或52所述的方法,其中所述洗脱溶液的电导率等于或高于12mS/cm。
54.如权利要求51或52所述的方法,其中所述洗脱溶液的电导率为约11-16mS/cm。
55.如权利要求51或52所述的方法,其中所述洗脱溶液的电导率为约12-14mS/cm。
56.如权利要求51至55中任一项所述的方法,其中所述洗脱溶液的pH值为约pH 5至约pH 6。
57.如权利要求56所述的方法,其中所述洗脱溶液的pH值为约pH 5.1至约pH 5.8。
58.如权利要求51至57中任一项所述的方法,其中所述抗α4β7抗体以每升树脂约25-70g抗体的浓度负载于所述CEX树脂上。
59.如权利要求58所述的方法,其中所述抗α4β7抗体以每升树脂约30-60g抗体的浓度负载于所述CEX树脂上。
60.如权利要求51至59中任一项所述的方法,其中所述CEX树脂为Nuvia HR-S。
61.如权利要求51至60中任一项所述的方法,其中所述方法还包括使用混合模式色谱树脂纯化所述抗α4β7抗体。
62.如权利要求61所述的方法,其中所述混合模式色谱树脂以结合/洗脱模式操作。
63.如权利要求1至62中任一项所述的方法,其中所述抗体在中国仓鼠卵巢(CHO)细胞中产生。
64.如权利要求63所述的方法,其中所述宿主细胞为GS-CHO细胞。
65.如权利要求1至64中任一项所述的方法,其中获得的所述组合物包含纯化的抗α4β7抗体,并且其中所述方法还包括将所述抗α4β7抗体配制成适于人使用的制剂的后续步骤。
66.如权利要求1至65中任一项所述的方法,其中所述方法包括将所述纯化的抗α4β7抗体配制成干燥、冻干的制剂。
67.如权利要求66所述的方法,其中所述方法还包括用液体使所述干燥、冻干的制剂复原,由此使所述制剂适于施用。
68.如权利要求1至65中任一项所述的方法,其中所述方法包括将纯化的抗α4β7抗体配制成液体制剂,由此使所述抗α4β7抗体适于通过皮下注射施用。
69.如权利要求1至68中任一项所述的方法,其中所述抗α4β7抗体包含如SEQ ID NO:1中所示的重链可变区序列和如SEQ ID NO:5中所示的轻链可变区序列。
70.如权利要求1至68中任一项所述的方法,其中所述抗α4β7抗体为维多珠单抗。
71.一种组合物,所述组合物包含抗α4β7抗体,其中所述组合物能够通过权利要求1-70中任一项所述的方法获得。
CN202080042562.6A 2019-06-10 2020-06-10 抗体纯化方法及其组合物 Pending CN114025843A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962859580P 2019-06-10 2019-06-10
US62/859,580 2019-06-10
PCT/US2020/037069 WO2020252072A1 (en) 2019-06-10 2020-06-10 Antibody purification methods and compositions thereof

Publications (1)

Publication Number Publication Date
CN114025843A true CN114025843A (zh) 2022-02-08

Family

ID=73782230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080042562.6A Pending CN114025843A (zh) 2019-06-10 2020-06-10 抗体纯化方法及其组合物

Country Status (14)

Country Link
US (1) US20220259291A1 (zh)
EP (1) EP3980119A4 (zh)
JP (1) JP2022536659A (zh)
CN (1) CN114025843A (zh)
AR (1) AR119268A1 (zh)
AU (1) AU2020290999A1 (zh)
BR (1) BR112021024848A2 (zh)
CA (1) CA3143169A1 (zh)
IL (1) IL288830A (zh)
MA (1) MA56132A (zh)
MX (1) MX2021015302A (zh)
PL (1) PL439807A1 (zh)
TW (1) TW202112800A (zh)
WO (1) WO2020252072A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019251452A1 (en) * 2018-04-10 2020-11-26 Dr. Reddy's Laboratories Limited Stable antibody formulation
WO2023012828A1 (en) * 2021-08-05 2023-02-09 Dr. Reddy's Laboratories Limited Method to purify an antibody composition using cation exchange chromatography
WO2023031965A1 (en) * 2021-09-03 2023-03-09 Dr. Reddy’S Laboratories Limited Method to obtain a purified antibody composition
WO2023180523A1 (en) * 2022-03-24 2023-09-28 Pieris Pharmaceuticals Gmbh Process for purifying fusion proteins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103465A (zh) * 2014-03-10 2016-11-09 吉瑞工厂 使用预清洗步骤的免疫球蛋白纯化

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI3530673T1 (sl) * 2004-09-03 2022-08-31 Genentech, Inc. Humanizirani antagonisti proti beta7 in njihove uporabe
CN107998388B (zh) * 2011-05-02 2023-07-14 千禧制药公司 抗α4β7抗体的制剂
WO2018104893A1 (en) * 2016-12-06 2018-06-14 Glaxosmithkline Intellectual Property Development Limited Alpha4-beta7 antibodies with incrased fcrn binding and/or half-life

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103465A (zh) * 2014-03-10 2016-11-09 吉瑞工厂 使用预清洗步骤的免疫球蛋白纯化

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABHINAV A. SHUKLA 等: "Downstream processing of monoclonal antibodies—Application of platform approaches", JOURNAL OF CHROMATOGRAPHY, vol. 848, no. 1, pages 28 - 39, XP002744086, DOI: 10.1016/j.jchromb.2006.09.026 *
CAROLINE MURPHY等: "Technology advancements in antibody purification [Corrigendum]", ANTIBODY TECHNOLOGY JOURNAL, vol. 6, pages 17 - 32, XP002767301 *

Also Published As

Publication number Publication date
JP2022536659A (ja) 2022-08-18
CA3143169A1 (en) 2020-12-17
EP3980119A4 (en) 2023-06-07
AR119268A1 (es) 2021-12-09
IL288830A (en) 2022-02-01
TW202112800A (zh) 2021-04-01
BR112021024848A2 (pt) 2022-01-18
MA56132A (fr) 2022-04-13
AU2020290999A1 (en) 2022-02-03
MX2021015302A (es) 2022-01-18
US20220259291A1 (en) 2022-08-18
EP3980119A1 (en) 2022-04-13
PL439807A1 (pl) 2022-12-05
WO2020252072A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
CN114025843A (zh) 抗体纯化方法及其组合物
JP5567691B2 (ja) Fc含有タンパク質を精製するためのクロマトグラフィー法
CA3031028C (en) Affinity chromatography wash buffer
DK2729482T3 (en) PROCEDURE FOR CLEANING FC-FUSION PROTEIN
EP2714714B1 (en) Wash solution and method for affinity chromatography
CN105777904B (zh) 抗TNFα类单克隆抗体的阳离子交换色谱纯化方法
EP2855504B1 (en) Chromatographic purification of immunoglobulin g preparations with particles having multimodal functionalities
US20130338344A1 (en) Protein purification methods to reduce acidic species
WO2013177118A2 (en) Novel purification of non-human antibodies using protein a affinity chromatography
US20230060770A1 (en) Cation exchange chromatography wash buffer
EP3728288B1 (en) Methods for enhanced removal of impurities during protein a chromatography
EP3145951A1 (en) Methods of purifying antibodies
KR20210021542A (ko) 크로마토그래피를 사용하여 단백질을 정제하는 방법
WO2020252069A1 (en) METHODS OF PRODUCING AN ANTI-α4β7 ANTIBODY
CN114014906A (zh) 一种利用阳离子交换层析纯化疏水性蛋白的方法
CN114072421A (zh) 纯化重组多肽的方法
Azevedo Monoclonal Antibodies–Addressing the Challenges on the Manufacturing Processing of an Advanced Class of Therapeutic Agents

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination