CN114002238A - 一种提取CoCrNi中熵合金浅纳米压痕的方法及装置 - Google Patents

一种提取CoCrNi中熵合金浅纳米压痕的方法及装置 Download PDF

Info

Publication number
CN114002238A
CN114002238A CN202111046491.XA CN202111046491A CN114002238A CN 114002238 A CN114002238 A CN 114002238A CN 202111046491 A CN202111046491 A CN 202111046491A CN 114002238 A CN114002238 A CN 114002238A
Authority
CN
China
Prior art keywords
indentation
array
sample
cocrni
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111046491.XA
Other languages
English (en)
Inventor
王章洁
刘俏君
田鑫涛
刘南君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202111046491.XA priority Critical patent/CN114002238A/zh
Publication of CN114002238A publication Critical patent/CN114002238A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • C23C14/588Removal of material by mechanical treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving

Abstract

本公开揭示了一种提取CoCrNi中熵合金浅纳米压痕的方法,包括如下步骤:对CoCrNi样品进行退火热处理,将退火热处理后的CoCrNi样品进行打磨和抛光处理;以抛光处理后的CoCrNi样品表面的平整区域作为测试区域,并在该测试区域进行阵列打点以产生纳米压痕阵列;在打点过程中,实时观察纳米压痕阵列中每个纳米压痕的P‑h曲线,当需要表征的压痕发生位移突跳后停止阵列打点;对纳米压痕阵列进行定位,并对纳米压痕阵列中的浅压痕部分进行Pt沉积和切割处理;提取切割后的浅压痕部分,并对所提取的浅压痕部分进行减薄处理。

Description

一种提取CoCrNi中熵合金浅纳米压痕的方法及装置
技术领域
本公开属于金属材料领域,具体涉及一种提取CoCrNi中熵合金浅纳米压痕的方法及装置。
背景技术
CoCrNi中熵合金是由三种元素等摩尔比混合形成的一种fcc单相固溶体合金,经研究发现,由于独特的设计理念,其抗断裂能力、抗拉强度、耐高温性能及耐磨耐腐蚀性能比众多传统合金要好,因此,该合金有望突破传统金属结构材料强度-塑性难以兼顾的桎梏。这是由于CoCrNi中熵合金在低温下具有极低的层错能,导致其在塑性变形时,内部迅速形成大量的三维网状孪晶结构,该结构内部存在的孪晶界可引起位错在孪晶界处的阻碍和塞积,使其强度得以提高;同时,特有的三维孪晶网络结构可以提供位错滑移,交叉滑移及在孪晶界-基体交界处交互作用等所需的多重运动路径以便位错的轻易滑移,从而保留良好的塑性。所以,这一机制对高强高韧材料的开发及设计新型优异多主元合金具有重要价值和意义。
目前,中/高熵合金领域的研究主要集中在实验手段上,纳米压痕测试技术被广泛应用于研究材料的初始塑性变形行为,实验发现,经退火处理的CoCrNi合金在初始变形阶段产生位移pop-in,表明变形方式发生弹塑性转变,通常被认为是位错形核引起的。
为了对位错形核的微观机理进行表征,需要运用聚焦离子束提取压痕,但由于CoCrNi样品产生位移pop-in的载荷非常小,对应的压痕残余变形量很小,在扫描电子显微镜下无法看到,难以制备出透射电镜下表征的样品,因此,设计一种有利于FIB定位并精确提取浅纳米压痕的方法具有重要意义。
发明内容
针对现有技术中的不足,本公开的目的在于提供一种提取CoCrNi中熵合金浅纳米压痕的方法,该方法能够解决目前无法对一些载荷较小的压痕进行表征的不足。
为实现上述目的,本公开提供以下技术方案:
一种提取CoCrNi中熵合金浅纳米压痕的方法,包括如下步骤:
S100:对CoCrNi样品进行退火热处理,将退火热处理后的CoCrNi样品进行打磨和抛光处理;
S200:以抛光处理后的CoCrNi样品表面的平整区域作为测试区域,并在该测试区域进行阵列打点以产生纳米压痕阵列;
S300:在打点过程中,实时观察纳米压痕阵列中每个纳米压痕的P-h曲线,当需要表征的压痕发生位移突跳后停止阵列打点;
S400:对纳米压痕阵列进行定位,并对纳米压痕阵列中的浅压痕部分进行Pt沉积和切割处理;
S500:提取切割后的浅压痕部分,并对所提取的浅压痕部分进行减薄处理。
优选的,步骤S400中,所述对纳米压痕阵列中的浅压痕部分进行Pt沉积是通过电子束和离子束两种方式进行的。
步骤S400中,所述对纳米压痕阵列实施定位是通过以下方式进行的:在纳米压痕阵列两端施加2000-5000μN力以产生深度为100-200nm的深压痕,通过该深压痕对纳米压痕阵列进行定位。
优选的,步骤S400中,对浅压痕部分进行Pt沉积所形成的Pt保护层的厚度不低于3μm。
优选的,步骤S500中,经减薄处理后的浅压痕部分的厚度为50-100nm。
本公开还提供一种提取CoCrNi中熵合金浅纳米压痕的装置,包括:
热处理装置,用于对CoCrNi样品进行退火热处理;
抛光装置,用于对热处理后的CoCrNi样品进行抛光处理;
打点装置,用于对抛光处理后的CoCrNi样品进行打点以产生纳米压痕阵列;
沉积-切割-减薄装置,用于对纳米压痕阵列中的浅压痕部分进行Pt沉积,以形成Pt保护层,并对沉积后的浅压痕部分进行切割和减薄处理。
优选的,所述热处理装置包括淬火炉,淬火炉的一侧连接氩气瓶,另一侧连接真空泵。
优选的,所述抛光装置包括机械抛光仪和电解抛光机。
优选的,所述打点装置包括纳米压痕测试仪。
优选的,所述沉积-切割-减薄装置包括FIB聚焦离子束装置。
与现有技术相比,本公开带来的有益效果为:本公开可以在电子束窗口下直观而准确地对需要表征的CoCrNi样品的压痕进行定位加工,有利于从实验角度分析CoCrNi中熵合金产生的位错形核变形机理。
附图说明
图1是本公开一个实施例提供的一种提取CoCrNi中熵合金浅纳米压痕的方法流程图;
图2是本公开另一个实施例提供的电解抛光后的CoCrNi样品形貌示意图;
图3是本公开另一个实施例提供的压痕阵列示意图;
图4是本公开另一个实施例提供的通过电子束在浅压痕上所沉积的Pt保护层的示意图;
图5是本公开另一个实施例提供的通过离子束在浅压痕上辅助沉积的Pt保护层;
图6是本公开另一个实施例提供的通过离子束切割样品两侧台阶的示意图:
图7是本公开另一个实施例提供的通过减小束流对样品进行初步减薄的示意图;
图8是本公开另一个实施例提供的将样品初次切透的示意图;
图9是本公开另一个实施例提供的通过K针提取样品的示意图;
图10是本公开另一个实施例提供的对样品进行切割的示意图;
图11是本公开另一个实施例提供的通过K针携带样品转至ABC样品托的示意图;
图12是本公开另一个实施例提供的将样品与样品托焊合的示意图;
图13是本公开另一个实施例提供的切掉样品与K针焊合部分并撤去K针的示意图;
图14是本公开另一个实施例提供的对样品进行最终减薄的示意图;
图15是本公开另一个实施例提供的可用于透射电子显微镜表征的样品的结构示意图;
图16是本公开另一个实施例提供的在透射电子显微镜下观察到的样品压痕示意图;
图17是本公开另一个实施例提供的运用TI950对(001)取向的CoCrNi样品进行压入的载荷位移曲线示意图;
图18是本公开另一个实施例提供的对(001)取向的CoCrNi样品进行最终减薄的示意图;
图19是本公开另一个实施例提供的在透射电子显微镜下观察到的(001)取向的CoCrNi样品中浅压痕的示意图。
具体实施方式
下面将参照附图1至图19详细地描述本公开的具体实施例。虽然附图中显示了本公开的具体实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名词的差异作为区分组件的方式,而是以组件在功能上的差异作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本公开的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非用以限定本公开的范围。本公开的保护范围当视所附权利要求所界定者为准。
为便于对本公开实施例的理解,下面将结合附图以具体实施例为例做进一步的解释说明,且各个附图并不构成对本公开实施例的限定。
一个实施例中,如图1所示,本公开提供一种提取CoCrNi中熵合金浅纳米压痕的方法,包括如下步骤:
S100:对CoCrNi样品进行退火热处理,将退火热处理后的CoCrNi样品进行打磨和抛光处理;
该步骤中,首先将CoCrNi样品置于热处理装置中加热到800℃并进行保温,然后自然冷却或水淬到室温。当CoCrNi样品温度达到室温后,依次用800#、1200#、2000#、3000#及4000#砂纸对样品进行打磨,打磨后再依次进行机械抛光和电解抛光处理,其中,电解抛光是通过使用配比HClO4∶C2H50H=1∶10(vol.%)的电解液来实现的,其中电压设定为15V,电解时间设定为40s,通过电解抛光,可以去除样品表面残余应力层,抛光后的CoCrNi样品如图2所示。
S200:以抛光处理后的CoCrNi样品表面的平整区域作为测试区域,并在该测试区域进行阵列打点以产生纳米压痕阵列;
该步骤中,将电解抛光后的样品放入TI950纳米压痕测试仪的样品台,在光镜下找到平整光洁的区域作为测试区域,本实施例采用的是金刚石球形压头,压头尖端的曲率半径为730nm,设置加载速率为250μN/s,峰值载荷1200μN。在找到样品的测试区域后,将TI950纳米压痕测试仪切换到SPM模式,将样品移到压头下方,扫描范围为10μm,设置6*6阵列自动打点,每个压痕之间的距离为2μm,产生的纳米压痕阵列如图3所示。
S300:在打点过程中,实时观察纳米压痕阵列中每个纳米压痕的P-h曲线,当需要表征的压痕发生位移突跳后停止阵列打点;
该步骤中,在打点过程中,实时观察每个压痕的P-h曲线,当最中间4个压痕在加载阶段发生位移pop-in即刻手动卸载,而其余压痕按设定参数加卸载。
S400:对纳米压痕阵列进行定位,并对纳米压痕阵列中的浅压痕部分进行Pt沉积和切割处理;
该步骤中,使用FIB聚焦离子束系统对纳米压痕阵列进行定位和沉积处理。首先需要将样品台调到共心高,然后在电子束窗口找到纳米压痕测试阵列,在0°下用电子束(5kV1.4nA)对图3所示的压痕阵列中的第三排压痕进行Pt沉积,沉积后的效果如图4所示。再将样品台转到52°用离子束(30kV 93pA)辅助沉积,最终获得的Pt保护层如图5所示,图5中,Pt保护层的厚度不低于3um。
需要说明的是,上述之所以通过电子束和离子束两种方式对样品进行沉积处理,其原因在于:离子束沉积速度较快,电子束沉积速度较慢,如果刚开始就进行离子束沉积,离子束本身有“切削效应”,会对样品造成损伤,先用电子束沉积一层,再用离子束沉积,既不会损伤样品,又可以保证速率。
还需要说明的是,Pt保护层的厚度之所以不能低于3μm,是由于在整个提样操作完成后,沉积的Pt层几乎都被离子束轰击完了,如果Pt保护层的厚度小于3μm,很可能在操作过程中样品就受到损伤,这样会影响后续提取压痕的可靠性和透射表征。
该步骤中,之所以需要通过在纳米压痕阵列的两端形成深压痕以对纳米压痕阵列进行定位,其原因在于:由于对样品进行纳米压入的力很小,只有几百微牛,导致压痕深度也只有几十纳米,在光镜和FIB下都看不见,为了准确提取此处压痕,本实施例创造性的提出通过在纳米压痕阵列两端施加更大的力使得所产生的压痕深度足够大,并且与看不见的浅压痕在同一条水平线上,从而实现“深压痕定位,提取浅压痕”的操作,一般的,在纳米压痕阵列两端所施加的力在2000-5000μN,所能够产生的压痕深度为100-200nm,在显微镜下可以清楚的看到该深压痕,以该深压痕所在位置为基准,因此可以轻易的完成对整个纳米压痕阵列的提取。需要强调的是,如果所施加的力小于2000μN,所产生的压痕深度过浅,在显微镜下不明显,如果所施加的力大于5000μN,所产生的压痕深度虽然较5000μN有一定程度的提高,但会延长实验时间,而且本实施例的目的在于能够完成对压痕阵列的提取即可,施加5000μN的力所产生的深度完全能够符合提取的要求,因此,综合考量,本实施例将用于定位的深压痕所需要施加的压力设置在2000-5000μN。
另外,为了保护压痕不被离子束损伤,本实施例还创造性的提出在纳米压痕表面进行Pt沉积。由于需要利用离子束对纳米压痕进行切割、减薄等操作,离子束能量较大,对样品轰击力大,如果不在表面沉积一层Pt保护层,很有可能将压痕打没,从而导致操作失败。
S500:提取切割后的浅压痕部分,并对所提取的浅压痕部分进行减薄处理。
该步骤中,当在样品表面完成Pt沉积后,需要将提取的压痕送往透射电子显微镜表征,样品太厚的话,电子束无法穿透,因此需要对样品做进一步的减薄处理,对样品进行提取和减薄的过程具体如下:
1、如图6所示,使用离子束(30kV 21nA)切割模块将样品两侧切出台阶形的凹坑,样品表面距凹坑最深处约10μm,且上方坑要略大于下方坑;
2、切割完成后,如图7所示,采用离子束(束流2.8nA,离子源Si)对样品进行初减薄,减薄到厚度为1μm;
3、将样品台倾转至7°,画U型pattern使切削部分样品完全削净无粘连,如图8所示,切完后为左侧切断,右侧悬挂;
4、继续倾转样品台至0°,如图9所示,通过K针将样品提取至等高处,与样品上表面平齐,用离子束(30kV 93pA)沉积Pt进行焊接;
5、如图10所示,切断样品右侧悬挂连接处并撤回Pt针,移动样品台在电子束窗口找到ABC样品托,如图11所示,移动K针携带样品接触样品托目标位置;
6、如图12所示,使用离子束(30kV 93pA),Pt dep将样品台和样品托焊合牢固,焊合完成后,如图13所示,再用Si离子源切除样品与K针焊接处;
7、将样品台倾转至52°,离子源为Si,如图14所示,通过不断改变离子束的束流对样品持续减薄,如图15所示,直到样品的厚度为50-100nm为止;
通过上述提取和减薄处理后,就可以在2100F透射电子显微镜下清晰看到样品表面的压痕形貌,压痕形貌如图16所示。
另一个实施例中,通过提取(001)取向的CoCrNi样品中的浅压痕,以对本公开技术方案作进一步说明。
本实施例中,将(001)取向的CoCrNi样品在800℃下退火24小时,随后进行砂纸打磨、机械抛光和电解抛光等操作,将抛光后的CoCrNi样品置于TI950纳米压入仪中,使用曲率半径为730nm的圆锥压头,以25μN/s的速率加载至700μN左右时,位移出现pop-in,如图17所示,压痕深度约为37nm。
为了对压痕进行透射表征,通过运用与前述实施例相同的“深压痕定位,提取浅压痕”的方法,重复进行了由图4到图14的提样操作,成功提取到该位置的压痕。
如图18所示,运用FIB聚焦离子束系统将压痕减薄至50nm,并将减薄后的样品送往2100F透射电子显微镜下观察,如图19所示,可以清晰地看到,压痕被成功提取出来,运用分析工具测量压痕深度为37nm,与纳米压入的载荷-位移曲线一致。
以上内容是本公开对如何提取CoCrNi中熵合金浅纳米压痕的技术方案的完整介绍,上述技术方案的现实意义在于:由于传统的纳米压痕提取表征普遍是建立在较大的载荷位移下的,载荷量级甚至可以达到mN级,相应的压痕深度普遍在100nm以上,这类压痕完全可以在显微镜下观察到,不需要进行定位便可以精准提取。而对于CoCrNi等中高熵合金,由于其特殊的结构,CoCrNi样品产生位移产生pop-in的载荷通常仅为300~800μN,相比传统方法载荷非常小,且在该载荷范围下产生的压痕深度只有几nm~几十nm,发生的压痕残余变形量非常小,在扫描电子显微镜下无法直接观测,因此,本申请创造性的通过“深压痕定位,提取浅压痕”的方式对CoCrNi中熵合金纳米压痕进行表征,能够完整的提取到CoCrNi中熵合金纳米的浅压痕,且与通过实测工具测量得到的数据一致。
另一个实施例中,本公开还提供一种提取CoCrNi中熵合金浅纳米压痕的装置,包括:
热处理装置,用于对CoCrNi样品进行退火热处理;
抛光装置,用于对热处理后的CoCrNi样品进行抛光处理;
压痕装置,用于对抛光处理后的CoCrNi样品进行打点以产生纳米压痕阵列;
沉积-切割-减薄装置,用于对纳米压痕阵列中的浅压痕部分进行Pt沉积,以形成Pt保护层,并对沉积后的浅压痕部分进行切割和减薄处理。
另一个实施例中,所述热处理装置包括淬火炉,淬火炉的一侧连接氩气瓶,另一侧连接真空泵。
另一个实施例中,所述抛光装置包括机械抛光仪和电解抛光机。
另一个实施例中,所述打点装置包括纳米压痕测试仪。
另一个实施例中,所述沉积-切割-减薄装置包括FIB聚焦离子束装置。
尽管以上结合附图对本公开的实施方案进行了描述,但本公开并不局限于上述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本公开权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本公开保护之列。

Claims (10)

1.一种提取CoCrNi中熵合金浅纳米压痕的方法,包括如下步骤:
S100:对CoCrNi样品进行退火热处理,将退火热处理后的CoCrNi样品进行打磨和抛光处理;
S200:以抛光处理后的CoCrNi样品表面的平整区域作为测试区域,并在该测试区域进行阵列打点以产生纳米压痕阵列;
S300:在打点过程中,实时观察纳米压痕阵列中每个纳米压痕的P-h曲线,当需要表征的压痕发生位移突跳后停止阵列打点;
S400:对纳米压痕阵列实施定位,并对纳米压痕阵列中的浅压痕部分进行Pt沉积和切割处理;
S500:提取切割后的浅压痕部分,并对所提取的浅压痕部分进行减薄处理。
2.根据权利要求1所述的方法,其中,优选的,步骤S400中,所述对纳米压痕阵列中的浅压痕部分进行Pt沉积是通过电子束和离子束两种方式进行的。
3.根据权利要求1所述的方法,其中,步骤S400中,所述对纳米压痕阵列实施定位是通过以下方式进行的:在纳米压痕阵列两端施加2000-5000μN力以产生深度为100-200nm的深压痕,通过该深压痕对纳米压痕阵列进行定位。
4.根据权利要求2所述的方法,其中,步骤S400中,对浅压痕部分进行Pt沉积所形成的Pt保护层的厚度不低于3μm。
5.根据权利要求1所述的方法,其中,步骤S500中,经减薄处理后的浅压痕部分的厚度为50-100nm。
6.一种提取CoCrNi中熵合金浅纳米压痕的装置,包括:
热处理装置,用于对CoCrNi样品进行退火热处理;
抛光装置,用于对热处理后的CoCrNi样品进行抛光处理;
打点装置,用于对抛光处理后的CoCrNi样品进行打点以产生纳米压痕阵列;
沉积-切割-减薄装置,用于对纳米压痕阵列中的浅压痕部分进行Pt沉积,以形成Pt保护层,并对沉积后的浅压痕部分进行切割和减薄处理。
7.根据权利要求6所述的装置,其中,所述热处理装置包括淬火炉,淬火炉的一侧连接氩气瓶,另一侧连接真空泵。
8.根据权利要求6所述的装置,其中,所述抛光装置包括机械抛光仪和电解抛光机。
9.根据权利要求6所述的装置,其中,所述打点装置包括纳米压痕测试仪。
10.根据权利要求6所述的装置,其中,所述沉积-切割-减薄装置包括FIB聚焦离子束装置。
CN202111046491.XA 2021-09-07 2021-09-07 一种提取CoCrNi中熵合金浅纳米压痕的方法及装置 Pending CN114002238A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111046491.XA CN114002238A (zh) 2021-09-07 2021-09-07 一种提取CoCrNi中熵合金浅纳米压痕的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111046491.XA CN114002238A (zh) 2021-09-07 2021-09-07 一种提取CoCrNi中熵合金浅纳米压痕的方法及装置

Publications (1)

Publication Number Publication Date
CN114002238A true CN114002238A (zh) 2022-02-01

Family

ID=79921229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111046491.XA Pending CN114002238A (zh) 2021-09-07 2021-09-07 一种提取CoCrNi中熵合金浅纳米压痕的方法及装置

Country Status (1)

Country Link
CN (1) CN114002238A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030230875A1 (en) * 2002-06-14 2003-12-18 Jenoptik Automatisierungstechnik Gmbh Method for introducing a line of weakening with low tearing resistance into an airbag cover and airbag cover produced by this method
US20080272299A1 (en) * 2005-10-13 2008-11-06 Sungho Jin Probe System Comprising an Electric-Field-Aligned Probe Tip and Method for Fabricating the Same
CN107621471A (zh) * 2017-08-28 2018-01-23 大连理工大学 微米合金含有等长单个纳米孪晶的透射电镜原位纳米压痕方法
WO2020013524A1 (en) * 2018-07-11 2020-01-16 Lg Electronics Inc. Lightweight medium-entropy alloys using spinodal decomposition
US20200248284A1 (en) * 2019-02-06 2020-08-06 Tpr Co., Ltd. Porous metal
CN112362471A (zh) * 2020-10-19 2021-02-12 长江存储科技有限责任公司 一种膜层结合力的测试方法
CN112725678A (zh) * 2020-12-14 2021-04-30 中南大学 一种含NiCoCr的非等原子比中/高熵合金及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030230875A1 (en) * 2002-06-14 2003-12-18 Jenoptik Automatisierungstechnik Gmbh Method for introducing a line of weakening with low tearing resistance into an airbag cover and airbag cover produced by this method
US20080272299A1 (en) * 2005-10-13 2008-11-06 Sungho Jin Probe System Comprising an Electric-Field-Aligned Probe Tip and Method for Fabricating the Same
CN107621471A (zh) * 2017-08-28 2018-01-23 大连理工大学 微米合金含有等长单个纳米孪晶的透射电镜原位纳米压痕方法
WO2020013524A1 (en) * 2018-07-11 2020-01-16 Lg Electronics Inc. Lightweight medium-entropy alloys using spinodal decomposition
US20200248284A1 (en) * 2019-02-06 2020-08-06 Tpr Co., Ltd. Porous metal
CN112362471A (zh) * 2020-10-19 2021-02-12 长江存储科技有限责任公司 一种膜层结合力的测试方法
CN112725678A (zh) * 2020-12-14 2021-04-30 中南大学 一种含NiCoCr的非等原子比中/高熵合金及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D.ZHANG: "《Nanoscale investigation of deformation characteristics in a polycrystalline silicon carbide》", 《JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY》 *
KURT A. TERRANI: "《Young"s modulus evaluation of high burnup structure in UO2 with nanometer resolution》", 《JOURNAL OF NUCLEAR MATERIALS》 *
RUOPENG ZHANG: "《Short-range order and its impact on the CrCoNi medium-entropy alloy》", 《NATURE》 *
王顺博: "《低温压痕校准理论方法与典型材料试验研究》", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
CN106283038A (zh) 提高焊接接头疲劳性能的超声滚压复合激光重熔方法
US20120012563A1 (en) Particle beam-assisted ultra-precision machining method for single-crystal brittle materials
CN107675167A (zh) 一种超高强度钢构件超声冲击辅助激光熔覆修复方法
CN114002238A (zh) 一种提取CoCrNi中熵合金浅纳米压痕的方法及装置
CN110596163B (zh) 一种钛合金断口剖面的ebsd试样制备方法
JP2020205289A (ja) 試料加工評価装置
RU2742751C1 (ru) Способ получения износостойкого наноструктурированного покрытия
CN109913938B (zh) 一种去除样品表面离子损伤的方法
Pajares et al. Residual stresses around Vickers indents
CN112730006B (zh) 一种孔面离子通道衬度试样的制备方法
Lekstrom et al. Using the in situ lift-out technique to prepare TEM specimens on a single-beam FIB instrument
CN110948965B (zh) 储运压力容器用不锈钢-碳钢-不锈钢复合板及其制法
Zhou et al. Nanoscale plastic deformation and fracture of polymers studied by in situ nanoindentation in a transmission electron microscope
CN109811389B (zh) 一种氮化钛铌纳米管阵列及渗氮层复合结构的制备方法
Surreddi et al. In-situ micro-tensile testing of additive manufactured maraging steels in the SEM: Influence of build orientation, thickness and roughness on the resulting mechanical properties
Vysotskiy et al. Optimization of friction-stir welding of 6061-T6 aluminum alloy
LU504025B1 (en) Weldment of cemented carbide and steel and preparation method thereof
Schubert et al. Fast Fabrication of Micropillars for Micromechanical Testing Using a Combined fs-Laser–FIB/SEM Approach
More et al. TEM specimen preparation of oxidized Ni-base alloys using the focused ion beam (FIB) technique
CN113564505B (zh) 一种提高TiN-TiCN-Al2O3涂层刀具切削寿命的方法
Cooley et al. Annealing to mitigate pitting in electropolished niobium coupons and SRF cavities
Cooper Acid Free Processing of Superconducting RF Cavities by Extended Mechanical Polishing (XMP).
CN113504127A (zh) 一种评价预制缺口高温镍基合金裂纹扩展的原位拉伸方法
Prudnikava et al. R&D Activities on centrifugal barrel polishing of 1.3 GHz niobium cavities at DESY/University of hamburg
Li et al. Transmission Electron Microscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220201