CN114006400A - 考虑功率外环控制的双馈风机阻抗模型及推导方法 - Google Patents

考虑功率外环控制的双馈风机阻抗模型及推导方法 Download PDF

Info

Publication number
CN114006400A
CN114006400A CN202111197808.XA CN202111197808A CN114006400A CN 114006400 A CN114006400 A CN 114006400A CN 202111197808 A CN202111197808 A CN 202111197808A CN 114006400 A CN114006400 A CN 114006400A
Authority
CN
China
Prior art keywords
rotor
stator
doubly
fed
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111197808.XA
Other languages
English (en)
Inventor
王茂海
张传云
苏杭
訾鹏
赵峰
袁峥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
North China Grid Co Ltd
Original Assignee
State Grid Corp of China SGCC
North China Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, North China Grid Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202111197808.XA priority Critical patent/CN114006400A/zh
Publication of CN114006400A publication Critical patent/CN114006400A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种考虑功率外环控制的双馈风机阻抗模型及推导方法。当公共耦合点(PCC)出现电压扰动时,功率控制回路不可避免地会将功率波动引入电流控制回路,从而对双馈风机(DFIG)阻抗特性产生影响。本发明同时考虑了转子侧变流器(RSC)的电流控制环和功率控制环对矩阵控制器的影响。本发明解决了目前阻抗模型普遍忽略功率控制外环影响的问题,提高了双馈风机阻抗模型建模精确度,同时提升了含新能源的新型电力系统小扰动稳定分析水平,有力保障了电力系统安全稳定运行。

Description

考虑功率外环控制的双馈风机阻抗模型及推导方法
技术领域
本发明涉及风力发电领域,特别是一种考虑功率外环控制的双馈风机阻抗模型及推导方法。
背景技术
可再生能源发电的大规模并网,给电力系统的动态行为和运行特性带来了新的变化。河北沽源、新疆哈密等地多次发生风电接入引起的电力系统宽频带振荡,严重影响安全和电力系统的稳定性。许多研究人员专注于风电系统并网稳定性的建模和分析。
目前,电网稳定性分析的研究方法主要有特征值分析法和阻抗分析法。特征值分析法通过求解系统在平衡点线性化后的状态矩阵的特征根来判断系统的小扰动稳定性。Mohammadpour等人建立了考虑风速、桨距角控制模型和转换器控制的单双馈感应发电机(DFIG)的状态空间方程。其状态空间方程的阶数为22,在分析更复杂的系统时,可能会出现“维数灾难”。同时,如果系统结构发生变化,则需要重新建立状态空间方程。
与特征值分析法相比,阻抗分析法避免了其在频域上的局限性,容易将电磁暂态模型线性化。而当设备参数不易获得时,也可以通过测量获得阻抗模型,这是特征值分析方法所不具备的。
Middlebrook在直流滤波器的设计中首先提出了阻抗分析方法。最近,它已应用于复杂电力电子设备的频域建模。在DFIG的小信号建模领域,Fan等人提出了一种简化的阻抗模型,它忽略了转换器的控制。并指出风速是影响阻抗模型频域特性的主要因素。此外,Miao等人提出了一个考虑转子侧变流器(RSC)控制的DFIG阻抗模型。并且指出网侧变流器(GSC)对DFIG阻抗模型的影响很小。此外,有研究表明,为了准确分析转子和同步频率带附近的结果和现象,需要考虑励磁互感。阻抗建模方法的难点在于如何处理dq轴控制策略和锁相环引入的非线性。
为了简化系统复杂度,目前的研究在推导DFIG阻抗模型时一般忽略了功率控制回路的影响。当共耦合点(PCC)发生电压扰动时,功率外环不可避免地会将PCC点的有功/无功功率波动引入到电流内控制环中,从而影响DFIG的阻抗特性。尤其是在追求功率控制回路的快速响应时,功率波动的影响会更大。因此,有必要开展考虑功率控制回路的双馈电机阻抗建模研究。
发明内容
针对上述问题,本发明的目的是提供一种考虑功率外环控制的双馈风机阻抗模型及推导方法。本发明阻抗模型在建模和分析中同时考虑了转子侧变流器(RSC)的电流控制环和功率控制环对矩阵控制器的影响。解决了目前阻抗模型普遍忽略功率控制外环影响的问题。本发明提出的阻抗模型,提高了双馈风机阻抗模型建模精确度,同时提升了含新能源的新型电力系统小扰动稳定分析水平,有力保障了电力系统安全稳定运行。
本发明的技术解决方案如下:
一种考虑功率外环控制的双馈风机阻抗模型,其特点在于,建模对象包括双馈风力发电机、转子侧变流器及转子侧变流器控制模块;
所述的双馈风力发电机包括风力机、双馈电机、转子侧变流器、网侧变流器、直流侧电容Cdc以及控制环节,所述的双馈电机的转子与转子侧变流器的交流侧出口连接,所述的双馈电机的定子与所述的网侧变流器交流侧出口连接,所述的转子侧变流器和网侧变流器经由所述的直流侧电容Cdc连接;
所述的转子侧变流器为三相两电平变流器,包括开关元件S1、S2、S3、S4、S5、S6。S1、S4一端相连构成a相桥臂,S3、S6一端相连构成b相桥臂,S5、S2一端相连构成c相桥臂;
转子侧变流器的控制模块包括功率外环、电流内环、abc/dq变换环节,功率外环控制器(PIP)的输入信号包括风机有功功率给定值Pref、无功功率给定值Qref、有功功率测量值Preal、无功功率测量值Qreal。功率外环控制器PIP的输出作为电流内环控制器PIc的输入,电流内环控制器PIc的输入还包括转子电流d轴分量测量值Ird和q轴分量测量值Irq,转子侧变流器控制模块的输出信号mra、mrb、mrc分别构成作为转子侧变流器a、b、c相桥臂的调制信号。
2、权利要求1所述的考虑功率外环控制的双馈风机阻抗模型的推导方法,其特点在于该方法包括下列步骤:
1)根据双馈异步电机的电路参数,按式(1)计算双馈异步电机阻抗模型:定子自阻抗矩阵Zss、转子自阻抗矩阵Zrr、定转子互阻抗矩阵Zrs和Zsr
Figure BDA0003303830180000021
其中,s表示拉布拉斯算子,ωs表示转差角频率,ω1表示系统角频率,Rr表示转子电阻,Rs表示定子电阻,Lr表示转子电感,Ls表示定子电感,Lm表示励磁互感;
2)定义双馈电机导纳矩阵Y按式(2)由定子自导纳矩阵Yss,转子自导纳矩阵Yrr,定转子互导纳矩阵Yrs和Ysr四个矩阵组成,并由此列出定子电压扰动量ΔUs,转子电压扰动量ΔUr,定子电流扰动量ΔIs,转子电流扰动量ΔIr的关系如下所示:
Figure BDA0003303830180000031
3)计算双馈异步电机阻抗模型表示定子自导纳矩阵Yss,表示转子自导纳矩阵Yrr,定转子互导纳矩阵Yrs和Ysr
Figure BDA0003303830180000032
其中,Zss表示定子自阻抗,Zrr表示转子自阻抗,Zrs和Zsr定转子互阻抗。
4)转子侧变流器控制框图包含功率外环和电流内环,均采用PI控制器,列写功率外环PI控制器的传递函数矩阵Gp:列写电流内环PI控制器的传递函数矩阵Gc如式(4):
Figure BDA0003303830180000033
其中,s表示拉布拉斯算子,kpp表示功率外环PI控制器的比例系数,kpi表示功率外环PI控制器的积分系数,kcp表示电流内环PI控制器的比例系数,kci表示电流内环PI控制器的积分系数;
5)列写d轴和q轴的分量解耦项Gd1及定子磁通前馈补偿Gd2如式(5):
Figure BDA0003303830180000034
其中,σ=Lr-Lm 2/Ls.,s=ωs1
6)电压和电流的扰动会引起功率波动,影响电流控制环的输入参考值,用ΔIr_ref表示,考虑功率控制环的转子电压扰动ΔUr和转子电流扰动ΔIr之间的关系可以给出如式(6):
ΔUr=GcΔIr_ref-(Gc+Gd1)ΔIr+Gd2ΔUs (14)
其中,
Figure BDA0003303830180000035
7)把式(6)代入式(2),整理得到双馈风机阻抗矩阵YDFIG如式(7):
Figure BDA0003303830180000041
其中:
Figure BDA0003303830180000042
其中,E表示单位矩阵,Usd表示双馈电机定子电压d轴分量测量值,Usq表示双馈电机定子电压q轴分量测量值,Isd表示双馈电机定子电流d轴分量测量值,Isq表示双馈电机定子电流q轴分量测量值。
与现有技术相比,本发明的特点如下:
当公共耦合点(PCC)出现电压扰动时,功率控制回路不可避免地会将功率波动引入电流控制回路,从而对双馈风机(DFIG)阻抗特性产生影响。本发明在建模和分析中同时考虑了转子侧变流器(RSC)的电流控制环和功率控制环对阻抗特性的影响,解决了现有阻抗模型在推导中忽略功率控制外环影响的问题。
附图说明
图1是双馈型风力并网发电系统及其转子侧变流器控制模块。
图2是转子侧变流器拓扑结构。
图3是双馈型风机转子侧变流器控制模块控制策略。
图4是采用本发明方法对某型双馈风力发电机推导得到的阻抗模型及对比。
具体实施方式
下面结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
本发明考虑功率外环控制的双馈风机阻抗模型,如图1所示,双馈风力发电机包括风力机、双馈电机、转子侧变流器、网侧变流器、直流侧电容Cdc以及控制环节(转子侧变流器控制模块如框①所示)。双馈电机的转子与转子侧变流器交流侧出口连接,双馈电机的定子与网侧变流器交流侧出口连接,转子侧变流器和网侧变流器经由直流侧电容Cdc连接。
转子侧变流器为三相两电平变流器,拓扑结构如图2所示。其中,框②表示转子侧变流器,包括开关元件S1、S2、S3、S4、S5、S6。S1、S4一端相连构成a相桥臂,S3、S6一端相连构成b相桥臂,S5、S2一端相连构成c相桥臂。
转子侧变流器控制模块包括功率外环、电流内环、abc/dq变换环节,具体控制组成如图3所示。功率外环控制器PIP的输入信号包括风机有功功率给定值Pref、无功功率给定值Qref、有功功率测量值Preal、无功功率测量值Qreal。功率外环控制器PIP的输出作为电流内环控制器PIc的输入。电流内环控制器PIc的输入还包括转子电流d轴分量测量值Ird和q轴分量测量值Irq。转子侧变流器控制模块输出信号mra、mrb、mrc构成分别作为转子侧变流器a、b、c相桥臂的调制信号。
本发明阻考虑功率外环控制的双馈风机阻抗模型由以下步骤推导得出:
1)根据双馈异步电机的电路参数,计算双馈异步电机阻抗模型表示定子自阻抗矩阵Zss,表示转子自阻抗矩阵Zrr,定转子互阻抗矩阵Zrs和Zsr
Figure BDA0003303830180000051
其中,s表示拉布拉斯算子,ωs表示转差角频率,ω1表示系统角频率,Rr表示转子电阻,Rs表示定子电阻,Lr表示转子电感,Ls表示定子电感,Lm表示励磁互感。
2)定义双馈电机导纳矩阵Y,由定子自导纳矩阵Yss,表示转子自导纳矩阵Yrr,定转子互导纳矩阵Yrs和Ysr四个矩阵组成。并由此列出定子电压扰动量ΔUs,转子电压扰动量ΔUr,定子电流扰动量ΔIs,转子电流扰动量ΔIr的关系如下所示:
Figure BDA0003303830180000052
3)计算双馈异步电机阻抗模型表示定子自导纳矩阵Yss,表示转子自导纳矩阵Yrr,定转子互导纳矩阵Yrs和Ysr
Figure BDA0003303830180000053
其中,Zss表示定子自阻抗,Zrr表示转子自阻抗,Zrs和Zsr定转子互阻抗。
4)由图1所示,转子侧变流器控制框图包含功率外环和电流内环,均采用PI控制器。列写功率外环PI控制器传递函数矩阵Gp:列写电流内环PI控制器传递函数矩阵Gc
Figure BDA0003303830180000061
其中,s表示拉布拉斯算子,kpp表示功率外环PI控制器的比例系数,kpi表示功率外环PI控制器的积分系数,kcp表示电流内环PI控制器的比例系数,kci表示电流内环PI控制器的积分系数。
5)由图1所示,列写d轴和q轴的分量解耦项Gd1及定子磁通前馈补偿Gd2
Figure BDA0003303830180000062
其中,σ=Lr-Lm 2/Ls.,s=ωs1.
6)电压和电流的扰动会引起功率波动,影响电流控制环的输入参考值,用ΔIr_ref表示。考虑功率控制环的转子电压扰动ΔUr和转子电流扰动ΔIr之间的关系可以给出如下:
ΔUr=GcΔIr_ref-(Gc+Gd1)ΔIr+Gd2ΔUs (6)
其中,
Figure BDA0003303830180000063
7)把式(6)代入式(2),整理得到双馈风机阻抗矩阵YDFIG
Figure BDA0003303830180000064
其中,
Figure BDA0003303830180000065
式中,E表示单位矩阵,Usd表示双馈电机定子电压d轴分量测量值,Usq表示双馈电机定子电压q轴分量测量值,Isd表示双馈电机定子电流d轴分量测量值,Isq表示双馈电机定子电流q轴分量测量值。
实施例:额定功率为1.5MW的某型双馈风力发电机。
步骤1:提取双馈风力发电系统的拓扑参数和控制器参数。
步骤2:计算定子自阻抗矩阵Zss,表示转子自阻抗矩阵Zrr,定转子互阻抗矩阵Zrs和Zsr
步骤3:计算双馈异步电机阻抗模型表示定子自导纳矩阵Yss,表示转子自导纳矩阵Yrr,定转子互导纳矩阵Yrs和Ysr
步骤4:列写功率外环PI控制器传递函数矩阵Gp,列写电流内环PI控制器传递函数矩阵Gc
步骤5:列写d轴和q轴的分量解耦项Gd1及定子磁通前馈补偿Gd2
步骤6:根据仿真结果,采集Usd表示双馈电机定子电压d轴分量测量值,Usq表示双馈电机定子电压q轴分量测量值,Isd表示双馈电机定子电流d轴分量测量值,Isq表示双馈电机定子电流q轴分量测量值。
步骤7:将前述步骤2至步骤5整理得到的中间量代入双馈风机阻抗矩阵YDFIG
Figure BDA0003303830180000071
其中:
Figure BDA0003303830180000072
步骤8:绘制双馈风机阻抗矩阵YDFIG的伯德图(如图4所示),并进行相关稳定性分析。
如图4所示,考虑功率外环(蓝色)与未考虑功率外环(绿色)的阻抗模型幅频特性和相频特性差异较大,说明控制策略对导纳矩阵的影响很大。Ydd、Ydq、Yqd和Yqq的幅度均在基频处具有峰值。未考虑功率外环时,YDFIG为对称矩阵,Ydq和Yqd幅值相同,相位差为180度;但考虑到功率控制环后,Ydd和Yqq的幅频特性和Ydd的相频特性出现了很大的变化,这都将对稳定性分析结果产生较大影响。
因此本发明解决了目前阻抗模型普遍忽略功率控制外环影响的问题,提高了双馈风机阻抗模型建模精确度,同时提升了含新能源的新型电力系统小扰动稳定分析水平,有力保障了电力系统安全稳定运行。

Claims (2)

1.一种考虑功率外环控制的双馈风机阻抗模型,其特征在于,建模对象包括双馈风力发电机、转子侧变流器及转子侧变流器控制模块;
所述的双馈风力发电机包括风力机、双馈电机、转子侧变流器、网侧变流器、直流侧电容Cdc以及控制环节,所述的双馈电机的转子与转子侧变流器的交流侧出口连接,所述的双馈电机的定子与所述的网侧变流器交流侧出口连接,所述的转子侧变流器和网侧变流器经由所述的直流侧电容Cdc连接;
所述的转子侧变流器为三相两电平变流器,包括开关元件S1、S2、S3、S4、S5、S6。S1、S4一端相连构成a相桥臂,S3、S6一端相连构成b相桥臂,S5、S2一端相连构成c相桥臂;
转子侧变流器的控制模块包括功率外环、电流内环、abc/dq变换环节,功率外环控制器(PIP)的输入信号包括风机有功功率给定值Pref、无功功率给定值Qref、有功功率测量值Preal、无功功率测量值Qreal。功率外环控制器PIP的输出作为电流内环控制器PIc的输入,电流内环控制器PIc的输入还包括转子电流d轴分量测量值Ird和q轴分量测量值Irq,转子侧变流器控制模块的输出信号mra、mrb、mrc分别构成作为转子侧变流器a、b、c相桥臂的调制信号。
2.权利要求1所述的考虑功率外环控制的双馈风机阻抗模型的推导方法,其特征在于该方法包括下列步骤:
1)根据双馈异步电机的电路参数,按式(1)计算双馈异步电机阻抗模型:定子自阻抗矩阵Zss、转子自阻抗矩阵Zrr、定转子互阻抗矩阵Zrs和Zsr
Figure FDA0003303830170000011
其中,s表示拉布拉斯算子,ωs表示转差角频率,ω1表示系统角频率,Rr表示转子电阻,Rs表示定子电阻,Lr表示转子电感,Ls表示定子电感,Lm表示励磁互感;
2)定义双馈电机导纳矩阵Y按式(2)由定子自导纳矩阵Yss,转子自导纳矩阵Yrr,定转子互导纳矩阵Yrs和Ysr四个矩阵组成,并由此列出定子电压扰动量ΔUs,转子电压扰动量ΔUr,定子电流扰动量ΔIs,转子电流扰动量ΔIr的关系如下所示:
Figure FDA0003303830170000012
3)计算双馈异步电机阻抗模型表示定子自导纳矩阵Yss,表示转子自导纳矩阵Yrr,定转子互导纳矩阵Yrs和Ysr
Figure FDA0003303830170000021
其中,Zss表示定子自阻抗,Zrr表示转子自阻抗,Zrs和Zsr定转子互阻抗。
4)转子侧变流器控制框图包含功率外环和电流内环,均采用PI控制器,列写功率外环PI控制器的传递函数矩阵Gp:列写电流内环PI控制器的传递函数矩阵Gc如式(4):
Figure FDA0003303830170000022
其中,s表示拉布拉斯算子,kpp表示功率外环PI控制器的比例系数,kpi表示功率外环PI控制器的积分系数,kcp表示电流内环PI控制器的比例系数,kci表示电流内环PI控制器的积分系数;
5)列写d轴和q轴的分量解耦项Gd1及定子磁通前馈补偿Gd2如式(5):
Figure FDA0003303830170000023
其中,σ=Lr-Lm 2/Ls.,s=ωs1
6)电压和电流的扰动会引起功率波动,影响电流控制环的输入参考值,用ΔIr_ref表示,考虑功率控制环的转子电压扰动ΔUr和转子电流扰动ΔIr之间的关系可以给出如式(6):
ΔUr=GcΔIr_ref-(Gc+Gd1)ΔIr+Gd2ΔUs (6)
其中,
Figure FDA0003303830170000024
7)把式(6)代入式(2),整理得到双馈风机阻抗矩阵YDFIG如式(7):
Figure FDA0003303830170000025
其中:
Figure FDA0003303830170000026
其中,E表示单位矩阵,Usd表示双馈电机定子电压d轴分量测量值,Usq表示双馈电机定子电压q轴分量测量值,Isd表示双馈电机定子电流d轴分量测量值,Isq表示双馈电机定子电流q轴分量测量值。
CN202111197808.XA 2021-10-14 2021-10-14 考虑功率外环控制的双馈风机阻抗模型及推导方法 Pending CN114006400A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111197808.XA CN114006400A (zh) 2021-10-14 2021-10-14 考虑功率外环控制的双馈风机阻抗模型及推导方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111197808.XA CN114006400A (zh) 2021-10-14 2021-10-14 考虑功率外环控制的双馈风机阻抗模型及推导方法

Publications (1)

Publication Number Publication Date
CN114006400A true CN114006400A (zh) 2022-02-01

Family

ID=79922910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111197808.XA Pending CN114006400A (zh) 2021-10-14 2021-10-14 考虑功率外环控制的双馈风机阻抗模型及推导方法

Country Status (1)

Country Link
CN (1) CN114006400A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116167232A (zh) * 2023-03-03 2023-05-26 国网浙江省电力有限公司电力科学研究院 一种dfig序阻抗模型辨识方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988391A (zh) * 2018-08-16 2018-12-11 西南交通大学 基于转速控制的双馈风机转子侧变换器的稳定性分析方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988391A (zh) * 2018-08-16 2018-12-11 西南交通大学 基于转速控制的双馈风机转子侧变换器的稳定性分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUANYUN ZHANG: "Frequency Domain Modeling and Analysis of DFIG Considering Power Control Loop", IEEE, pages 286 - 290 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116167232A (zh) * 2023-03-03 2023-05-26 国网浙江省电力有限公司电力科学研究院 一种dfig序阻抗模型辨识方法及系统
CN116167232B (zh) * 2023-03-03 2023-12-26 国网浙江省电力有限公司电力科学研究院 一种dfig序阻抗模型辨识方法及系统

Similar Documents

Publication Publication Date Title
Xue et al. A complete impedance model of a PMSG-based wind energy conversion system and its effect on the stability analysis of MMC-HVDC connected offshore wind farms
CN104333244B (zh) 基于正序分量的三相逆变器控制方法和装置
CN110676874B (zh) 计及频率耦合效应的直驱式风机次同步振荡电气量分析方法
CN110601268B (zh) 一种双馈风机并网端口输出阻抗建模及稳定性分析方法
CN109586337B (zh) 基于频域建模的vsc并网系统次同步振荡风险评估方法
WO2022226709A1 (zh) 考虑功率控制的永磁同步风机接入弱电网稳定性分析方法
CN112018783B (zh) 用于直驱风机次同步振荡抑制的模型降阶反馈控制方法
Pang et al. Stator harmonic current suppression for DFIG system considering integer harmonics and interharmonics
CN106451539B (zh) 一种计及永磁直驱风电机组动态特性的风电场并网稳定分析方法
CN113193594A (zh) 弱电网下双馈风力发电机在故障穿越期间的降阶建模方法
CN114006400A (zh) 考虑功率外环控制的双馈风机阻抗模型及推导方法
CN104865523A (zh) 双馈发电机仿真系统及方法
CN113378347B (zh) 一种基于模块化多端口的风电机组频域阻抗建模方法
CN111769597B (zh) 一种双馈风力发电机的降维建模分析方法
CN109066735A (zh) 一种不平衡电网电压下的双馈风力发电系统及其控制方法
CN105552951B (zh) 一种基于重复滑模的dfig系统控制方法
CN113783183B (zh) 弱电网下双馈风机在故障穿越期间的暂态稳定性评估方法
CN114243787B (zh) 一种提升风电并网系统暂态同步稳定性的控制方法及系统
CN113285639B (zh) 一种双馈式感应发电机系统基频负序阻抗确定方法及系统
CN112952901B (zh) 一种针对多风机并网系统的分散式稳定性分析方法
CN111525567B (zh) 一种光伏并网逆变器故障电流的计算方法和装置
CN114928281A (zh) 基于改进自抗扰的电压控制型双馈风电机组故障穿越方法
Gao et al. Improved extended kalman filter based dynamic equivalent method of DFIG wind farm cluster
Oualah et al. Super-twisting sliding mode control for brushless doubly fed reluctance generator based on wind energy conversion system
Dinesh et al. Independent operation of DFIG-based WECS using resonant feedback compensators under unbalanced grid voltage conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination