CN114000147B - 一种耐磨橡胶材料及制备方法 - Google Patents

一种耐磨橡胶材料及制备方法 Download PDF

Info

Publication number
CN114000147B
CN114000147B CN202111293283.XA CN202111293283A CN114000147B CN 114000147 B CN114000147 B CN 114000147B CN 202111293283 A CN202111293283 A CN 202111293283A CN 114000147 B CN114000147 B CN 114000147B
Authority
CN
China
Prior art keywords
film
wear
rubber material
resistant rubber
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111293283.XA
Other languages
English (en)
Other versions
CN114000147A (zh
Inventor
郭飞
蹤雪梅
冯森
李莎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu XCMG Construction Machinery Institute Co Ltd
Original Assignee
Jiangsu XCMG Construction Machinery Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu XCMG Construction Machinery Institute Co Ltd filed Critical Jiangsu XCMG Construction Machinery Institute Co Ltd
Priority to CN202111293283.XA priority Critical patent/CN114000147B/zh
Publication of CN114000147A publication Critical patent/CN114000147A/zh
Application granted granted Critical
Publication of CN114000147B publication Critical patent/CN114000147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • C23C14/0611Diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于橡胶材料技术领域,具体涉及一种耐磨橡胶材料及制备方法。耐磨橡胶材料包括基体、过渡层和功能层;基体为橡胶;功能层包括类金刚石薄膜和氮掺杂类金刚石薄膜,类金刚石薄膜和氮掺杂类金刚石薄膜交替堆叠。本发明提供的耐磨橡胶材料具有高韧性、高耐磨、高耐冲击的优点。本发明提供的耐磨橡胶材料的制备方法,过程环保、步骤简洁、成本低廉、具有工业化推广价值。

Description

一种耐磨橡胶材料及制备方法
技术领域
本发明属于橡胶材料技术领域,具体涉及一种耐磨橡胶材料及制备方法。
背景技术
橡胶密封件因其优异的密封性能,广泛应用于工程机械、航空航天、汽车、船舶等重大工程装备中。橡胶密封件与坚硬零部件接触摩擦时会产生较大的粘着摩擦力和滞后摩擦力,从而发生粘着磨损和磨粒磨损,导致橡胶密封件服役寿命缩减,进而影响工程机械装备性能,造成不可预估的危险。因此,高耐磨、高可靠、长寿命的橡胶密封件时国内外学界和工业界长期以来的追求目标。
现有提升橡胶密封件表面耐磨性的技术主要有设计密封系统结构、优化橡胶材料等手段。密封系统结构设计一般涉及到橡胶密封件安装槽的结构及尺寸优化与改进,在保证密封性能的同时,减少橡胶压缩率,延长橡胶密封件的使用寿命。优化橡胶材料一般橡胶材料本身材质和结构着手,减少橡胶表面摩擦磨损,降低橡胶密封件失效的可能性。设计密封系统结构及优化橡胶材料的手段往往受限于工程机械装备整体系统的设计,密封系统结构不能过多改变;橡胶材料优化成本较高,工艺复杂且难度大,导致橡胶密封件服役寿命的提升不能达到预期目标。
发明内容
为解决现有技术的不足,本发明的目的是提供一种耐磨橡胶材料,具有高韧性、高耐磨、高耐冲击的优点。
本发明的另一目的是提供一种耐磨橡胶材料的制备方法,过程环保、步骤简洁、成本低廉、具有工业化推广价值。
为解决现有技术的不足,本发明提供的技术方案为:
一种耐磨橡胶材料,依次包括基体、过渡层和功能层;
所述基体为橡胶;
所述功能层包括类金刚石薄膜和氮掺杂类金刚石薄膜,所述类金刚石薄膜和所述氮掺杂类金刚石薄膜交替堆叠。
优选的,所述基体为丁腈橡胶、聚氨酯、氟橡胶或硅橡胶中的一种。
优选的,所述过渡层为铬膜、钛膜或硅膜中的一种。
优选的,所述过渡层为铬膜。
优选的,所述铬膜的厚度为20~50nm。
优选的,所述功能层的最外层为氮掺杂类金刚石薄膜。
优选的,所述功能层的总厚度为80~340nm。
优选的,所述类金刚石薄膜单层的厚度为20~40nm。
优选的,所述氮掺杂类金刚石薄膜单层的厚度为20~40nm。
优选的,所述功能层的总层数为4~10层。
一种耐磨橡胶材料的制备方法,包括,
S1:对基体进行离子清洗;
S2:在基体表面制备过渡层:基体置于真空脉冲电弧镀膜设备的真空室内,惰性氛围,气压为0.05~0.1Pa下,打开阴极电弧离子源,激发铬靶,对基体进行过渡层沉积,所述阴极电弧离子源的电压为16~20V,电流为10~16A,沉积时间为5~10min;
S3:在过渡层表面制备功能层得到前述的耐磨橡胶材料;
所述功能层包括类金刚石薄膜和氮掺杂类金刚石薄膜,所述类金刚石薄膜和所述氮掺杂类金刚石薄膜交替堆叠;
所述类金刚石薄膜的制备方法包括,基体置于真空脉冲电弧镀膜设备的真空室内,抽真空使气压维持在0.04~0.1Pa,打开脉冲阴极电弧离子源,激发碳靶,所述脉冲阴极电弧离子源的电压为250~350V,脉冲频率为1~10Hz,脉冲次数为3000~8000;
所述氮掺杂类金刚石薄膜的制备方法包括,基体置于真空脉冲电弧镀膜设备的真空室内,通入流量为2~20sccm的氮气,抽真空使气压维持在0.04~0.1Pa,打开脉冲阴极电弧离子源,激发碳靶,所述脉冲阴极电弧离子源电压为250~350V,脉冲频率为1~10Hz,脉冲次数为3000~8000;
所述基体为橡胶。
优选的,还包括在对基体进行离子清洗前,对基体进行超声清洗和干燥。
优选的,所述步骤S1包括,
将基体放入真空脉冲电弧镀膜设备的真空室中,抽真空至2×10-2Pa以下,通入惰性气体使气压维持在0.1Pa,打开霍尔离子源对基体进行离子清洗,所述霍尔离子源的电压为2000~2500V,电流为50~70mA,离子清洗时间为5~10min。
优选的,所述类金刚石薄膜的制备方法中,所述脉冲阴极电弧离子源的电压为280~320V,所述脉冲频率为3~5Hz,所述脉冲次数为3000~4000。
优选的,所述氮掺杂类金刚石薄膜的制备方法中,所述氮气的流量为10~15sccm,所述脉冲阴极电弧离子源电压为280~320V,所述脉冲频率为3~5Hz,所述脉冲次数为3000~4000。
优选的,所述功能层的总层数为4~10层。
优选的,所述功能层的最外层为氮掺杂类金刚石薄膜。
优选的,所述基体为丁腈橡胶、聚氨酯、氟橡胶或硅橡胶中的一种。
本发明的有益效果:
1)本发明提供的耐磨橡胶材料的制备方法,利用真空电弧技术沉积过渡层铬;利用真空脉冲电弧技术及氮气辅助进行类金刚石薄膜、氮掺杂类金刚石薄膜“周期式”交替沉积形成功能层;最终制备以氮掺杂类金刚石薄膜为最外层的耐磨橡胶材料,过程环保、步骤简洁、具有工业化推广价值;
2)本发明提供的耐磨橡胶材料的制备方法,采用石墨靶制备功能层,相比化学气相沉积中使用乙炔、甲烷等气体制备类金刚石薄膜成本更为低廉;同时通过在橡胶表面制备过渡层和功能层来提升橡胶材料的耐磨性能相比对橡胶材料本身改性及新材料研发,成本低廉;
3)本发明提供的耐磨橡胶材料具有高耐磨、高耐冲击的特性,能够解决严苛工况下橡胶密封件易磨损、形变、断裂的难题,提升其服役寿命。
附图说明
图1为实施例一制备的丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料截面的透射电镜图;
图2为丁腈橡胶和实施例一制备的丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料的摩擦系数曲线;
图3(a)为丁腈橡胶的磨痕形貌照片;
图3(b)为实施例一制备的丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料的磨痕形貌照片;
图4为聚氨酯和实施例二制备的聚氨酯/Cr/DLC/N-DLC/DLC/N-DLC复合材料的摩擦系数曲线;
图5(a)为聚氨酯的磨痕形貌照片;
图5(b)为实施例二制备的聚氨酯/Cr/DLC/N-DLC/DLC/N-DLC复合材料的磨痕形貌照片。
具体实施方式
下面结合实施方式对本发明作进一步描述。以下实施方式仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明实施例提供一种耐磨橡胶材料,依次包括基体、过渡层和功能层;其中,基体为橡胶;功能层包括类金刚石薄膜(DLC)和氮掺杂类金刚石薄膜(N-DLC),类金刚石薄膜和氮掺杂类金刚石薄膜交替堆叠。
作为非晶碳膜的亚稳态形式,类金刚石(DLC)薄膜由于其自身的润滑性,高硬度和优异的耐磨性而受到工程机械领域的持续关注和研究。类金刚石薄膜内部碳原子以sp2及sp3杂化混合结构组成,兼具了石墨材料的自润滑性能及金刚石的高硬度特性,是一种优异的耐磨涂层。
本发明提供的耐磨橡胶材料,具有“周期式”的功能层,一方面,相对于单层薄膜,多层薄膜耐冲击性更高;另一方面在DLC薄膜中掺杂N元素,能够改变C原子紧密排列的结构,提供应力释放空间,因此制备的N-DLC的应力远小于DLC,N-DLC和DLC交替堆叠可以释放部分DLC薄膜产生的压应力,能够降低功能层的整体应力,提升功能层的韧性,防止功能层从橡胶表面开裂脱落。同时,由于DLC薄膜和N-DLC薄膜硬度较高,而橡胶较软,硬质膜在橡胶受力形变时,易发生开裂,脱落的现象,增加一层相对较软、并且与DLC薄膜或N-DLC薄膜结合效果良好的过渡层,能够有效提高功能层与橡胶基体之间的结合强度,避免功能层在密封件工作过程中发生脱落。
在本发明的可选实施例中,基体为丁腈橡胶、聚氨酯、氟橡胶或硅橡胶中的一种。
在本发明的可选实施例中,过渡层为铬膜、钛膜或硅膜中的一种,优选铬膜。
在本发明的可选实施例中,铬膜的厚度为20~50nm。
在本发明的可选实施例中,功能层的最外层为氮掺杂类金刚石薄膜。N-DLC薄膜作为最外层,兼具石墨的自润滑特性及金刚石的高硬度与耐磨性,且应力低,韧性好,不易开裂、脱落,能够降低橡胶密封件与摩擦副之间的磨损,提升橡胶密封件在复杂工况下的服役寿命。
在本发明的可选实施例中,功能层的总厚度为80~340nm。
在本发明的可选实施例中,类金刚石薄膜单层的厚度为20~40nm。
在本发明的可选实施例中,氮掺杂类金刚石薄膜单层的厚度为20~40nm。
在本发明的可选实施例中,功能层的总层数为4~10层。
本发明实施例还提供一种耐磨橡胶材料的制备方法,包括以下步骤:
(1)将基体浸没于无水乙醇中进行超声震荡清洗10min,去除基体表面油污、灰尘、杂质,清洗后将基体置入50℃烘干箱中进行干燥,时间为30~60min,基体为橡胶。
(2)将基体放入真空脉冲电弧镀膜设备的真空室,关闭真空室门,抽真空至2×10- 2Pa以下,通入惰性气体使气压维持在0.1Pa,打开霍尔离子源对基体进行离子清洗,霍尔离子源的电压为2000~2500V,电流为50~70mA,持续5~10min。惰性气体为氩气。
(3)在基体表面制备过渡层:抽真空的同时通入惰性气体使气压维持在0.05~0.1Pa,打开阴极电弧离子源,激发铬靶,对基体进行过渡层沉积,阴极电弧离子源的电压为16~20V,电流为10~16A,沉积时间为5~10min。惰性气体为氩气。
(4)在过渡层表面制备功能层:功能层包括类金刚石薄膜和氮掺杂类金刚石薄膜,类金刚石薄膜和氮掺杂类金刚石薄膜交替堆叠;
类金刚石薄膜的制备方法为:抽真空使气压维持在0.04~0.1Pa,打开脉冲阴极电弧离子源,激发碳靶,脉冲阴极电弧离子源的电压为250~350V,优选280~320V,脉冲频率为1~10Hz,优选3~5Hz,脉冲次数为3000~8000,优选3000~4000;
氮掺杂类金刚石薄膜的制备方法为:通入氮气,抽真空使气压维持在0.04~0.1Pa,打开脉冲阴极电弧离子源,激发碳靶,其中,氮气的流量为2~20sccm,优选10~15sccm,脉冲阴极电弧离子源电压为250~350V,优选280~320V,脉冲频率为1~10Hz,优选3~5Hz,脉冲次数为3000~8000,优选3000~4000。
碳靶为石墨靶。
脉冲电弧通过在起弧系统上施加脉冲电压,在阴极碳靶和金属阳极上施加恒定高压,引起靶材表面脉冲式电弧,电弧轰击碳靶材,溅射出碳离子至真空室中,随后,碳离子到达基底表面形成薄膜。这种沉积方法在高温、高能量、高真空的环境下,原子离化率(>80%)远大于其他物理气象沉积(磁控溅射、离子束),同时,采用脉冲激发,使靶材在电弧激发间隔区间由冷却水冷却,保持低温镀膜环境,靶材不会过度融化,靶材不会产生较大熔池,避免激发大颗粒污染薄膜。本发明采用这种薄膜制备技术,可以避免镀膜过程中橡胶表面温度过高而破坏橡胶本身的弹性,同时,制备的多层复合类金刚薄膜不含氢元素、致密度高,拥有很高的薄膜质量与性能。
在本发明的可选实施例中,功能层的总层数为4~10层。
在本发明的可选实施例中,功能层的最外层为氮掺杂类金刚石薄膜。
在本发明的可选实施例中,基体为丁腈橡胶、聚氨酯、氟橡胶或硅橡胶中的一种。
下述实施例中所用真空脉冲电弧镀膜设备采用专利CN202011334802.8公开的复合镀膜装置。
实施例一
(1)将丁腈橡胶浸没于无水乙醇中进行超声震荡清洗10min,然后置入50℃烘干箱中进行30min干燥;
(2)将丁腈橡胶放入真空脉冲电弧镀膜设备的真空室中,气压抽至1×10-2Pa,通入高纯度氩气使真空室气压恒定在0.1Pa,打开霍尔离子源,电压为2000V,电流为60mA,持续5min;
(3)抽真空的同时通入惰性气体使气压维持在0.06Pa,打开阴极电弧离子源,激发铬靶,进行过渡层沉积,阴极电弧离子源电压设定为18V,电流设定为12A,持续5min。
(4)抽真空使气压维持在0.04Pa,打开脉冲阴极电弧离子源,激发碳靶,进行DLC薄膜沉积,脉冲阴极电弧离子源电压设定为280V,脉冲频率设定为3Hz,脉冲次数3000。
(5)通入流量18sccm高纯度氮气,抽真空使气压维持在0.1Pa,打开脉冲阴极电弧离子源,激发碳靶,进行N-DLC薄膜沉积,脉冲阴极电弧离子源电压设定为280V,脉冲频率设定为3Hz,脉冲次数3000。
(6)抽真空使气压维持在0.04Pa,打开脉冲阴极电弧离子源,激发碳靶,进行DLC薄膜沉积,脉冲阴极电弧离子源电压设定为280V,脉冲频率设定为3Hz,脉冲次数3000。
(7)通入流量18sccm高纯度氮气,抽真空使气压维持在0.1Pa,打开脉冲阴极电弧离子源,激发碳靶,进行N-DLC薄膜沉积,脉冲阴极电弧离子源电压设定为280V,脉冲频率设定为3Hz,脉冲次数3000。
最终得到丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料。
对丁腈橡胶和丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料进行摩擦实验,条件为:对磨副100Cr6钢球,法向加载力50N,速度10cm/s,时间为3000s。
图1为实施例一制备的丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料截面的透射电镜图,表明丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料的成功制备,制备的Cr膜厚度为45nm,DLC膜厚度为20nm,N-DLC膜厚度为20nm。
图2为丁腈橡胶和丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料的摩擦系数曲线图,从图2可以看出,测量过程中,丁腈橡胶的摩擦系数保持在1.2~1.4。而丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料的摩擦系数相对较低,小于0.25,摩擦系数下降80%。
图3(a)和图3(b)分别为丁腈橡胶及丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料在摩擦实验后的磨痕形貌照片,经观察,丁腈橡胶表面出现严重磨损痕迹,丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料表面的DLC/N-DLC/DLC/N-DLC功能层未发现磨损与脱落痕迹,证明DLC/N-DLC/DLC/N-DLC功能层与丁腈橡胶结合强度高,丁腈橡胶/Cr/DLC/N-DLC/DLC/N-DLC复合材料具有良好的耐磨性及韧性。
实施例二
(1)将聚氨酯浸没于无水乙醇中进行超声震荡清洗10min,然后置入50℃烘干箱中进行30min干燥;
(2)将聚氨酯放入真空镀膜设备中,气压抽至1×10-2Pa,通入高纯度氩气使真空室气压恒定在0.1Pa,打开霍尔离子源,电压为2300V,电流为60mA,持续5min;
(3)抽真空的同时通入惰性气体使气压维持在0.06Pa,打开阴极电弧离子源,激发铬靶,进行过渡层沉积,脉冲阴极离子源电压设定为18V,电流设定为10A,持续5min。
(4)抽真空使气压维持在0.04Pa,打开脉冲阴极电弧离子源,激发碳靶,进行DLC薄膜沉积,脉冲阴极电弧离子源电压设定为320V,脉冲频率设定为5Hz,脉冲次数5000。
(5)通入流量15sccm高纯度氮气,抽真空使气压维持在0.09Pa,打开脉冲阴极电弧离子源,激发碳靶,进行N-DLC薄膜沉积,脉冲阴极电弧离子源电压设定为320V,脉冲频率设定为5Hz,脉冲次数5000。
(6)抽真空使气压维持在0.04Pa,打开脉冲阴极电弧离子源,激发碳靶,进行DLC薄膜沉积,脉冲阴极电弧离子源电压设定为320V,脉冲频率设定为5Hz,脉冲次数5000。
(7)通入流量15sccm高纯度氮气,抽真空使气压维持在0.09Pa,打开脉冲阴极电弧离子源,激发碳靶,进行N-DLC薄膜沉积,脉冲阴极电弧离子源电压设定为320V,脉冲频率设定为5Hz,脉冲次数5000。
最终得到聚氨酯/Cr/DLC/N-DLC/DLC/N-DLC复合材料。
对聚氨酯和聚氨酯/Cr/DLC/N-DLC/DLC/N-DLC复合材料进行摩擦实验,条件为:对磨副100Cr6钢球,法向加载力50N,速度10cm/s,时间为3000s。
图4为聚氨酯和聚氨酯/Cr/DLC/N-DLC/DLC/N-DLC复合材料的摩擦系数曲线,在测量过程中,前500s内,聚氨酯的摩擦系数从0.9增加到1.6,在随后的2500s内,摩擦系数保持在1.6左右。而聚氨酯/Cr/DLC/N-DLC/DLC/N-DLC复合材料的摩擦系数略有波动,最终稳定在0.4左右,相较于聚氨酯,摩擦系数下降75%。
图5(a)及图5(b)分别为聚氨酯和聚氨酯/Cr/DLC/N-DLC/DLC/N-DLC复合材料摩擦实验后的磨痕形貌照片,经观察,聚氨酯橡胶表面出现严重磨损痕迹,聚氨酯/Cr/DLC/N-DLC/DLC/N-DLC复合材料表面未发现磨损与脱落痕迹,表明DLC/N-DLC/DLC/N-DLC功能层与聚氨酯结合强度高,聚氨酯/Cr/DLC/N-DLC/DLC/N-DLC复合材料具有良好的耐磨性及韧性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (16)

1.一种耐磨橡胶材料,其特征在于,依次包括基体、过渡层和功能层;
所述基体为橡胶;
所述功能层包括类金刚石薄膜和氮掺杂类金刚石薄膜,所述类金刚石薄膜和所述氮掺杂类金刚石薄膜交替堆叠;
所述过渡层为铬膜。
2.根据权利要求1所述的一种耐磨橡胶材料,其特征在于,所述基体为丁腈橡胶、聚氨酯、氟橡胶或硅橡胶中的一种。
3.根据权利要求1所述一种耐磨橡胶材料,其特征在于,所述铬膜的厚度为20~50nm。
4.根据权利要求1所述的一种耐磨橡胶材料,其特征在于,所述功能层的最外层为氮掺杂类金刚石薄膜。
5.根据权利要求1所述的一种耐磨橡胶材料,其特征在于,所述功能层的总厚度为80~340nm。
6.根据权利要求1所述的一种耐磨橡胶材料,其特征在于,所述类金刚石薄膜单层的厚度为20~40nm。
7.根据权利要求1所述的一种耐磨橡胶材料,其特征在于,所述氮掺杂类金刚石薄膜单层的厚度为20~40nm。
8.根据权利要求1所述的一种耐磨橡胶材料,其特征在于,所述功能层的总层数为4~10层。
9.一种耐磨橡胶材料的制备方法,其特征在于,包括,
S1:对基体进行离子清洗;
S2:在基体表面制备过渡层:基体置于真空脉冲电弧镀膜设备的真空室内,惰性氛围,气压为0.05~0.1Pa下,打开阴极电弧离子源,激发铬靶,对基体进行过渡层沉积,所述阴极电弧离子源的电压为16~20V,电流为10~16A,沉积时间为5~10min;
S3:在过渡层表面制备功能层得到权利要求1~8中任意一项权利要求所述的耐磨橡胶材料;
所述功能层包括类金刚石薄膜和氮掺杂类金刚石薄膜,所述类金刚石薄膜和所述氮掺杂类金刚石薄膜交替堆叠;
所述类金刚石薄膜的制备方法包括,基体置于真空脉冲电弧镀膜设备的真空室内,抽真空使气压维持在0.04~0.1Pa,打开脉冲阴极电弧离子源,激发碳靶,所述脉冲阴极电弧离子源的电压为250~350V,脉冲频率为1~10Hz,脉冲次数为3000~8000;
所述氮掺杂类金刚石薄膜的制备方法包括,基体置于真空脉冲电弧镀膜设备的真空室内,通入流量为2~20sccm的氮气,抽真空使气压维持在0.04~0.1Pa,打开脉冲阴极电弧离子源,激发碳靶,所述脉冲阴极电弧离子源电压为250~350V,脉冲频率为1~10Hz,脉冲次数为3000~8000;
所述基体为橡胶。
10.根据权利要求9所述的一种耐磨橡胶材料的制备方法,其特征在于,还包括在对基体进行离子清洗前,对基体进行超声清洗和干燥。
11.根据权利要求9所述的一种耐磨橡胶材料的制备方法,其特征在于,所述步骤S1包括,
将基体放入真空脉冲电弧镀膜设备的真空室中,抽真空至2×10-2Pa以下,通入惰性气体使气压维持在0.1Pa,打开霍尔离子源对基体进行离子清洗,所述霍尔离子源的电压为2000~2500V,电流为50~70mA,离子清洗时间为5~10min。
12.根据权利要求9所述的一种耐磨橡胶材料的制备方法,其特征在于,所述类金刚石薄膜的制备方法中,所述脉冲阴极电弧离子源的电压为280~320V,所述脉冲频率为3~5Hz,所述脉冲次数为3000~4000。
13.根据权利要求9所述的一种耐磨橡胶材料的制备方法,其特征在于,所述氮掺杂类金刚石薄膜的制备方法中,所述氮气的流量为10~15sccm,所述脉冲阴极电弧离子源电压为280~320V,所述脉冲频率为3~5Hz,所述脉冲次数为3000~4000。
14.根据权利要求9所述的一种耐磨橡胶材料的制备方法,其特征在于,所述功能层的总层数为4~10层。
15.根据权利要求9所述的一种耐磨橡胶材料的制备方法,其特征在于,所述功能层的最外层为氮掺杂类金刚石薄膜。
16.根据权利要求9所述的一种耐磨橡胶材料的制备方法,其特征在于,所述基体为丁腈橡胶、聚氨酯、氟橡胶或硅橡胶中的一种。
CN202111293283.XA 2021-11-03 2021-11-03 一种耐磨橡胶材料及制备方法 Active CN114000147B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111293283.XA CN114000147B (zh) 2021-11-03 2021-11-03 一种耐磨橡胶材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111293283.XA CN114000147B (zh) 2021-11-03 2021-11-03 一种耐磨橡胶材料及制备方法

Publications (2)

Publication Number Publication Date
CN114000147A CN114000147A (zh) 2022-02-01
CN114000147B true CN114000147B (zh) 2023-10-03

Family

ID=79926761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111293283.XA Active CN114000147B (zh) 2021-11-03 2021-11-03 一种耐磨橡胶材料及制备方法

Country Status (1)

Country Link
CN (1) CN114000147B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115323300B (zh) * 2022-07-25 2023-04-07 中国航空制造技术研究院 钛合金配对摩擦副抗微动损伤防护方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2090110A1 (en) * 1990-10-18 1992-04-19 Fred M. Kimock Abrasion wear resistant polymeric substrate product
CN105420673A (zh) * 2015-12-09 2016-03-23 上海应用技术学院 一种用于橡胶模具的类金刚石微纳米涂层及制备方法
CN107587115A (zh) * 2016-09-26 2018-01-16 上海紫日包装有限公司 一种表面类金刚石复合涂层的塑料瓶盖模具
CN112746258A (zh) * 2020-12-29 2021-05-04 杭州电子科技大学 一种耐磨耐腐蚀橡胶材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI386494B (zh) * 2005-11-18 2013-02-21 Hon Hai Prec Ind Co Ltd 一種具有多層鍍膜之模具
CN101890828A (zh) * 2009-05-20 2010-11-24 鸿富锦精密工业(深圳)有限公司 不导电且具金属质感的塑料件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2090110A1 (en) * 1990-10-18 1992-04-19 Fred M. Kimock Abrasion wear resistant polymeric substrate product
US5190807A (en) * 1990-10-18 1993-03-02 Diamonex, Incorporated Abrasion wear resistant polymeric substrate product
CN105420673A (zh) * 2015-12-09 2016-03-23 上海应用技术学院 一种用于橡胶模具的类金刚石微纳米涂层及制备方法
CN107587115A (zh) * 2016-09-26 2018-01-16 上海紫日包装有限公司 一种表面类金刚石复合涂层的塑料瓶盖模具
CN112746258A (zh) * 2020-12-29 2021-05-04 杭州电子科技大学 一种耐磨耐腐蚀橡胶材料及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"The Application of DLC(diamond-like carbon) Film for Plastic Injection Mold by Hybrid Method of RF Sputtering and Ion Source";Kim, M. S.et al.;《한국표면공학회지》;第173-178页 *
"A study of diamond like carbon/chromium films deposited bymicrowave plasma activated chemical vapor deposition";Sambita Sahoo et al.;《Journal of Non-Crystalline Solids》;第14-18页 *
"Interlayer formation of diamond-like carbon coatings on industrial polyethylene: Thickness dependent surface characterization by SEM, AFM and NEXAFS";Christian B. Fischer et al.;《Applied Surface Science》;第381-389页 *
Li Qiang et al.."Comparative study on the influence of bias on the properties of Si-DLC film with and without Si interlayer on NBR: The role of Si interlayer".《Diamond & Related Materials》.2019,1-13. *
Lokeswar Patnaik et al.."Comprehensive structural, nanomechanical and tribological evaluation of silver doped DLC thin film coating with chromium interlayer (Ag-DLC/Cr) for biomedical application".《Ceramics International》.2020,22805-002818. *
Y.M.Wu et al.."On the adhesion and wear resistance of DLC films deposited on nitrile butadiene rubber: A Ti-C interlayer".《Diamond & Related Materials》.2019,1-11. *
Yushi Iijima et al.."Preparation of multi-layer film consisting of hydrogen-free DLC and nitrogen containing DLC for conductive hard coating".《The Irago Conference 2017》.2018,第020024-1-020024-8页. *

Also Published As

Publication number Publication date
CN114000147A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
US8039096B2 (en) Friction- and wear-reducing coating
CN107653438B (zh) 一种具有真空长效润滑性能碳薄膜的制备方法
JP5865015B2 (ja) ピストンリング
CN114000147B (zh) 一种耐磨橡胶材料及制备方法
CN110551992A (zh) 一种在超级马氏体不锈钢表面制备dlc薄膜的方法
CN111485209A (zh) 高熵合金/wc硬质层纳米多层薄膜、其制备方法及应用
US20200224319A1 (en) Flexible hard composite coating, preparation method thereof, and coated cutter
CN114574827B (zh) 一种含碳高熵合金薄膜及其制备方法与应用
CN115612998A (zh) 一种镁合金表面润滑耐磨复合膜层及其制备方法
CN114231926A (zh) 一种可延长切削刀具寿命的涂层及其制备方法
CN108456883B (zh) 一种基体表面碳基减摩耐磨薄膜的制备方法
CN113201713B (zh) 一种橡胶表面超低摩擦碳基复合薄膜的构筑方法
CN109651638B (zh) 一种应用于氟橡胶表面抗磨减摩改性的类聚物碳膜的制备方法及利用该碳膜制得的氟橡胶
CN113621926A (zh) 一种低应力类金刚石耐磨涂层及其制备方法
CN113512710A (zh) 一种45钢表面CrN-Cr梯度涂层及其制备方法与应用
CN110923650A (zh) 一种dlc涂层及其制备方法
JPH10226874A (ja) 硬質炭素膜及びその被覆部材
CN114182213A (zh) 一种钛合金耐磨抗氧化复合涂层及其制备方法
Fan et al. Microstructure, mechanical and tribological properties of gradient CrAlSiN coatings deposited by magnetron sputtering and arc ion plating technology
CN113186505A (zh) 一种在γ-TiAl合金表面WC涂层的方法
CN112030121B (zh) 宽温域减摩耐磨MoCN复合薄膜、其制备方法及应用
US20200318232A1 (en) Post-processing method for improving anti-wear and friction-reducing properties of crn coating
CN116904925B (zh) 一种高温超润滑硅掺杂类金刚石碳膜及其制备方法与应用
CN110578114A (zh) 一种掺杂的类石墨复合薄膜及其制备方法、含有掺杂的类石墨复合薄膜的部件
CN113201712B (zh) 一种导电耐磨自润滑碳基薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant