CN114014671B - 一种氮化硅基陶瓷天线罩制备方法 - Google Patents

一种氮化硅基陶瓷天线罩制备方法 Download PDF

Info

Publication number
CN114014671B
CN114014671B CN202111334039.3A CN202111334039A CN114014671B CN 114014671 B CN114014671 B CN 114014671B CN 202111334039 A CN202111334039 A CN 202111334039A CN 114014671 B CN114014671 B CN 114014671B
Authority
CN
China
Prior art keywords
sintering
variable
density
supporting layer
porous supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111334039.3A
Other languages
English (en)
Other versions
CN114014671A (zh
Inventor
史见
魏挺
罗铭宇
惠祝祝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Guohong Jiuhe Technology Co ltd
Original Assignee
Xi'an Guohong Jiuhe Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Guohong Jiuhe Technology Co ltd filed Critical Xi'an Guohong Jiuhe Technology Co ltd
Priority to CN202111334039.3A priority Critical patent/CN114014671B/zh
Publication of CN114014671A publication Critical patent/CN114014671A/zh
Application granted granted Critical
Publication of CN114014671B publication Critical patent/CN114014671B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • C04B2235/775Products showing a density-gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种氮化硅基陶瓷天线罩制备方法,利用增材制造成型以氮化硅陶瓷为基体材料得到胚体,将获取的坯体进行烧结成型得到天线罩初始结构,天线罩初始结构内部设置有变密度多孔支撑层,采用化学气相沉积或溶胶凝胶法变密度多孔支撑层进行填充,获得氮化硅基陶瓷天线罩,本发明采用氮化硅陶瓷为基体材料成形性能好,烧结线收缩小于0.7%,并在天线罩初始结构内部设置有变密度多孔支撑层,采用可控密度法制备得到多倍宽频带天线罩,采用化学气相沉积或溶胶凝胶法变密度多孔支撑层进行填充,实现异质材料、特异结构的“双梯度分布”,同时可控制构件透波性能,可控制梯度结构,使得天线罩的透波性、结构强度与耐热性等多功能性达到最优化。

Description

一种氮化硅基陶瓷天线罩制备方法
技术领域
本发明属于陶瓷增材制造技术领域,涉及一种氮化硅基陶瓷天线罩制备方法。
背景技术
天线罩是飞行器的一个重要部件,它位于飞行器最前端,为了保证各种飞行器的飞行速度,一般天线罩呈流线形状,天线罩应具有导流、防热、透波、承载等多种功能,主要保护飞行器在恶劣环境条件下的通讯、遥测、制导等系统能正常工作。
天线罩作为飞行器的重要构件之一,不仅影响着其制导能力,同时其还直接影响着飞行器的载荷与速度,进而对其打击能力也有着重要的影响。当其在海平面高度以8~12Ma飞行时,其天线罩表面温度将达到2000℃以上,这不仅对天线罩的高温透波性(介电常数ε<10,约为2.5、介电损耗tan<0.001)等提出了严苛要求,同时对其高超速飞行的抗气流冲刷、耐热性及抗热冲击和结构强度等均提出了更高的要求,目前树脂基材料、微晶玻璃、石英、Al2O3等材料均无法达到相关的性能需求,性能更好的氮化硅基陶瓷目前也被应用到天线罩增材打印过程中,但是单一的结构无法满足透波性、耐热性能要求。为获得透波性、结构强度与耐热性等多功能性的最优化,要求制备出具有由表面到内部具有以氮化硅基陶瓷为基体的复合陶瓷天线罩,这对提升我国超音速导弹天线罩材料性能和制造水平具有重大意义,而这将使天线罩的成形制造面临诸多挑战。
发明内容
本发明的目的在于提供一种氮化硅基陶瓷天线罩制备方法,以克服现有技术的不足。
为达到上述目的,本发明采用如下技术方案:
一种氮化硅基陶瓷天线罩制备方法,包括以下步骤:
S1,根据待成型天线罩成型切片,利用增材制造成型以氮化硅陶瓷为基体材料得到胚体;
S2,将获取的坯体进行烧结成型得到天线罩初始结构,天线罩初始结构内部设置有变密度多孔支撑层,采用化学气相沉积或溶胶凝胶法变密度多孔支撑层进行填充,获得氮化硅基陶瓷天线罩。
进一步的,胚体结构包括耐热陶瓷层和变密度多孔支撑层,变密度多孔支撑层位于耐热陶瓷层内侧。
进一步的,变密度多孔支撑层为开放式支撑结构
进一步的,胚体中耐热陶瓷层内的变密度多孔支撑层内层致密度大于外层致密度。
进一步的,变密度支撑层由氮化硅点阵成型,密度由外至内逐渐降低;致密陶瓷层与变密度支撑层的平均密度差异大于1.0g/cm3
进一步的,耐热陶瓷层层厚为1mm~5mm,致密度不低于80%。
进一步的,采用共烧结或共处理方法进行一体化烧结。
进一步的,将成型的胚体放入烧结炉中,采用助烧填充,充入氮气至0.3MPa以上,随后升温至烧结温度1600℃-1800℃,并利用助烧填充的热性能差异或对微波的吸收性能差异实现天线罩不同结构在不同温度下烧结,烧结完成后随炉冷却,得到天线罩初始结构。
进一步的,助烧填充材料采用碳化硅、碳化钛、氮化铝等高温陶瓷半导体粉体中的一种或几种。
进一步的,助烧填充材料的粉体形貌可采用造粒球形粉、空心微球、实体粉末中的一种或几种,其粒径为0.5μm~50μm。
与现有技术相比,本发明具有以下有益的技术效果:
本发明一种氮化硅基陶瓷天线罩制备方法,根据待成型天线罩成型切片,利用增材制造成型以氮化硅陶瓷为基体材料得到胚体,将获取的坯体进行烧结成型得到天线罩初始结构,天线罩初始结构内部设置有变密度多孔支撑层,采用化学气相沉积或溶胶凝胶法变密度多孔支撑层进行填充,获得氮化硅基陶瓷天线罩,本发明采用氮化硅陶瓷为基体材料成形性能好,烧结线收缩小于0.7%,并在天线罩初始结构内部设置有变密度多孔支撑层,采用可控密度法制备得到多倍宽频带天线罩,采用化学气相沉积或溶胶凝胶法变密度多孔支撑层进行填充,实现异质材料、特异结构的“双梯度分布”,同时可控制构件透波性能,可控制梯度结构,使得天线罩的透波性、结构强度与耐热性等多功能性达到最优化。
进一步的,利用助烧填充的热性能差异或对微波的吸收性能差异实现天线罩不同结构在不同温度下烧结,可定制不同的梯度结构,使得介电常数≤3.5,介电损耗≤0.01。
附图说明
图1为本发明实施例中天线罩成型剖面示意图。
图2为本发明实施例中氮化硅基陶瓷天线罩成型立体图。
图3为本发明实施例中氮化硅基陶瓷天线罩成型实物图。
具体实施方式
下面结合附图对本发明做进一步详细描述:
一种氮化硅基陶瓷天线罩制备方法,包括以下步骤:
S1,根据待成型天线罩成型切片,利用增材制造成型以氮化硅陶瓷为基体材料得到胚体;
以氮化硅陶瓷为基体材料,采用陶瓷增材制造技术制备得到胚体;胚体结构包括耐热陶瓷层和变密度多孔支撑层,变密度多孔支撑层位于耐热陶瓷层内侧,变密度多孔支撑层为开放式支撑结构,即变密度多孔支撑层设有连通其内部的通孔,使其自身形成透孔结构;
所成型的胚体中耐热陶瓷层内的变密度多孔支撑层内层致密度大于外层致密度;其中所述变密度支撑层由氮化硅点阵成型,密度由外至内逐渐降低;其中,致密陶瓷层与变密度支撑层的平均密度差异大于1.0g/cm3
耐热陶瓷层层厚为1mm~5mm,致密度不低于80%。
S2,将获取的坯体进行烧结成型得到天线罩初始结构,天线罩初始结构内部为变密度多孔支撑层,采用化学气相沉积或溶胶凝胶法对变密度多孔支撑层进行填充,获得氮化硅基陶瓷天线罩。
烧结采用共烧结或共处理方法进行一体化烧结。
共烧结或共处理的方法具体为:将成型的胚体放入气氛炉或微波烧结炉中,根据天线罩胚体不同区域的密度差异选择不同性质的助烧物质填充或直接采用相同材质不同堆垛密度的助烧填充,充入氮气至0.3MPa以上,随后升温至烧结温度1600℃-1800℃,并利用助烧填充的热性能差异或对微波的吸收性能差异实现天线罩不同结构在不同温度下烧结,烧结完成后随炉冷却,得到天线罩初始结构。采用相同材质不同堆垛密度的助烧填充,如微波烧结时需要较小烧结变形的区域采用低微波吸收的物质作为填料,由于其微波能吸收少,发热量低,产生的热量小;而需要较大烧结变形的区域则采用高微波吸收的物质作为填料,由于其微波能吸收高,发热量高,产生的热量高;在不同的区域采用不同的填充物质即可实现对复杂构件不同区域烧结收缩的精确控制。
助烧填充材料采用碳化硅、碳化钛、氮化铝等高温陶瓷半导体粉体中的一种或几种,助烧填充材料的粉体形貌可采用造粒球形粉、空心微球、实体粉末中的一种或几种,其粒径为0.5μm~50μm。
具体的,采用化学气相沉积或溶胶凝胶法对开放式支撑结构进行隔热透波填充,隔热透波填充材质采用SiO2,Si3N4,BN气凝胶中的一种或几种复合;经填充后,即获得最终的天线罩结构。
本发明以氮化硅陶瓷作为基体材料,采用陶瓷增材制造技术对氮化硅基陶瓷天线罩进行成形,可以实现氮化硅基复合陶瓷增材制造,使天线罩耐温最高达2000℃。由外至内由致密层到变密度多孔支撑层,其中所述变密度支撑层氮化硅点阵密度由外至内逐渐降低;其中,致密陶瓷层与变密度支撑层的平均密度差异大于1.0g/cm3,独有的配方设计,使得天线罩成形性能好,烧结线收缩小于0.7%。本发明形成的天线罩结构一体近净成形,指零件成形后仅需少量加工或不再加工,就可用作构件的成形技术。
将所成形的陶瓷天线罩坯体或需处理样件放入气氛炉或微波烧结炉中,根据天线罩不同区域的密度差异选择不同性质的助烧填充或直接采用相同材质不同堆垛密度的助烧填充,充入氮气至0.3MPa以上,随后升温至烧结温度1600℃-1800℃,并利用助烧填充的热性能差异或对微波的吸收性能差异实现天线罩不同结构在不同温度下烧结,可定制不同的梯度结构,使得介电常数≤3.5,介电损耗≤0.01。
将所得到的陶瓷天线罩结构放入气相沉积平台中进行处理,对其内部孔洞进行隔热透波填充,所述隔热透波填充,采用化学气相沉积或溶胶凝胶方法将变密度支撑层中的空位填充,材质包括但不限于SiO2,Si3N4,BN气凝胶中的一种或几种复合,可实现异质材料、特异结构“双梯度分布”,最终实现定制天线罩透波性能。
在三维制图软件中导入待成型的天线罩零件模型,按照待成型零件的实际透波性能要求与相应的介电常数梯度要求,通过调整待成型零件在空间坐标中的角度、高度以及内部特征,进行修改零件,得到具有变密度多孔支撑层的氮化硅基陶瓷天线罩复杂结构,变密度多孔支撑层结构由外至内由致密层到变密度多孔支撑层,其中所述变密度支撑层氮化硅点阵密度由外至内逐渐降低;其中,致密陶瓷层与变密度支撑层的平均密度差异大于1.0g/cm3。耐热陶瓷层,层厚在1mm~5mm,致密度不低于80%。
如图1、图2所示,按照修改后的氮化硅基陶瓷天线罩复杂结构特征放置待成型零件,采用陶瓷增材制造技术一体成形,耐热陶瓷层及变密度支撑层;以氮化硅陶瓷作为基体材料,采用陶瓷增材制造技术对氮化硅基陶瓷天线罩进行成形,得到复杂氮化硅基陶瓷天线罩;
复杂氮化硅基陶瓷天线罩,其烧结采用共烧结或共处理方法进行一体化烧结。共烧结或共处理方法,其具体操作如下,将所成形的复杂氮化硅基陶瓷天线罩放入气氛炉或微波烧结炉中。根据天线罩不同区域的密度差异选择碳化硅、碳化钛进行助烧填充,充入氮气至0.5MPa,随后升温至烧结温度1750℃,并利用碳化硅、碳化钛的热性能差异实现天线罩不同结构在不同温度下烧结,烧结完成后随炉冷却,得到复杂氮化硅基陶瓷天线罩结构。
将所得到的复杂氮化硅基陶瓷天线罩结构放入气相沉积平台中进行处理,采用SiO2和Si3N4气凝胶复合物对其内部孔洞进行隔热透波填充,采用化学气相沉积方法将变密度支撑层中的空位填充,经填充后,即获得最终的轻质复杂结构天线罩,如图3所示,其10GHz下的介电常数相较于传统的致密天线罩材料可降低约40%以上,同时与传统天线罩相比,具有传统天线罩所不具备的宽频域透波性能。

Claims (1)

1.一种氮化硅基陶瓷天线罩制备方法,其特征在于,包括以下步骤:
S1,根据待成型天线罩成型切片,以氮化硅陶瓷为基体材料,采用陶瓷增材制造技术制备得到坯体;坯体结构包括耐热陶瓷层和变密度多孔支撑层,变密度多孔支撑层位于耐热陶瓷层内侧,变密度多孔支撑层为开放式支撑结构,即变密度多孔支撑层设有连通其内部的通孔,使其自身形成透孔结构;坯体中耐热陶瓷层内的变密度多孔支撑层内层致密度大于外层致密度,所述变密度多孔支撑层由氮化硅点阵成型,密度由外至内逐渐降低;
具体包括以下步骤:在三维制图软件中导入待成型的天线罩零件模型,按照待成型零件的实际透波性能要求与相应的介电常数梯度要求,通过调整待成型零件在空间坐标中的角度、高度以及内部特征,进行修改零件,得到具有变密度多孔支撑层的氮化硅基陶瓷天线罩复杂结构变密度多孔支撑层;
S2,将获取的坯体采用共烧结或共处理方法进行一体化烧结成型得到天线罩初始结构,天线罩初始结构内部设置有变密度多孔支撑层,变密度多孔支撑层为开放式支撑结构变密度多孔支撑层;耐热陶瓷层层厚为1mm~5mm,致密度不低于80%;耐热陶瓷层与变密度多孔支撑层的平均密度差异大于1.0g/cm3
采用化学气相沉积或溶胶凝胶法对开放式支撑结构进行隔热透波填充,隔热透波填充材质采用SiO2,Si3N4,BN气凝胶中的一种或几种复合;经填充后,即获得最终的天线罩结构;
采用共烧结或共处理方法进行一体化烧结成型得到天线罩初始结构具体包括以下步骤:将获取的坯体放入气氛炉或微波烧结炉中,根据天线罩坯体不同区域的密度差异选择不同性质的助烧物质填充或直接采用相同材质不同堆垛密度的助烧填充,充入氮气至0.3MPa以上,随后升温至烧结温度1600℃-1800℃,并利用助烧填充的热性能差异或对微波的吸收性能差异实现天线罩不同结构在不同温度下烧结,烧结完成后随炉冷却,得到天线罩初始结构;助烧填充材料采用碳化硅、碳化钛、氮化铝粉体中的一种或几种,助烧填充材料的粉体形貌采用造粒球形粉,其粒径为0.5μm~50μm。
CN202111334039.3A 2021-11-11 2021-11-11 一种氮化硅基陶瓷天线罩制备方法 Active CN114014671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111334039.3A CN114014671B (zh) 2021-11-11 2021-11-11 一种氮化硅基陶瓷天线罩制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111334039.3A CN114014671B (zh) 2021-11-11 2021-11-11 一种氮化硅基陶瓷天线罩制备方法

Publications (2)

Publication Number Publication Date
CN114014671A CN114014671A (zh) 2022-02-08
CN114014671B true CN114014671B (zh) 2024-01-12

Family

ID=80063618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111334039.3A Active CN114014671B (zh) 2021-11-11 2021-11-11 一种氮化硅基陶瓷天线罩制备方法

Country Status (1)

Country Link
CN (1) CN114014671B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931483A (zh) * 2012-11-09 2013-02-13 北京大学 一种高温宽频对称梯度多孔氮化硅天线罩结构
CN102916251A (zh) * 2012-11-09 2013-02-06 北京大学 一种高温宽频梯度多孔氮化硅天线罩结构
EP3908446A4 (en) * 2019-01-09 2022-03-09 Aselsan Elektronik Sanayi ve Ticaret Anonim Sirketi THREE-DIMENSIONAL PRINTING OF MULTI-LAYER CERAMIC MISSILE RADOMES USING INTER-LAYER TRANSITION MATERIALS
CN111244628A (zh) * 2020-03-17 2020-06-05 上海无线电设备研究所 一种耐高温宽频透波陶瓷天线罩结构及其制备方法
CN111525257A (zh) * 2020-06-03 2020-08-11 湖南航天环宇通信科技股份有限公司 一种5g基站毫米波天线罩及其制造方法

Also Published As

Publication number Publication date
CN114014671A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
CN106699209B (zh) 连续氧化铝纤维增强氧化铝陶瓷基复合材料的制备方法
CN104496508B (zh) 基于光固化3D打印的SiC陶瓷基涡轮叶片的制造方法
CN106588074B (zh) 一种注浆成型结合真空发泡工艺制备梯度多孔陶瓷的方法
EP1359133A1 (en) Porous ceramic and method for preparation thereof, and microstrip substrate
CN105198475A (zh) 一种制备复杂形状多孔氮化硅陶瓷制品的方法
CN109786961A (zh) 一种耐高温频率选择表面天线罩及制备方法
CN107698260A (zh) 一种陶瓷3d打印成型的方法
CN107602127B (zh) SiC空心球及其制备方法
CN103266470A (zh) 一种碳纤维抗氧化涂层及其制备方法
CN105237044A (zh) 多孔纤维状ZrO2陶瓷隔热材料表面的TaSi2-SiO2-BSG高发射率涂层及制备方法
CN114773082B (zh) 一种对称连续梯度结构氮化硅陶瓷天线罩及制备方法
CN112500180A (zh) 氮化物纤维增强陶瓷基透波复合材料及其精密成型方法
CN114014671B (zh) 一种氮化硅基陶瓷天线罩制备方法
CN113248263B (zh) Si3N4w/Si预制体及利用该预制体制备Si3N4w/Si3N4复合材料的方法
CN101734925A (zh) 可控气孔率的氮化硅多孔陶瓷及制备方法
JP2018002556A (ja) セラミック複合体、飛翔体用レドーム、セラミック複合体の製造方法及び飛翔体用レドームの製造方法
CN112940445A (zh) 一种陶瓷微球改性碳纤维预制体增强硅氧碳-酚醛复合材料及其制备方法
CN104844250A (zh) 一种耐高温多孔夹层透波材料及其制备方法
CN114436671B (zh) 一种泡沫陶瓷基干涉型吸波材料及其制备方法
CN114853480B (zh) 一种高温透波氮化物复合材料天线罩的低成本快速制备方法
CN107056335B (zh) 一种多孔陶瓷表面致密氮化硅涂层及其制备方法
CN105819866A (zh) 一种制备氮化硅—二氧化硅梯度透波复相陶瓷的方法
CN109231996B (zh) 氮化硼-氮化硅夹层宽频透波材料及其制备方法
CN114957742A (zh) 一种刚性纳米孔树脂基复合材料及其制备方法
KR20160003764A (ko) 정밀 주조용 중자 및 그 제조 방법, 정밀 주조용 주형

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Shi Jian

Inventor after: Wei Ting

Inventor after: Luo Mingyu

Inventor after: Hui Zhuzhu

Inventor before: Wei Ting

Inventor before: Shi Jian

Inventor before: Luo Mingyu

Inventor before: Hui Zhuzhu

CB03 Change of inventor or designer information
TA01 Transfer of patent application right

Effective date of registration: 20231207

Address after: Room A3-109, Weiyang Aerospace Science and Technology Industrial Park, No. 21 Hongqi East Road, Weiyang District, Xi'an City, Shaanxi Province, 710021

Applicant after: Xi'an Guohong Jiuhe Technology Co.,Ltd.

Address before: No.1 Workshop of Xihang construction machinery factory, No.25 Hongqi Road, Weiyang District, Xi'an City, Shaanxi Province, 710075

Applicant before: XI'AN SKYWING AERONAUTIC 3D PRINGING TECHNOLOGY CO.,LTD.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant