CN114015437B - 一种红光碳量子点及其制备方法 - Google Patents

一种红光碳量子点及其制备方法 Download PDF

Info

Publication number
CN114015437B
CN114015437B CN202111231037.1A CN202111231037A CN114015437B CN 114015437 B CN114015437 B CN 114015437B CN 202111231037 A CN202111231037 A CN 202111231037A CN 114015437 B CN114015437 B CN 114015437B
Authority
CN
China
Prior art keywords
carbon quantum
red light
quantum dot
light carbon
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111231037.1A
Other languages
English (en)
Other versions
CN114015437A (zh
Inventor
吴风收
曾金金
刘根炎
罗晓刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202111231037.1A priority Critical patent/CN114015437B/zh
Publication of CN114015437A publication Critical patent/CN114015437A/zh
Application granted granted Critical
Publication of CN114015437B publication Critical patent/CN114015437B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种新型红光碳量子点及其制备方法,首先将多氨基化合物溶于水中,再加入含羧基卟啉化合物并分散均匀,接着将得到的混合物油浴加热至180‑200℃进行反应,期间每当混合物变粘稠立刻补加水,反应完静置分离出上清液,最后将其透析、冻干即可。本发明将可溶于水的多氨基化合物包裹在难溶于水的含羧基卟啉化合物表面,由此制得的碳量子点不仅具有红色荧光而且产率高、毒性小,在肿瘤的光动力治疗、生物成像和生物体内Cu2+、Fe3+检测等方面都具有较好的应用前景。

Description

一种红光碳量子点及其制备方法
技术领域
本发明涉及纳米材料技术领域,具体涉及一种新型红光碳量子点及其制备方法。
背景技术
碳量子点(CQDs)自2006年问世以来,一直倍受科学界和产业界的关注,并迅速发展成为一种新型优质荧光纳米材料。碳量子点是碳基零维材料,同时也是尺寸小于10nm的单分散球状纳米碳材料。碳量子点具有优异的光学性质、良好的水溶性和生物相容性、低毒性、环境友好等诸多优点,并且原料来源广、制备成本低,广泛应用于载药、生物成像、金属粒子检测、光电催化和LED等诸多领域。
目前国内外制备碳量子点的方法有许多,从碳源前驱体的角度可分为两大类:自上而下法(Top-down)和自下而上法(Bottom-up)。常见的碳量子点主要为蓝绿光,红光碳量子点较少,且绝大多数红光碳量子都必须在水热釜中制备且反应时间较长,这些问题极大的限制了红光碳量子点的应用。
发明人团队此前曾开发了一种金属掺杂的荧光碳量子点(参见中国专利CN109468130A),利用可溶于水的多羧酸化合物包裹难溶于水的金属卟啉化合物,提高了金属掺杂荧光碳量子点的金属掺杂率和产率。然而该方案并不涉及红光碳量子点的制备问题,其所涉及的荧光为一般的蓝绿光。在此基础上,发明人团队继续攻坚克难,利用可溶于水的多氨基化合物包裹难溶于水的含羧基卟啉化合物,制备得到了一种具有红色荧光的新型碳量子点。
发明内容
本发明的目的之一在于提供一种红光碳量子点的制备方法,该方法包括以下步骤:将多氨基化合物、含羧基卟啉化合物加入到溶剂中混合均匀,然后升温反应,接着透析并将透析所得溶液干燥,最终得到红光碳量子点。
进一步的,所述多氨基化合物选自乙二胺、多聚乙烯亚胺(b-PEI)、苯二胺(包括邻、间、对位)、尿素以及常见氨基酸(如精氨酸、赖氨酸等)中的至少一种,优选为多聚乙烯亚胺。
进一步的,所述含羧基卟啉化合物选自单羧基苯基卟啉、多羧基苯基卟啉中的一种,优选为四羧基苯基卟啉。
进一步的,所述溶剂具体为水。
进一步的,原料的混合方式具体如下:首先将多氨基化合物与溶剂混合使其溶解,再加入含羧基卟啉化合物并超声分散(10-30min),由此得到反应液。
更进一步的,反应液中多氨基化合物的浓度为5-50mg/mL,含羧基卟啉化合物的浓度为0.25-2.5mg/mL。
进一步的,升温反应过程具体如下:采用油浴的方式加热反应液,待其粘稠后补加溶剂,补加溶剂数次后停止加热并静置,分离出上清液后进行透析处理。
进一步的,反应温度维持在180-200℃之间。
进一步的,透析的截留分子量为3000Da-6500Da,透析时间为48-72h,所述干燥具体为冻干。
本发明在油浴加热条件下,利用可溶于水的多氨基化合物包裹难溶于水的含羧基卟啉化合物,制得了高性能红光碳量子点。此前虽然也有人利用氨水或乙二胺等对各类碳量子点进行了氨基化改性,但是都没有通过油浴加热的方法成功制得红光碳量子点,这是发明人团队的首创。
与现有技术相比,本发明的有益效果主要体现在以下几个方面:
1、本发明利用可溶于水的多氨基化合物包裹难溶于水的含羧基卟啉化合物,从而形成外围含有大量氨基且内核为卟啉结构的红光碳量子点,该特殊组成和结构赋予其良好的水溶性。此外该红光碳量子点本身粒径较小且具有丰富的亲水性官能团,使其易于被细胞吞噬并从体内代谢出来,表现出良好的生物相容性和较低的毒性。
2、本发明制得的红光碳量子点内核为卟啉单元,具有单线态氧产生能力,可用于肿瘤的光动力治疗。
3、本发明制得的红光碳量子点具有红色荧光发射,纳米颗粒表面有很多功能基团,能与Cu2+、Fe3+等金属离子鳌合,从而改变其荧光发射,使其对特定金属离子具有检测作用,可用于生物成像和体内Cu2+、Fe3+的检测,进一步拓宽了其应用范围。
4、本发明合成方法简单,原料易得,易于工业化生产。
附图说明
图1为本发明实施例1红光碳量子点的制备过程示意图;
图2为本发明实施例1制得的红光碳量子点及其在365nm激光照射下的荧光图;
图3为本发明实施例1制得的红光碳量子点透射电镜(TEM)照片;
图4为本发明实施例1制得的红光碳量子点在水溶液中的动态光散射(DLS)谱图;
图5为本发明实施例1制得的红光碳量子点在水溶液中的吸收光谱图;
图6为本发明实施例1制得的红光碳量子点在水溶液中被不同激发波长激发产生的荧光发射谱图;
图7为本发明实施例1制得的红光碳量子点KBr压片试样的红外光谱图;
图8为本发明实施例1制得的红光碳量子点水溶液加入Cu2+后的荧光发射谱图;
图9为本发明实施例1制得的红光碳量子点水溶液在0.125mg/L浓度、445nm激光以及不同照射功率下的温度变化图;
图10为本发明实施例1制得的红光碳量子点水溶液在445nm、0.6w/cm2激光照射下不同溶液浓度的温度升高情况图;
图11为本发明实施例1制得的红光碳量子点水溶液在445nm、0.1w/cm2激光照射条件下的DCFH于522nm处的荧光变化情况图。
具体实施方式
为使本领域普通技术人员充分理解本发明的技术方案和有益效果,以下结合具体实施例及附图进行进一步说明。
本发明所述原料、仪器设备等如无特殊说明均为普通市售。
实施例1
将200mg多聚乙烯亚胺溶于10mL水中,得到浓度为20mg/mL的A液。将10mg四羧基苯基卟啉加入到A液中,得到B液。将B液超声分散30min,得到混合均匀的C液。将C液油浴加热到200℃,待其粘稠后加水继续反应,多次粘稠-加水操作后得到D液,反应时间约为2h。用截留分子量为3500Da的透析袋对D液静置所得上清液透析72h,透析所得水溶液冻干即为目标产物——红光碳量子点。整个反应过程如图1所示。
实施例2
本实施例与实施例1基本相同,不同之处在于:将多聚乙烯亚胺替换为等量的乙二胺。
实施例3
本实施例与实施例1基本相同,不同之处在于:将多聚乙烯亚胺替换为等量的对苯二胺。
实施例4
本实施例与实施例1基本相同,不同之处在于:将多聚乙烯亚胺替换为等量的精氨酸。
实施例5
本实施例与实施例1基本相同,不同之处在于:将多聚乙烯亚胺替换为等量的赖氨酸。
实施例6
本实施例与实施例1基本相同,不同之处在于:将多聚乙烯亚胺替换为等量的尿素。
实施例7
本实施例与实施例1基本相同,不同之处在于:将四羧基苯基卟啉替换为等量的单羧基苯基卟啉。
为了解本发明各个实施例制得的红光碳量子点的结构和性能,以实施例1产物为例,取样进行了各种检测,结果分别如图2-11所述。
图2为该红光碳量子点在365nm激光照射下的荧光图,从图中可以很明显的看出红色荧光。
图3和图4分别为该红光碳量子点的TEM图和在水溶液中的DLS图。从图3-4可以看出,实施例1制得的红光碳量子点得粒径为2nm左右。
对该红光碳量子点的官能团信息进行了测试,分别测得其在水溶液中的吸收光谱、以不同激发波长激发产生的荧光发射情况以及红光碳量子点固体用KBr压片后的红外光谱图,分别如图5-7所示。
图5为红光碳量子点的紫外吸收图谱,因红光碳量子点中存在卟啉结构,所以在410nm处有一个很明显的Soret带卟啉结构的紫外吸收峰,在Q带500-700nm之间包括4个吸收峰,而Soret带吸收峰的吸光系数约是Q带的10-20倍,完全符合卟啉的吸收情况。
由图6可知,在不同激发波长下该红光碳量子点的荧光发射强度发生了变化,其中最大激发波长为420nm。由图7可知,位于3418cm-1的宽峰与N-H、O-H的伸缩振动有关,2943cm-1处的小峰归属为C-H键,1740cm-1处的峰为C=O拉伸振动,1582cm-1处的谱带是C=C的伸缩振动,1384cm-1处的吸收峰归结于N=O的拉伸振动和C-N-C的不对称伸缩振动。
图8为向该红光碳量子点水溶液中加入Cu2+后的荧光发射变化图。从图中可以很明显的看出,加入Cu2+后荧光明显降低,甚至淬灭。
图9比较了红光碳量子点水溶液浓度为0.125mg/mL,在445nm激光照射下不同照射功率对应的温度变化情况。从图中可以很明显的看出,随着照射功率的逐渐增大,温度升高的越多。
图10比较了红光碳量子点水溶液在445nm、0.6w/cm2激光照射下,不同溶液浓度对应的温度升高情况。从图中可以明显看出,随着溶液浓度逐渐增大,温度升高越来越多。这是因为CDs的紫外吸收在420nm处有一个很明显的吸收峰,所以其光热活性主要表现在445nm激光照射下。
图11为红光碳量子点水溶液在445nm、0.1w/cm2激光照射下的DCFH在522nm处的荧光变化情况。从图中可以很明显的看出,在激光照射下DCFH荧光明显变大,说明CDs可以产生活性氧且产率较高。这一结果可为其在光热以及光动力治疗方面的应用提供依据。

Claims (4)

1.一种红光碳量子点的制备方法,其特征在于该方法包括以下步骤:首先将多氨基化合物与溶剂混合使其溶解,再加入含羧基卟啉化合物并超声分散,由此得到反应液,然后采用油浴的方式加热反应液至反应温度维持在180-200℃之间,待其粘稠后补加溶剂,补加溶剂数次后停止加热并静置,分离出上清液后进行透析处理,将透析所得溶液干燥,最终得到具有核壳结构的红光碳量子点;所述多氨基化合物具体为多聚乙烯亚胺,所述含羧基卟啉化合物具体为四羧基苯基卟啉,所述溶剂具体为水。
2.如权利要求1所述的方法,其特征在于:反应液中多氨基化合物的浓度为5-50mg/mL,含羧基卟啉化合物的浓度为0.25-2.5mg/mL。
3.如权利要求1所述的方法,其特征在于:透析的截留分子量为3000Da-6500Da,所述干燥具体为冻干。
4.一种红光碳量子点,其特征在于:该红光碳量子点按照权利要求1-3中的任意一种方法制备得到。
CN202111231037.1A 2021-10-22 2021-10-22 一种红光碳量子点及其制备方法 Active CN114015437B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111231037.1A CN114015437B (zh) 2021-10-22 2021-10-22 一种红光碳量子点及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111231037.1A CN114015437B (zh) 2021-10-22 2021-10-22 一种红光碳量子点及其制备方法

Publications (2)

Publication Number Publication Date
CN114015437A CN114015437A (zh) 2022-02-08
CN114015437B true CN114015437B (zh) 2023-08-01

Family

ID=80056978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111231037.1A Active CN114015437B (zh) 2021-10-22 2021-10-22 一种红光碳量子点及其制备方法

Country Status (1)

Country Link
CN (1) CN114015437B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806555B (zh) * 2022-04-28 2023-04-11 武汉工程大学 一种含过渡金属的硼掺杂碳量子点及其制备方法、应用
CN115025220B (zh) * 2022-06-22 2023-07-18 福州大学 一种提高光敏剂生物相容性的改性方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109468130B (zh) * 2018-12-27 2021-12-03 武汉工程大学 一种金属掺杂的荧光碳量子点的制备方法

Also Published As

Publication number Publication date
CN114015437A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
Zhou et al. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy
CN114015437B (zh) 一种红光碳量子点及其制备方法
Lee et al. A boronic acid-functionalized phthalocyanine with an aggregation-enhanced photodynamic effect for combating antibiotic-resistant bacteria
Tao et al. A new type of polymer carbon dots with high quantum yield: From synthesis to investigation on fluorescence mechanism
Zhao et al. Synthesis of metal–organic framework nanosheets with high relaxation rate and singlet oxygen yield
Xue et al. Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy
Wang et al. Imaging‐guided pH‐sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near‐infrared light
Zhao et al. Multifunctional core–shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells
US10981139B2 (en) Semiconductor quantum dot and method of carrying out chemical reaction or photoluminescence reaction by using the same
CN103896251B (zh) 一种水溶性碳量子点生物显影剂的制备方法
CN113773667B (zh) 有机小分子近红外二区荧光染料及其制备方法和应用
CN106474474B (zh) 一种基于肽和光敏剂的光热纳米粒子、其制备方法和用途
Li et al. The preparation, optical properties and applications of carbon dots derived from phenylenediamine
Huo et al. Review of long wavelength luminescent carbon-based nanomaterials: preparation, biomedical application and future challenges
Wang et al. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis
Roeinfard et al. Preparation and characterization of selenium‐decorated graphene quantum dots with high afterglow for application in photodynamic therapy
Qin et al. Recent advances in red-emissive carbon dots and their biomedical applications
Shi et al. Hydrophobic carbon dots derived from organic pollutants and applications in NIR anticounterfeiting and bioimaging
CN111569068B (zh) 一种有机无机杂化光敏剂及杂化纳米诊疗试剂的制备方法
CN115818621B (zh) 一种具有近红外二区光发射特性的生物质衍生碳纳米粒子及其制备方法与应用
Grinceviciute et al. Functional two-dimensional nanoarchitectures based on chemically converted graphene oxide and hematoporphyrin under the sulfuric acid treatment
CN110343525B (zh) 一种稀土离子直接激发有机分子三线态的方法
CN110437239B (zh) 装载四-(n-甲基烯丙基胺)酞菁化合物的金属有机框架材料及制备方法和应用
CN108752357B (zh) 具有高光热转换效率的水溶性酞菁纳米材料的制备方法及应用
Huang et al. Synthesis and characterization of folic acid labeled upconversion fluorescent nanoprobes for in vitro cancer cells targeted imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant