CN114011450A - 一种g-C3N4负载PDI的有机光催化剂的制备方法及其应用 - Google Patents

一种g-C3N4负载PDI的有机光催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN114011450A
CN114011450A CN202111313290.1A CN202111313290A CN114011450A CN 114011450 A CN114011450 A CN 114011450A CN 202111313290 A CN202111313290 A CN 202111313290A CN 114011450 A CN114011450 A CN 114011450A
Authority
CN
China
Prior art keywords
pdi
organic photocatalyst
preparation
stirring
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111313290.1A
Other languages
English (en)
Inventor
蒋文功
朱欲翔
郭奇
施敏
陈嘉玮
刘津媛
施国斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wetown Electric Group Co Ltd
Original Assignee
Wetown Electric Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wetown Electric Group Co Ltd filed Critical Wetown Electric Group Co Ltd
Priority to CN202111313290.1A priority Critical patent/CN114011450A/zh
Publication of CN114011450A publication Critical patent/CN114011450A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0245Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
    • B01J31/0247Imides, amides or imidates (R-C=NR(OR))
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种g‑C3N4负载PDI的有机光催化剂的制备方法及其应用,通过将单体PDI在不同形貌的g‑C3N4上发生原位自组装,通过两者之间的π‑π相互作用构建n‑n型异质结,从而促进界面间的电荷分离并拓宽g‑C3N4的可见响应范围,改善其光催化降解环境水体酚类污染物性能。将PDI与g‑C3N4溶于丙酮后,通过滴加一定浓度的盐酸从而使单体PDI发生自组装形成超分子纳米材料,此方法旨在将结构形貌可控、性能优异的纳米级功能材料g‑C3N4与PDI形成异质结结构,加速电荷分离,拓宽了g‑C3N4的光谱响应范围,从而实现高效的可见光催化氧化活性,本发明具有效率高,简单,经济等优点。

Description

一种g-C3N4负载PDI的有机光催化剂的制备方法及其应用
技术领域
本发明属于环境治理、材料制备技术领域,特别涉及一种g-C3N4负载PDI的有机光催化剂的制备方法及其应用。
背景技术
随着经济社会的发展,环境污染带来健康问题逐渐引起了人们的关注,特别是水污染已成为影响人类健康的全球性问题。水体中的有机污染物,内分泌干扰物,农药,染料等,即使浓度很低也对生态环境和人类造成极大的损害。然而,常规的水处理技术已不能满足有效水净化的需求。基于半导体的光催化技术被认为是解决环境污染问题有前途的技术,包括有机污染物的分解、重金属还原、细菌灭活等。半导体光催化剂可以利用紫外线或可见光形成多种活性物质来产生能量、灭活病原体和降解污染物。当前光催化技术所面临的科学问题主要是开发高效、稳定、可见光响应的光催化剂。
与无机光催化剂相比,有机光催化剂具有很多优势,例如丰富的元素储量、可调的结构、不含有毒金属、低成本等。近年来,氮化碳(g-C3N4)作为一种典型的n型有机半导体,由于其具有合适的可见光带隙(2.7 eV),良好的光响应,良好的热化学稳定性,低成本和环境友好性,已成为光催化中广泛使用的有机半导体材料。然而,g-C3N4的比表面积低、反应位点有限、光诱导电子和空穴复合率高等缺点制约了g-C3N4的进一步实际应用。为了提高g-C3N4的光催化活性,常用的方法有掺杂杂原子、与其他半导体形成异质结构的、使用导电材料对各种微观结构进行耦合等。
苝二酰亚胺(PDI)是一种新型的n型有机半导体,可通过氢键和π-π堆积自组装成超分子纳米纤维。由于高稳定性、快速电荷迁移率和光谱响应范围广的特点在污染物降解、释氧和抗癌领域有着广泛的应用。
发明内容
针对现有技术的不足,本发明提供了一种g-C3N4负载PDI的有机光催化剂的制备方法及其应用,通过将PDI与g-C3N4复合,形成了一种有效的、环保的PDI/g-C3N4异质结,克服了原始g-C3N4可见光响应有限和活性位点较少的缺点,产生更多的光生载流子,并进一步提高光催化降解环境水体酚类污染物性能。
为解决现有技术问题,本发明采取的技术方案为:
一种g-C3N4负载PDI的有机光催化剂的制备方法,具体步骤如下:
(1)取5-40 mg PDI(全称为:N,N'-双(3-戊基)苝-3,4,9,10-双(二甲酰亚胺))溶于25-200 mL丙酮中,加入40-320 μL三乙醇胺,搅拌并超声使PDI均匀溶解,形成红色溶液;
(2)将100 mg的g-C3N4分散在30 mL丙酮中,超声均匀后,与步骤(1)中红色溶液进行复合,搅拌并超声至混合均匀,滴加盐酸,搅拌至样品析出;
(3)对步骤(2)的混合溶液进行抽滤,所得样品水洗至中性,在60℃条件下真空干燥,得到g-C3N4负载PDI的有机光催化剂。
作为改进的是,步骤(2)中所述盐酸的浓度为1-4 mol/L,滴加量根据暗红色固体PDI析出情况进行调整;所述搅拌时间为4-5 h,超声的频率为40 KHz,超声处理时间为1-2h。
作为改进的是,步骤(3)中所述真空干燥处理时间为15-20 h。
作为改进的是,所述的g-C3N4为介孔g-C3N4(mpg-C3N4)、有序介孔g-C3N4(ompg-C3N4)、g-C3N4纳米棒、g-C3N4纳米片或者g-C3N4空心球(HCNS)中的任一种。
作为改进的是,所述的g-C3N4的形貌为棒状、片状、球状、或管状。
上述任一种g-C3N4负载PDI的有机光催化剂在光催化降解抗生素或酚类污染物上的应用。
有益效果:
与现有技术相比,本发明一种g-C3N4负载PDI的有机光催化剂的制备方法及其应用,将结构形貌可控、性能优异的纳米级功能材料g-C3N4与PDI形成异质结结构,发生原位自组装,通过两者之间的π-π相互作用构建n-n型异质结,即形成了一种有效的、环保的PDI/g-C3N4异质结,克服了原始g-C3N4可见光响应有限和活性位点较少的缺点,加速电荷分离,产生更多的光生载流子,拓宽了g-C3N4的光谱响应范围,从而实现高效的可见光催化氧化活性,并进一步提高光催化降解环境水体酚类污染物性能,具有效率高,简单,经济等优点。
附图说明
图1为不同有机光催化剂降解BPA的活性图;
图2不同有机光催化剂降解TC-H活性图。
具体实施方式
一种g-C3N4负载PDI的有机光催化剂的制备方法,具体步骤如下:
(1)取5-40 mg PDI溶于25-200 mL丙酮中,加入40-320 μL三乙醇胺,搅拌并超声使PDI均匀溶解,形成红色溶液;
(2)将100 mg的g-C3N4分散在30 mL丙酮中,超声均匀后,与步骤(1)中红色溶液进行复合,搅拌并超声至混合均匀,滴加盐酸,搅拌至样品析出;
(3)对步骤(2)的混合溶液进行抽滤,所得样品水洗至中性,在60℃条件下真空干燥,得到g-C3N4负载PDI的有机光催化剂。
作为改进的是,步骤(2)中所述盐酸的浓度为1-4 mol/L,滴加量根据暗红色固体PDI析出情况进行调整;所述搅拌时间为4-5h,超声的频率为40KHz,超声处理时间为1-2h。
作为改进的是,步骤(3)中所述真空干燥处理时间为15-20 h。
作为改进的是,所述的g-C3N4为介孔g-C3N4(mpg-C3N4)、有序介孔g-C3N4(ompg-C3N4)、g-C3N4纳米棒、g-C3N4纳米片或者g-C3N4空心球(HCNS)中的任一种。
实施例1
首先,称取20 mg PDI加入到50 mL丙酮中,使用移液枪移取80 μL三乙醇胺加入到烧杯中,搅拌并超声30 min直至完全溶解,形成红色溶液;
将100 mg的介孔g-C3N4(mpg-C3N4)分散在30 mL丙酮中,超声均匀后,加入上述烧杯中与PDI复合,搅拌4 h,40 KHz下超声1 h至混合均匀,缓慢滴加1 mol/L的盐酸250 mL红色固体不溶物出现;
使用减压蒸馏真空泵进行抽滤来收集样品,并用去离子水洗涤,随后使用真空干燥箱60℃下干燥15 h,所得的样品即为PDI负载在mpg-C3N4上的有机光催化剂。(此样品为20wt.% PDI/mpg-C3N4)。
按照上述方法制备10 wt.% PDI/mpg-C3N4,30 wt.% PDI/mpg-C3N4,备用。
实施例2
首先,称取30 mg PDI加入到150 mL丙酮中,移液枪移取240 μL三乙醇胺加入到烧杯中,搅拌并超声30 min直至完全溶解,形成红色溶液;
将100 mg g-C3N4空心球(HCNS)分散在30 mL丙酮中,超声均匀后,加入上述烧杯中与PDI复合,搅拌4 h,40 KHz下超声1 h至混合均匀,缓慢滴加2 mol/L的盐酸250 mL红色固体不溶物出现;
使用减压蒸馏真空泵进行抽滤来收集样品,并用去离子水洗涤,随后使用真空干燥箱60℃下干燥15 h,所得的样品即为PDI负载在不同形貌的HCNS上的有机光催化剂。(此样品为30 wt.% PDI/ HCNS)
实施例3
首先,称取40 mg的PDI加入到200 mL丙酮中,移液枪移取320 μL三乙醇胺加入到烧杯中,搅拌并超声30 min直至完全溶解,形成红色溶液;
将100 mg有序介孔g-C3N4(ompg-C3N4)分散在30 mL丙酮中,超声均匀后,加入上述烧杯中与PDI复合,搅拌5 h,40KHz下超声2 h至混合均匀,缓慢滴加3 mol/L的盐酸250 mL红色固体不溶物出现;
使用减压蒸馏真空泵进行抽滤来收集样品,并用去离子水洗涤,随后使用真空干燥箱干燥15 h。所得的样品即为PDI负载在ompg-C3N4上的有机光催化剂。(此样品为40 wt.%PDI/ ompg-C3N4
性能检测
降解BPA(双酚A的缩写,属于酚类污染物)的步骤如下:
以20 mg/L BPA为目标污染物,评价了20 wt.% PDI/mpg-C3N4的光催化活性。将25mg的材料置于光催化反应器中,在300 W在氙灯下光降解50 mL BPA(λ > 400 nm)。采用流动冷却水系统使温度维持在30 ℃以避免热催化。氙灯照射前,将溶液磁搅拌30 min,使光催化剂在材料表面达到吸附-脱附平衡。开灯后,在一定的时间间隔内(实例中间隔时间为30 min),取1mL溶液,离心并通过0.2 μm聚醚砜过滤去除颗粒,用于后续分析。采用高效液相色谱对BPA的浓度进行定量分析(HPLC, Agilent,1260 Infinity)和C18色谱柱(250 mm× 4.6 mm,粒径5 μm)进行分离,流动相是混合的甲醇/水(体积比25:75)。
降解TC-H的步骤如下:
以10 mg/L TC为目标污染物,评价了20 wt.% PDI/mpg-C3N4的光催化活性。将10mg的材料置于光催化反应器中,在300 W在氙灯下光降解50 mL TC(λ > 400 nm)。采用流动冷却水系统使温度维持在30℃以避免热催化。氙灯照射前,将溶液磁搅拌30 min,使光催化剂在材料表面达到吸附-脱附平衡。开灯后,在一定的时间间隔内(实例中间隔时间为15min),取3 mL溶液,离心并通过0.2 μm聚醚砜过滤去除颗粒,用于后续分析。用紫外-可见分光光度计在最大吸收波长356 nm下测定目标污染物的浓度变化。
上述两种测试,结果如图1和图2所示。从图1和图2中可以看出,与g-C3N4单体相比,将g-C3N4优化为mpg-C3N4,并将PDI负载在mpg-C3N4后,有效的提高其光催化降解污染物的性能。20 wt.% PDI/mpg-C3N4降解BPA和TC-H的降解率分别可以达到90%、67.5%。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。

Claims (6)

1.一种g-C3N4负载PDI的有机光催化剂的制备方法,其特征在于,具体步骤如下:
(1)取5-40 mg PDI溶于25-200 mL丙酮中,加入40-320 μL三乙醇胺,搅拌并超声使PDI均匀溶解,形成红色溶液;
(2)将100 mg g-C3N4分散在30 mL丙酮中,超声均匀后,与步骤(1)中红色溶液进行复合,搅拌并超声至混合均匀,滴加盐酸,搅拌至样品析出;
(3)对步骤(2)的混合溶液进行抽滤,所得样品水洗至中性,在60 ℃条件下真空干燥,得到g-C3N4负载PDI的有机光催化剂。
2.根据权利要求1所述的g-C3N4负载PDI的有机光催化剂的制备方法,其特征在于,步骤(2)中所述盐酸的浓度为1-4mol/L,滴加量根据暗红色固体PDI析出情况进行调整;所述搅拌时间为4-5 h,超声的频率为40 KHz,超声处理时间为1-2h。
3.根据权利要求1所述的g-C3N4负载PDI的有机光催化剂的制备方法,其特征在于,步骤(3)中所述真空干燥处理时间为15-20 h。
4.根据权利要求1所述的g-C3N4负载PDI的有机光催化剂的制备方法,其特征在于,所述的g-C3N4为介孔g-C3N4、有序介孔g-C3N4、g-C3N4纳米棒、g-C3N4纳米片或者g-C3N4空心球中的任一种。
5.根据权利要求1所述的g-C3N4负载PDI的有机光催化剂的制备方法,其特征在于,所述的g-C3N4的形貌为棒状、片状、球状、或管状。
6.基于权利要求1-5中任一种g-C3N4负载PDI的有机光催化剂在光催化降解抗生素或酚类污染物上的应用。
CN202111313290.1A 2021-11-08 2021-11-08 一种g-C3N4负载PDI的有机光催化剂的制备方法及其应用 Pending CN114011450A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111313290.1A CN114011450A (zh) 2021-11-08 2021-11-08 一种g-C3N4负载PDI的有机光催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111313290.1A CN114011450A (zh) 2021-11-08 2021-11-08 一种g-C3N4负载PDI的有机光催化剂的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN114011450A true CN114011450A (zh) 2022-02-08

Family

ID=80062262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111313290.1A Pending CN114011450A (zh) 2021-11-08 2021-11-08 一种g-C3N4负载PDI的有机光催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114011450A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117463394A (zh) * 2023-12-27 2024-01-30 内蒙古工业大学 一种硫酸根吸附自组装pdi光催化剂的制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160318010A1 (en) * 2013-12-16 2016-11-03 Council Of Scientific And Industrial Research Functionalized zinc oxide nanoparticles for photocatalytic water splitting
CN108554445A (zh) * 2018-03-30 2018-09-21 华中科技大学 一种可见光响应型催化剂g-C3N4/PDI/Fe、其制备和应用
CN108568314A (zh) * 2018-03-30 2018-09-25 华中科技大学 一种可见光响应型g-C3N4/PDI光催化剂、其制备方法和应用
CN111389458A (zh) * 2020-01-16 2020-07-10 江南大学 含羧基苝酰亚胺/氧掺杂氮化碳纳米片异质结光催化剂及其制备方法和应用
CN112574430A (zh) * 2020-12-24 2021-03-30 江苏大学 基于溶剂调控的超分子自组装pdi纳米材料的制备方法
CN113171795A (zh) * 2021-04-26 2021-07-27 湖南大学 一种碳化钛/苝酰亚胺超分子复合光催化材料及其制备方法和应用
CN113457710A (zh) * 2021-07-02 2021-10-01 南京师范大学 PDI/g-C3N4/Bi2WO6复合光催化剂及制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160318010A1 (en) * 2013-12-16 2016-11-03 Council Of Scientific And Industrial Research Functionalized zinc oxide nanoparticles for photocatalytic water splitting
CN108554445A (zh) * 2018-03-30 2018-09-21 华中科技大学 一种可见光响应型催化剂g-C3N4/PDI/Fe、其制备和应用
CN108568314A (zh) * 2018-03-30 2018-09-25 华中科技大学 一种可见光响应型g-C3N4/PDI光催化剂、其制备方法和应用
CN111389458A (zh) * 2020-01-16 2020-07-10 江南大学 含羧基苝酰亚胺/氧掺杂氮化碳纳米片异质结光催化剂及其制备方法和应用
CN112574430A (zh) * 2020-12-24 2021-03-30 江苏大学 基于溶剂调控的超分子自组装pdi纳米材料的制备方法
CN113171795A (zh) * 2021-04-26 2021-07-27 湖南大学 一种碳化钛/苝酰亚胺超分子复合光催化材料及其制备方法和应用
CN113457710A (zh) * 2021-07-02 2021-10-01 南京师范大学 PDI/g-C3N4/Bi2WO6复合光催化剂及制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONG MIAO等: ""Controlled Synthesis of Higher Interfacial Electron Transfer Graphite-Like Carbon Nitride/Perylenetetracarboxylic Diimide Heterogeneous for Enhanced Photocatalytic Activity"", 《SOL. RRL》 *
崔言娟等: ""介孔氮化碳光催化降解水相中氯酚类有机污染物的研究"", 《第十三届全国太阳能光化学与光催化学术会议》 *
高遒竹: ""类石墨相氮化碳基功能化材料的合成及其在有机污染物降解、抗菌和离子检测中的应用研究"", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117463394A (zh) * 2023-12-27 2024-01-30 内蒙古工业大学 一种硫酸根吸附自组装pdi光催化剂的制备方法和应用
CN117463394B (zh) * 2023-12-27 2024-03-12 内蒙古工业大学 一种硫酸根吸附自组装pdi光催化剂的制备方法和应用

Similar Documents

Publication Publication Date Title
Shao et al. Nitrogen-doped hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light
Guo et al. Z-scheme heterojunction g-C3N4@ PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole
Lv et al. Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants
Shi et al. Construction of CuBi2O4/Bi2MoO6 pn heterojunction with nanosheets-on-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation
Lv et al. Two novel MOFs@ COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A
Zeng et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity
Peng et al. Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation
Shi et al. Stable, metal-free, visible-light-driven photocatalyst for efficient removal of pollutants: Mechanism of action
Lu et al. Advances in the photocatalytic reduction functions of graphitic carbon nitride-based photocatalysts in environmental applications: A review
CN109467710B (zh) 二维金属卟啉基cof材料以及薄膜制备方法和应用
CN108607593B (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用
Xu et al. MOFs-derived C-In2O3/g-C3N4 heterojunction for enhanced photoreduction CO2
CN112718009B (zh) 一种pdi/mof异质结光催化剂及其制备方法与使用方法
CN108246334B (zh) 一种功能化三元复合光催化材料及其制备方法与用途
He et al. Hollow polymeric ionic liquid spheres with hierarchical electron distribution: A novel composite of g-C3N4 for visible light photocatalytic water splitting enhancement
Lan et al. Facile fabrication of triphenylamine-based conjugated porous polymers and their application in organic degradation under visible light
Wan et al. Integrating hollow spherical covalent organic frameworks on NH 2–MIL-101 (Fe) as high performance heterogeneous photocatalysts
CN114011450A (zh) 一种g-C3N4负载PDI的有机光催化剂的制备方法及其应用
CN114733543B (zh) 一种硼修饰的氮化碳材料及其制备方法和应用
Deng et al. Enhanced photocatalytic Cr (VI) reduction performance by novel PDI/COFs composite
Teng et al. Remarkably enhanced photodegradation of organic pollutants by NH2-UiO-66/ZnO composite under visible-light irradiation
CN111229313B (zh) 一种花球状BiOCl/TCPP复合光催化剂的制备方法及其应用
CN116603558A (zh) 一种荸荠状钨酸锑复合材料的制备方法及其应用
CN114797973B (zh) 一种尿素PDI聚合物/MoS2催化剂制备方法和应用
CN110694655A (zh) 一种硫化银/磷酸银/氧化石墨烯复合光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination