CN113984728A - 一种用于单增李斯特菌快速检测的荧光生物传感器构建方法 - Google Patents

一种用于单增李斯特菌快速检测的荧光生物传感器构建方法 Download PDF

Info

Publication number
CN113984728A
CN113984728A CN202111266864.4A CN202111266864A CN113984728A CN 113984728 A CN113984728 A CN 113984728A CN 202111266864 A CN202111266864 A CN 202111266864A CN 113984728 A CN113984728 A CN 113984728A
Authority
CN
China
Prior art keywords
ucnps
fluorescence
listeria monocytogenes
mnps
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111266864.4A
Other languages
English (en)
Other versions
CN113984728B (zh
Inventor
潘磊庆
李悦
屠康
陈敏
彭菁
王振杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN202111266864.4A priority Critical patent/CN113984728B/zh
Publication of CN113984728A publication Critical patent/CN113984728A/zh
Application granted granted Critical
Publication of CN113984728B publication Critical patent/CN113984728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种基于双位点识别策略和荧光内滤效应构建的荧光生物传感器。通过构建一种上转换纳米粒子(UCNPs)介导的荧光生物传感器,并用于单增李斯特菌的快速、灵敏检测。将万古霉素(Van)作为第一识别分子,制备MNPs‑Van磁纳米探针;以生物素化的核酸适配体(aptamer)作为第二识别分子,可与单增李斯特菌细胞壁上的内化蛋白A结合。利用两种识别分子分别靶标目标菌上的不同位点,从而特异性捕获目标菌,形成三明治型复合物(MNPs‑Van/单增李斯特菌/aptamer)。通过辣根过氧化物酶标记物(HRP‑SA),引入HRP‑TMB酶催化系统而产生蓝色物质,结合UCNPs的荧光内滤效应,导致UCNPs荧光强度的降低,从而实现对单增李斯特菌的定量检测。

Description

一种用于单增李斯特菌快速检测的荧光生物传感器构建方法
技术领域
本发明属于食品安全检测分析技术领域。具体涉及一种基于双位点识别策略和荧光内滤 效应介导的荧光生物传感器的构建,进而实现对食品中单增李斯特菌的快速检测新方法。
背景技术
“民以食为天,食以安为先”,食品安全是老百姓最关心的民生问题之一。而食源性致病微 生物引起的食源性疾病是重要的公共卫生问题,也是各国食品安全的重点监测对象。每年都 出现食物中毒、食品卫生事件的报道,尤以致病微生物为主,极不利于国家健康有序的发展。 从各国食源性疾病爆发的数据分析来看,不论美国、欧盟、还是中国,引起疾病爆发事件的 致病因素主要是微生物性因素。常见的食源性致病微生物有沙门氏菌、大肠杆菌、葡萄球菌、 副溶血性弧菌、单增李斯特菌、黄曲霉菌及病毒、禽流感病毒、口蹄疫病毒等。根据GB29921- 2013所规定,一般除了金黄色葡萄球菌和副溶血性弧菌在允许范围内可以检出,食品中不得 检出致病菌是非常重要的食品卫生质量指标。而食品产业链长,易污染环节多,食品营养丰 富,适合致病菌生长,因此需要多种不同的方法对食品中致病菌进行检测,这对食品安全非 常重要。
单增李斯特菌,作为世界四大食源性致病菌之一,也是李斯特菌中唯一一种人畜共患病原 菌,其可以使人类患上类流感疾病和严重的并发症,如脑膜炎、败血症,甚至孕妇的自然流 产等,致死率高达30%。此外,单增李斯特菌分布广泛,能在高盐、低温、酸碱性等多种环 境中生存和繁殖,俗称“冰箱杀手”;常污染的食物有肉制品、奶制品等全产业链和即时食品、 冷冻冷藏食品,因此,建立一种快速、灵敏、可靠地检测单增李斯特菌的方法是非常重要的。
目前,单增李斯特菌的常见检测方法主要有:传统的微生物培养法、基于抗原-抗体特异性 识别的免疫检测方法和基于碱基互补配对原则的核酸扩增检测方法、以及生物传感器等。微 生物培养法不需要使用特殊的仪器设备,检测灵敏度高,一直是细菌检测的金标准;但是该 过程繁琐复杂,周期较长(4-7天),易出现错检漏检,且需要专门的实验人员完成检测过程, 这限制了该法的实际应用,无法满足食品生产和现场分析的快速检测。免疫分析主要包括酶 联免疫吸附测定法(ELISA)和胶体金免疫层析试纸条方法。ELISA具有操作相对简单、高通量 等优势;胶体金免疫层析试纸条具有操作简单、反应速度快、适合现场快速检测等优点。但 是两者灵敏度一般,且高特异性有赖于高质量的抗体,而抗体制备复杂,保存条件严苛,货 架期较短,成本较高,不利于该检测技术进一步推广使用。利用核酸扩增技术将致病菌的检 测提升到分子水平,可实现低浓度目标菌的有效检测。常见的核酸扩增方法比如qPCR、mPCR、 环介导等温扩增法等,但是其操作复杂,需要专业人员和专门仪器,而且引物、探针设计要 求高、难度大,易出现假阳性结果。
近年来,国内外研究者们一直致力于探索适合现场分析的食源性致病菌检测方法,其中生 物传感器成为研究热点。生物传感器具有分析速度快、成本低、便携性好等优点,容易实现
发明内容
本发明的目的是提供一种基于双位点识别策略和荧光内滤效应的荧光生物传感器的制备 方法及其应用,可以实现单增李斯特菌的快速非免疫检测。该传感器具有较宽的线性范围, 且灵敏度较高、检测速度较快。
为了实现上述目的,本发明的技术方案包括:以磁纳米颗粒作为载体(MNPs)制备MNPs- Van纳米探针,结合特异性适配体(aptamer),实现双位点非免疫识别单增李斯特菌。利用 UCNPs的荧光内滤效应,即UCNPs的发射波长与有色产物的吸收波长出现重叠,诱导荧光 强度发生变化,将传统的紫外吸光值信号转换为上转换荧光信号,建立单增李斯特菌定量检 测的标准曲线。
对于单增李斯特菌的检测,与现有的技术相比,本发明的优点在于:
1.本发明使用万古霉素和核酸适配体作为生物识别分子,规避了传统免疫分析中抗体的 使用,降低了成本。
2.本发明将双位点识别策略和UCNPs的荧光内滤效应相结合,实现了信号转换和信号 放大,克服了传统比色传感方法灵敏度低,线性范围窄等缺点,可满足一定浓度范围的单增 李斯特菌检测。
3.本发明建立的荧光生物传感器制作方便,需样品量少,抗外界干扰能力强,且易于实 现食源性致病菌的现场即时检测。
附图说明
图1是本发明制备的荧光生物传感器检测单增李斯特菌的原理示意图。
图2是UCNPs的表征图:(A)OA-UCNPs的TEM图像;(B)UCNPs的 X-衍射结果;(C)ADA-UCNPs的TEM图像;(D)UCNPs的傅里叶变换红外 光谱;(E)UCNPs的荧光光谱;(F)ADA-UCNPs,MNPs and MNPs-Van的Zeta 电位。
图3是MNPs和MNPs-Van的表征图:(A)和(B)MNPs和MNPs-Van的 TEM图像;(C)MNPs和MNPs-Van的水合粒径;(D)MNPs和MNPs-Van的 傅里叶变换红外光谱;(E)单增李斯特菌的电镜图像;(F)MNPs-Van偶联物捕 获单增李斯特菌的电镜图像。
图4是优化实验参数:(A)MNPs-Van偶联物的浓度;(B)适配体的浓度(C) HRP-SA的浓度。
图5是构建的荧光传感器检测单增李斯特菌的灵敏度分析:(A)荧光强度 变化量;(B)标准曲线。
图6是构建的荧光传感器特异性检测单增李斯特菌结果。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应 该明了,所述实施例仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
1.荧光生物传感器的制备
(1)UCNPs的制备
1)分别称取0.1164g YCl3·6H2O、0.0892g GdCl3·6H2O、0.062g YbCl3·6H2O 和0.006g ErCl3·6H2O溶于4mL甲醇溶液中,超声至完全溶解,然后倒入用少 许甲醇润洗过的三口烧瓶中(三口烧瓶必须保持洁净,若有需要可用王水浸泡过 夜);然后再倒入6mL油酸和14mL 1-十八烯。
2)在连续的磁力搅拌下,将上述混合物置于氮气保护条件下,加热至160℃, 保持30min,然后冷却至50℃左右。
3)分别称取0.2964g NH4F和0.2g NaOH溶于20mL甲醇溶液中,并超声 约15min至完全溶解;然后在连续搅拌下,将该溶液逐滴加入到上述烧瓶溶液 中。随后将混合物置于50℃水浴条件下保持40min,然后在70℃水浴条件下 保持60min,以便于甲醇的挥发。
4)随后,在连续搅拌下,将上述混合物加热至300℃并保持60min。待冷 却至室温,10000rmp离心3min,弃上清;并用环己烷和乙醇洗涤沉淀3次(10000 rmp离心3min),最后将收集到的固体在60℃下过夜真空干燥,并密封保存。
上述合成的上转换纳米颗粒是油酸包裹着的(OA-UCNPs),所以是疏水性 的,这不利于后续的进一步使用。为了将疏水性的UCNPs转变成亲水性的 UCNPs,本研究采用配体交换的方式对UCNPs进行表面修饰,而阿伦膦酸(ADA) 被用作配体去置换UCNPs表面的原始疏水性配体。具体方法如下:称取50mg ADA和200mg OA-UCNPs固体混合,并分散于10mL三氯甲烷、4mL乙醇和 6M1超纯水中,超声约5min;用1M HCl调节pH至2-3,并在连续搅拌下反应30min。反应结束后,分别用乙醇和纯水洗涤3-4次(10000rmp离心3min)。 最后将得到的产品(ADA-UCNPs)重新分散在10mL超纯水中,置于4℃条件 下,备用。
(2)MNPs-Van偶联物的制备
首先,将1mg羧基包覆的磁纳米颗粒(MNPs)悬液转移到1.5mL离心管 中,用MEST(10mM MES,pH=6.0,0.05%Tween-20)洗涤2次并转移至新的 1.5mL离心管中。磁分离后,在室温条件下,用50μL EDC和NHS(10mg/mL) 活化羧基化的磁纳米颗粒20min。将试管置于磁分离架上分离,用MEST洗涤2 次,然后分散于含有1.0mg万古霉素的磷酸盐缓冲溶液(10mM PBS,pH=7.4) 中,在室温条件下,连续轻柔振荡、孵育6h。磁分离并去除上清液后,在试管 中加入1mL PBST和1%BSA,孵育30min,封闭残留位点。最后,将MNPs-Van 偶联物用PBST洗涤3次,然后将其分散于1mL PBST和0.5%BSA中,于4℃ 下保存备用。
2.样品检测
(1)检测方法
1)将已知浓度的单增李斯特菌菌液梯度稀释成102,2×102,2×103,2×104, 2×105,2×106,2×107和2×108CFU/mL。
2)将100μL MNPs-Van偶联物分别与400μL不同浓度(102-2×108CFU/mL) 的目标菌菌液于1.5mL无菌离心管中混合,在37℃下持续振荡、孵育30min。
3)磁分离后用PBST缓冲液洗涤3次,加入生物素化的适配体100mL,在 37℃下振荡、孵育30min。
4)磁分离、洗涤3次,加入100μL HRP-SA溶液,在37℃下振荡、孵育 30min。磁分离、洗涤3次,用100μL去离子水重新分散复合物,再与200μL TMB 溶液在黑暗条件下反应10min。
5)磁分离后,从上清液中吸取200μL溶液,与100μL UCNPs溶液(1mg/mL) 混匀。随后置于具有980nm激光源的荧光分光光度计上,测定上述混合物的上 转换荧光发射光谱。
每个点分析3次(n=3),而且对于每个间隔,荧光强度变化量(ΔFL intensity)计算公式为:ΔFL intensity=|FL intensitysample-FL intensityblank|。
(2)条件优化
在(1)检测方法的基础上,对MNPs-Van偶联物浓度、适配体浓度和HRP-SA 稀释比进行优化,如图4所示,得到MNPs-Van偶联物和适配体的浓度分别为 0.1mg/mL和0.1mM,HRP-SA稀释比1∶2000。
(3)标准曲线建立
在(1)检测方法的基础上,以样品浓度(CFU/mL)的对数为横坐标,以 ΔFLintensity值为纵坐标作图,如图5所示,建立荧光强度变化量和单增李斯特 菌浓度间的标准曲线。
(4)特异性验证
以革兰氏阳性菌(金黄色葡萄球菌和嗜热脂肪芽孢杆菌)和革兰氏阴性菌(大 肠杆菌和肠道沙门氏菌),这四种病原菌为阴性对照组,验证方法的特异性。如 图6所示,检测单增李斯特菌时的ΔFL intensity明显高于阴性对照。
(5)实际样品检测
回收率采用标准加入法进行了研究,即在空白火腿样品中加入不同浓度的单 增李斯特菌。如下表所示,火腿样品中检测单增李斯特菌的平均回收率为88.0% -108.5%,表明了该方法具有一定的可行性和准确性。
Figure RE-GSB0000197175660000031
申请人声明,本发明通过上述实施例来说明本发明的工艺方法,但本发明并不局限于上 述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员 应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体 方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (1)

1.基于双位点识别策略和荧光内滤效应的荧光生物传感器的构建及应用,其特征是步骤如下:
步骤一,传感器的制备
(1)UCNPs的制备
利用热分解法合成镧系金属掺杂的上转换纳米颗粒UCNPs,具体制备方法如下:
1)分别称取0.1164g YCl3·6H2O、0.0892g GdCl3·6H2O、0.062g YbCl3·6H2O和0.006gErCl3·6H2O溶于4mL甲醇溶液中,超声至完全溶解,然后倒入用少许甲醇润洗过的三口烧瓶中,然后再倒入6mL油酸和14mL 1-十八烯;
2)在连续的磁力搅拌下,将上述混合物置于氮气保护条件下,加热至160℃,保持30min,然后冷却至50℃左右。
3)分别称取0.2964g NH4F和0.2g NaOH溶于20mL甲醇溶液中,并超声约15min至完全溶解,然后在连续搅拌下,将该溶液逐滴加入到上述烧瓶溶液中,随后将混合物置于50℃水浴条件下保持40min,然后在70℃水浴条件下保持60min,以便于甲醇的挥发;
4)随后,在连续搅拌下,将上述混合物加热至300℃并保持60min,待冷却至室温,10000rmp离心3min,弃上清,并用环己烷和乙醇洗涤沉淀3次,最后将收集到的固体在60℃下过夜真空干燥,并密封保存;
上述合成的上转换纳米颗粒是油酸包裹着的OA-UCNPs,采用配体交换的方式对UCNPs进行表面修饰,即称取50mg ADA和200mg OA-UCNPs固体混合,并分散于10mL三氯甲烷、4mL乙醇和6Ml超纯水中,超声约5min;用1M HCl调节pH至2-3,并在连续搅拌下反应30min。反应结束后,分别用乙醇和纯水洗涤3-4次,10000rmp离心3min,最后将得到的产品ADA-UCNPs重新分散在10mL超纯水中,置于4℃条件下,备用;
(2)MNPs-Van偶联物的制备
首先,将1mg羧基包覆的磁纳米颗粒MNPs悬液转移到1.5mL离心管中,用10mM MES,pH=6.0,0.05%Tween-20制成的MEST洗涤2次并转移至新的1.5mL离心管中,磁分离后,在室温条件下,用50μL EDC和10mg/mL NHS活化羧基化的磁纳米颗粒20min,将试管置于磁分离架上分离,用MEST洗涤2次,然后分散于含有1.0mg万古霉素的含有10mM PBS和pH=7.4的磷酸盐缓冲溶液中,在室温条件下,连续轻柔振荡、孵育6h;磁分离并去除上清液后,在试管中加入1mL PBST和1%BSA,孵育30min,封闭残留位点,将MNPs-Van偶联物用PBST洗涤3次,然后将其分散于1mL PBST和0.5%BSA中,于4℃下保存备用;
步骤二,单增李斯特菌的检测方法
首先,将已知浓度的单增李斯特菌菌液梯度稀释成102,2×102,2×103,2×104,2×105,2×106,2×107和2×108CFU/mL;然后将100μL MNPs-Van偶联物分别与400μL的102-2×108CFU/mL不同浓度的目标菌菌液于1.5mL无菌离心管中混合,在37℃下持续振荡、孵育30min;磁分离后用PBST缓冲液洗涤3次,加入生物素化的适配体100mL,在37℃下振荡、孵育30min;磁分离、洗涤3次,加入100μL HRP-SA溶液,在37℃下振荡、孵育30min;磁分离、洗涤3次,用100μL去离子水重新分散复合物,再与200μL TMB溶液在黑暗条件下反应10min;磁分离后,从上清液中吸取200μL溶液,与100μL的1mg/mL UCNPs溶液混匀;随后置于具有980nm激光源的荧光分光光度计上,测定上述混合物的上转换荧光发射光谱;每个点分析3次(n=3),而且对于每个间隔,荧光强度变化量(ΔFL intensity)计算公式为:ΔFL intensity=|FL intensitysample-FL intensityblank|;
步骤三,数据监测与记录
通过一台自主搭建的荧光检测系统对其进行荧光强度(FL intensity)的测定。
CN202111266864.4A 2021-10-28 2021-10-28 一种用于单增李斯特菌快速检测的荧光生物传感器构建方法 Active CN113984728B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111266864.4A CN113984728B (zh) 2021-10-28 2021-10-28 一种用于单增李斯特菌快速检测的荧光生物传感器构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111266864.4A CN113984728B (zh) 2021-10-28 2021-10-28 一种用于单增李斯特菌快速检测的荧光生物传感器构建方法

Publications (2)

Publication Number Publication Date
CN113984728A true CN113984728A (zh) 2022-01-28
CN113984728B CN113984728B (zh) 2023-10-27

Family

ID=79743850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111266864.4A Active CN113984728B (zh) 2021-10-28 2021-10-28 一种用于单增李斯特菌快速检测的荧光生物传感器构建方法

Country Status (1)

Country Link
CN (1) CN113984728B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686611A (zh) * 2022-04-24 2022-07-01 常州先趋医疗科技有限公司 用于检测单增李斯特菌的引物组及其应用
WO2023225904A1 (zh) * 2022-05-25 2023-11-30 深圳先进技术研究院 一种用于检测颅内葡萄球菌感染的试剂底物以及试剂盒的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130011862A1 (en) * 2008-09-26 2013-01-10 Biotica, Bioquimica Analitica, S.L. Rapid process for detection of microorganisms with magnetic particles
CN105954268A (zh) * 2016-04-22 2016-09-21 华南师范大学 一种基于四氧化三铁纳米簇催化信号放大的可视化检测传感器及其构建与应用
WO2017211214A1 (zh) * 2016-06-07 2017-12-14 江南大学 基于沙门氏菌核心多糖单克隆抗体的检测食品中沙门氏菌属的胶体金试纸条的制备方法
CN107723348A (zh) * 2017-11-29 2018-02-23 南京农业大学 鉴定单增李斯特菌1/2c血清型的NASBA检测方法
CN107988330A (zh) * 2017-12-11 2018-05-04 南京农业大学 同时检测单增李斯特菌和伊氏李斯特菌的双重pcr方法
CN109596827A (zh) * 2019-01-17 2019-04-09 长江师范学院 一种同时检测4种致病菌的荧光检测试纸条及其制备方法和应用
CN112553305A (zh) * 2021-01-27 2021-03-26 四川大学 一种快速检测单增李斯特菌的试剂盒及其制备方法和检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130011862A1 (en) * 2008-09-26 2013-01-10 Biotica, Bioquimica Analitica, S.L. Rapid process for detection of microorganisms with magnetic particles
CN105954268A (zh) * 2016-04-22 2016-09-21 华南师范大学 一种基于四氧化三铁纳米簇催化信号放大的可视化检测传感器及其构建与应用
WO2017211214A1 (zh) * 2016-06-07 2017-12-14 江南大学 基于沙门氏菌核心多糖单克隆抗体的检测食品中沙门氏菌属的胶体金试纸条的制备方法
CN107723348A (zh) * 2017-11-29 2018-02-23 南京农业大学 鉴定单增李斯特菌1/2c血清型的NASBA检测方法
CN107988330A (zh) * 2017-12-11 2018-05-04 南京农业大学 同时检测单增李斯特菌和伊氏李斯特菌的双重pcr方法
CN109596827A (zh) * 2019-01-17 2019-04-09 长江师范学院 一种同时检测4种致病菌的荧光检测试纸条及其制备方法和应用
CN112553305A (zh) * 2021-01-27 2021-03-26 四川大学 一种快速检测单增李斯特菌的试剂盒及其制备方法和检测方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BIN GU, QICHUN ZHANG: "Recent Advances on Functionalized Upconversion Nanoparticles for Detection of Small Molecules and Ions in Biosystems", 《ADVANCED SCIENCE》, vol. 5, no. 3 *
华修德;尤红杰;杨家川;施海燕;王鸣华;: "基于上转换荧光标记的氯噻啉免疫层析方法研究", 分析化学, no. 03 *
张捷;张昕;范爱红;张惠媛;汪琦;顾德周;王佩荣;韩晶;陆琳;陈广全;乐加昌;: "F_0F_1-ATPase分子马达技术对单核细胞增生李斯特菌检测的研究", 生物技术进展, no. 06 *
林淑凤;徐珍霞;吴仁蔚;: "适配体结合聚酰胺-胺修饰的磁性纳米粒子富集单增李斯特菌", 食品安全质量检测学报, no. 09 *
武会娟;魏玲;伦永志;亢子佳;赵龙;: "一种免疫生物传感器对单核细胞增生李斯特菌快速检测方法的初步研究", 中国微生态学杂志, no. 08 *
班美静;满燕;潘立刚;: "核酸适配体生物传感技术在沙门氏菌定量检测中的应用", 广东农业科学, no. 10 *
陈敏, 王颖, 顾其芳: "食品中单核细胞增生李斯特氏菌快速检测方法研究", 上海预防医学杂志, no. 05 *
黄伟华;李伦;陈超超;陈雪岚;: "荧光免疫吸附法定量检测单核细胞增生李斯特菌", 卫生研究, no. 02 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686611A (zh) * 2022-04-24 2022-07-01 常州先趋医疗科技有限公司 用于检测单增李斯特菌的引物组及其应用
WO2023225904A1 (zh) * 2022-05-25 2023-11-30 深圳先进技术研究院 一种用于检测颅内葡萄球菌感染的试剂底物以及试剂盒的应用

Also Published As

Publication number Publication date
CN113984728B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
Bu et al. Dual recognition strategy and magnetic enrichment based lateral flow assay toward Salmonella enteritidis detection
CN113984728A (zh) 一种用于单增李斯特菌快速检测的荧光生物传感器构建方法
Ali et al. Detection of E. coli O157: H7 in feed samples using gold nanoparticles sensor
Wang et al. Simultaneous, rapid and sensitive detection of three food-borne pathogenic bacteria using multicolor quantum dot probes based on multiplex fluoroimmunoassay in food samples
Zhao et al. Development and evaluation of colloidal gold immunochromatographic strip for detection of Escherichia coli O157
Wang et al. An integrated system using phenylboronic acid functionalized magnetic beads and colorimetric detection for Staphylococcus aureus
Sadanandan et al. Biorecognition elements appended gold nanoparticle biosensors for the detection of food-borne pathogens-A review
Yu et al. Hybridization chain reaction-based flow cytometric bead sensor for the detection of emetic Bacillus cereus in milk
Balakrishnan et al. A rapid and highly specific immunofluorescence method to detect Escherichia coli O157: H7 in infected meat samples
Du et al. Dual recognition and highly sensitive detection of Listeria monocytogenes in food by fluorescence enhancement effect based on Fe3O4@ ZIF-8-aptamer
Liu et al. A colorimetric sensor for Staphylococcus aureus detection based on controlled click chemical-induced aggregation of gold nanoparticles and immunomagnetic separation
CN114774118A (zh) 一种双通道可视化多色荧光探针的制备及检测方法
Adrover-Jaume et al. Mobile origami immunosensors for the rapid detection of urinary tract infections
Zhang et al. Au-Fe3O4 heterodimer multifunctional nanoparticles-based platform for ultrasensitive naked-eye detection of Salmonella typhimurium
Jin et al. NMR rapid detection of Salmonella in milk based on ultra-small iron oxide nanobiosensor
Khosravi et al. Preparation of immunomagnetic beads coupled with a rhodamine hydrazine immunosensor for the detection of Mycobacterium avium subspecies paratuberculosis in bovine feces, milk, and colostrum
Qiao et al. Visual and quantitative detection of E. coli O157: H7 by coupling immunomagnetic separation and quantum dot-based paper strip
CN112858255B (zh) 一种检测肠毒素的拉曼传感分析方法
Wei et al. Recent progress on lateral flow immunoassays in foodborne pathogen detection
CN113008864B (zh) 一种表面增强拉曼光谱传感器检测食源性致病菌的方法
Neta et al. Development of a novel, efficient and fast method for colorimetric detection of multiple Salmonella serovars based on aptamer-nanoparticle biosensor
Huang Simultaneous quantitative analysis of Listeria monocytogenes and Staphylococcus aureus based on antibiotic-introduced lateral flow immunoassay
CN102012384B (zh) 一种基于压电传感器检测致病菌的方法
CN116554860A (zh) 一种用于检测单增李斯特菌的比率荧光探针及其制备方法
CN114034852B (zh) 基于AuNPs的LSPR比色适配体传感器检测环丙沙星的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant