CN113968742A - 一种高导热高稳定性的覆铜基板及其加工工艺 - Google Patents

一种高导热高稳定性的覆铜基板及其加工工艺 Download PDF

Info

Publication number
CN113968742A
CN113968742A CN202111323270.2A CN202111323270A CN113968742A CN 113968742 A CN113968742 A CN 113968742A CN 202111323270 A CN202111323270 A CN 202111323270A CN 113968742 A CN113968742 A CN 113968742A
Authority
CN
China
Prior art keywords
copper
ball milling
drying
ball
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111323270.2A
Other languages
English (en)
Other versions
CN113968742B (zh
Inventor
陈应峰
吴海兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yaohong Electronics Co ltd
Original Assignee
Jiangsu Yaohong Electronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yaohong Electronics Co ltd filed Critical Jiangsu Yaohong Electronics Co ltd
Priority to CN202111323270.2A priority Critical patent/CN113968742B/zh
Publication of CN113968742A publication Critical patent/CN113968742A/zh
Application granted granted Critical
Publication of CN113968742B publication Critical patent/CN113968742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明公开了一种高导热高稳定性的覆铜基板及其加工工艺。所述覆铜基板是在Si3N4粉原料中引入β‑Si3N4晶种加上LiAlO2烧结助剂,制备氮化硅陶瓷。并在氮化硅陶瓷两面印刷上引入Ti、SiCp的Ag‑Cu活性金属钎料,然后在两面覆上无氧铜,钎焊而成的。在Si3N4粉原料中引入β‑Si3N4晶种,促进了晶粒生长,净化晶格,从而提高了热导性。对Si3N4进行改性,加入了二甲基氯硅烷,通过在氮化硅表面接入硅烷,使得获得的改性氮化硅粉体均匀,无团聚现象。大幅度提升了覆铜基板的导热性和稳定性。

Description

一种高导热高稳定性的覆铜基板及其加工工艺
技术领域
本发明涉及电子材料技术领域,具体为一种高导热高稳定性的覆铜基板及其加工工艺。
背景技术
为了解决日益严重的环境问题,作为清洁能源的电力成为世界各国关注的焦点,能源利用电气化成为发展的方向。在电力的应用中,大功率电力电子器件是实现能源控制与转换的核心,广泛应用于高速铁路、智能电网、电动汽车与新能源装备等领域。随着能量密度提高,功率器件对陶瓷覆铜基板的散热能力和可靠性的要求越来越高。
而现有技术中,Al2O3和AlN覆铜基板适用于一些高功率、大电流的工作环境,但是由于机械强度相对较低,使得此类覆铜基板的高低温循环冲击寿命有限,限制了其应用范围。更高功率密度和更高工作环境温度会导致Al2O3和AlN覆铜基板的高低温循环冲击次数迅速下降,可靠性降低,不能满足使用要求。
因此,解决上述问题,加工一种高导热高稳定性的覆铜基板具有重要意义。
发明内容
本发明的目的在于提供一种高导热高稳定性的覆铜基板的加工工艺,以解决上述背景技术中提出的问题。
为了解决上述技术问题,本发明提供如下技术方案:
一种高导热高稳定性的覆铜基板的加工工艺,包括以下步骤:
步骤1:将LiAlO2烧结助剂和改性Si3N4,放入球磨罐中,球磨10~12h,干燥,用40目筛过筛,装入模具中,在70~80Mpa的真空度下机压,压制成型,得到Si3N4块;在N2气氛中加热至1500~1600℃,保温2~3h,得到Si3N4陶瓷基片;
步骤2:将Si3N4陶瓷基片切割加工成待焊试样,放入70~80℃的蒸馏水中,超声清洗4~6min,洗去表面杂质后烘干;Si3N4陶瓷基片两面丝网印刷上活性金属焊料,80℃烘箱烘干;将印好焊料的基片两面覆上无氧铜,放入真空度为5×10-4Pa的真空钎焊炉中加热,冷却至660~680℃,得到覆铜基板。
较为优化地,步骤1中,所述LiAlO2烧结助剂的制备方法为:将LiCO3试剂和α-Al2O3微粉放入球磨罐中,球磨10~12h,干燥,用40目筛过筛,得到LiAlO2烧结助剂。
较为优化地,步骤1中,所述改性Si3N4的制备方法为:取纯Si3N4、β-Si3N4晶种、二甲基氯硅烷和二氯甲烷于球磨罐中,加入NaOH和去离子水,封口后置于球磨机上球磨20~22h,转速为300r/min,球磨后用去离子水洗涤,离心,在温度为110~120℃的鼓风干燥箱烘干2~3h,得到改性Si3N4
较为优化地,步骤1中,得到的Si3N4块在加热时,需要埋入Si3N4粉体。
较为优化地,β-Si3N4晶种中β含量为40%~44%。
较为优化地,加入NaOH,使粉体与NaOH的质量比为1:0.5。
较为优化地,步骤2中,所述活性金属焊料的制备方法为:将Ti与SiCp粉末一起用球磨机球磨,球磨4~5h抽真空至5pa,转速为250r/min;然后加入Ag72Cu28合金粉末搅拌均匀,制成Ag-Cu-Ti+SiCp活性金属焊料。
较为优化地,加热过程为每分钟温度上升10~16℃,上升至660~680℃,保温20~30min,然后每分钟温度上升10~16℃,上升至780~820℃,保温20~30min。
本技术方案中:
(1)Si3N4粉原料中引入β-Si3N4晶种。由β-Si3N4粉料直接为材料,得到的氮化硅陶瓷烧结驱动力小,陶瓷很难烧结致密,导致陶瓷内部存在大量气孔,陶瓷的热导率低。而在Si3N4粉原料中引入β-Si3N4晶种,并且控制β-Si3N4晶种中β含量为40%~44%,可以促进烧结过程中细小颗粒迅速溶解沉淀在β-Si3N4晶上,促进晶粒生长,晶界内的杂质和缺陷排出,净化晶格,从而提高了导热性。
(2)对Si3N4进行改性,加入了二甲基氯硅烷,通过在氮化硅表面接入硅烷,使得粉体表面的电荷密度增加,增大氮化硅浆料的ζ-电位值,有利于氮化硅浆料的分散稳定性。在水介质中分散的稳定性。使得获得的改性氮化硅粉体均匀,无团聚现象。
(3)加入与改性氮化硅质量比为1:0.5的NaOH。氮化硅表面附着有氧化物SiO2,SiO2中的氧离子与空气中的水接触结合成硅羟基,会影响氮化硅在介质中的润滑程度,改变氮化硅在水介质中的分散流动性。而NaOH浓度变化可以影响氮化硅表面氧化程度,NaOH浓度适量时可以除去氮化硅表面的部分羟基,使氮化硅的表面性质发生改变。加入NaOH,使粉体与NaOH的质量比为1:0.5时,使得氮化硅表面的Si-OH的浓度明显下降,氮化硅浆料固含量高。
(4)使用Ag-Cu-Ti+SiCp复合活性金属焊料。通过在Ag-Cu-Ti合金钎料内添加热膨胀系数仅5.2×10-6℃-1的SiCp,降低被连接材料之间的CET错配,进而降低了接头内的宏观残余应力水平;在钎焊降温过程中,由于Ag-Cu和SiCp之间的热膨胀系数差异,Ag-Cu将围绕SiCp收缩,导致在基体内产生拉伸残余应力和在SiCp中的压缩应力。在外载荷和钎料层内微观残余拉伸应力作用下,钎料基体中发生的变形更早以及变形程度更大,可以在很大程度上松弛残留应力水平。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
步骤1:将12gTi与3gSiCp粉末一起用球磨机球磨,采用Al2O3为球磨介质,分别加入10mm和6mm两种不同直径的球磨若干个于球磨罐内,抽真空至5.5pa,转速为275r/min,球磨3.5h。然后加入72gAg72Cu28合金粉末搅拌均匀,制成活性金属焊料。
步骤2:取100gSi3N4、7gβ-Si3N4晶种、15g二甲基氯硅烷和5g二氯甲烷于球磨罐中,加入NaOH和3000mL去离子水,封口后置于球磨机上球磨21h,转速为290r/min,球磨后用去离子水洗涤,离心,在温度为115℃的鼓风干燥箱烘干2.5h,得到改性Si3N4
步骤3:将150mLLiCO3试剂和170gα-Al2O3微粉放入球磨罐中,球磨11h,干燥,用40目筛过筛,得到LiAlO2烧结助剂。
步骤4:将LiAlO2烧结助剂和改性Si3N4,放入球磨罐中,球磨11h,干燥,用40目筛过筛,在75Mpa下机压,压制成型。用电炉在N2气氛中加热至1550℃,保温2.5h,得到Si3N4陶瓷基片。
步骤5:将Si3N4陶瓷基片用圆形切割机加工成待焊试样,放入75℃的蒸馏水中,超声清洗5min,洗去表面杂质后烘干。Si3N4陶瓷基片两面丝网印刷上活性金属焊料,75℃烘箱烘干。将印好焊料的基片两面覆上无氧铜,放入真空钎焊炉,真空度为为5×10-4Pa,每分钟温度上升13℃,上升至670℃,保温25min,然后每分钟温度上升13℃,上升至800℃,保温25min。最后每分钟温度下降13℃,下降至670℃,冷却,得到样品。
实施例2:
步骤1:将12gTi与3gSiCp粉末一起用球磨机球磨,采用Al2O3为球磨介质,分别加入10mm和6mm两种不同直径的球磨若干个于球磨罐内,抽真空至5pa,转速为250r/min,球磨3h。然后加入72gAg72Cu28合金粉末搅拌均匀,制成活性金属焊料。
步骤2:取100gSi3N4、7gβ-Si3N4晶种、15g二甲基氯硅烷和5g二氯甲烷于球磨罐中,加入NaOH和3000mL去离子水,封口后置于球磨机上球磨20h,转速为280r/min,球磨后用去离子水洗涤,离心,在温度为110℃的鼓风干燥箱烘干2h,得到改性Si3N4粉体。
步骤3:将150mLLiCO3试剂和170gα-Al2O3微粉放入球磨罐中,球磨10h,干燥,用40目筛过筛,得到LiAlO2烧结助剂。
步骤4:将LiAlO2烧结助剂和改性Si3N4,放入球磨罐中,球磨10h,干燥,用40目筛过筛,在70Mpa下机压,压制成型。用电炉在N2气氛中加热至1500℃,保温2h,得到Si3N4陶瓷基片。
步骤5:将Si3N4陶瓷基片用圆形切割机加工成待焊试样,放入70℃的蒸馏水中,超声清洗4min,洗去表面杂质后烘干。Si3N4陶瓷基片两面丝网印刷上活性金属焊料,70℃烘箱烘干。将印好焊料的基片两面覆上无氧铜,放入真空钎焊炉,真空度为为5×10-4Pa,每分钟温度上升10℃,上升至660℃,保温20min,然后每分钟温度上升10℃,上升至780℃,保温20min。最后每分钟温度下降10℃,下降至660℃,冷却,得到样品。
实施例3:
步骤1:将12gTi与3gSiCp粉末一起用球磨机球磨,采用Al2O3为球磨介质,分别加入10mm和6mm两种不同直径的球磨若干个于球磨罐内,抽真空至6pa,转速为300r/min,球磨4h。然后加入72gAg72Cu28合金粉末搅拌均匀,制成活性金属焊料。
步骤2:取100gSi3N4、7gβ-Si3N4晶种、15g二甲基氯硅烷和5g二氯甲烷于球磨罐中,加入NaOH和3000mL去离子水,封口后置于球磨机上球磨22h,转速为300r/min,球磨后用去离子水洗涤,离心,在温度为120℃的鼓风干燥箱烘干3h,得到改性Si3N4
步骤3:将150mLLiCO3试剂和170gα-Al2O3微粉放入球磨罐中,球磨12h,干燥,用40目筛过筛,得到LiAlO2烧结助剂。
步骤4:将LiAlO2烧结助剂和改性Si3N4,放入球磨罐中,球磨12h,干燥,用40目筛过筛,在80Mpa下机压,压制成型。用电炉在N2气氛中加热至1600℃,保温3h,得到Si3N4陶瓷基片。
步骤5:将Si3N4陶瓷基片用圆形切割机加工成待焊试样,放入70~80℃的蒸馏水中,超声清洗6min,洗去表面杂质后烘干。Si3N4陶瓷基片两面丝网印刷上活性金属焊料,80℃烘箱烘干。将印好焊料的基片两面覆上无氧铜,控制铜厚为0.3mm,样品放入真空钎焊炉,真空度为为5×10-4Pa,每分钟温度上升16℃,上升至680℃,保温30min,然后每分钟温度上升16℃,上升至820℃,保温30min。最后每分钟温度下降16℃,下降至680℃,冷却,得到样品。
实施例4:不加入β-Si3N4晶种,其余与实施例1相同。
步骤1:将12gTi与3gSiCp粉末一起用球磨机球磨,采用Al2O3为球磨介质,分别加入10mm和6mm两种不同直径的球磨若干个于球磨罐内,抽真空至5.5pa,转速为275r/min,球磨3.5h。然后加入72gAg72Cu28合金粉末搅拌均匀,制成活性金属焊料。
步骤2:取100gSi3N4、15g二甲基氯硅烷和5g二氯甲烷于球磨罐中,加入NaOH和3000mL去离子水,封口后置于球磨机上球磨20h,转速为290r/min,球磨后用去离子水洗涤,离心,在温度为115℃的鼓风干燥箱烘干2.5h,得到改性Si3N4
步骤3:将150mLLiCO3试剂和170gα-Al2O3微粉放入球磨罐中,球磨11h,干燥,用40目筛过筛,得到LiAlO2烧结助剂。
步骤4:将LiAlO2烧结助剂和改性Si3N4,放入球磨罐中,球磨11h,干燥,用40目筛过筛,在75Mpa下机压,压制成型。用电炉在N2气氛中加热至1550℃,保温2.5h,得到Si3N4陶瓷基片。
步骤5:将Si3N4陶瓷基片用圆形切割机加工成待焊试样,放入75℃的蒸馏水中,超声清洗5min,洗去表面杂质后烘干。Si3N4陶瓷基片两面丝网印刷上活性金属焊料,75℃烘箱烘干。将印好焊料的基片两面覆上无氧铜,放入真空钎焊炉,真空度为为5×10-4Pa,每分钟温度上升13℃,上升至670℃,保温25min,然后每分钟温度上升13℃,上升至800℃,保温25min。最后每分钟温度下降13℃,下降至670℃,冷却,得到样品。
实施例5:加入β含量为30%的β-Si3N4晶种,其余与实施例1相同。
步骤1:将12gTi与3gSiCp粉末一起用球磨机球磨,采用Al2O3为球磨介质,分别加入10mm和6mm两种不同直径的球磨若干个于球磨罐内,抽真空至5.5pa,转速为275r/min,球磨3.5h。然后加入72gAg72Cu28合金粉末搅拌均匀,制成活性金属焊料。
步骤2:取100gSi3N4和7gβ-Si3N4晶种、15g二甲基氯硅烷和5g二氯甲烷于球磨罐中,加入NaOH和3000mL去离子水,封口后置于球磨机上球磨20h,转速为290r/min,球磨后的粉体用去离子水洗涤,离心,在温度为115℃的鼓风干燥箱烘干2.5h,得到Si3N4粉体。
步骤3:将150mLLiCO3试剂和170gα-Al2O3微粉放入球磨罐中,球磨11h,干燥,用40目筛过筛,得到LiAlO2烧结助剂。
步骤4:将LiAlO2烧结助剂和改性Si3N4,放入球磨罐中,球磨11h,干燥,用40目筛过筛,在75Mpa下机压,压制成型。用电炉在N2气氛中加热至1550℃,保温2.5h,得到Si3N4陶瓷基片。
步骤5:将Si3N4陶瓷基片用圆形切割机加工成待焊试样,放入75℃的蒸馏水中,超声清洗5min,洗去表面杂质后烘干。Si3N4陶瓷基片两面丝网印刷上活性金属焊料,75℃烘箱烘干。将印好焊料的基片两面覆上无氧铜,放入真空钎焊炉,真空度为为5×10-4Pa,每分钟温度上升13℃,上升至670℃,保温25min,然后每分钟温度上升13℃,上升至800℃,保温25min。最后每分钟温度下降13℃,下降至670℃,冷却,得到样品。
实施例6:不进行二甲基氯硅烷接枝,其余与实施例1相同。
步骤1:将12gTi与3gSiCp粉末一起用球磨机球磨,采用Al2O3为球磨介质,分别加入10mm和6mm两种不同直径的球磨若干个于球磨罐内,抽真空至5.5pa,转速为275r/min,球磨3.5h。然后加入72gAg72Cu28合金粉末搅拌均匀,制成活性金属焊料。
步骤2:取100gSi3N4和7gβ-Si3N4晶种于球磨罐中,加入NaOH和3000mL去离子水,封口后置于球磨机上球磨20h,转速为290r/min,球磨后用去离子水洗涤,离心,在温度为115℃的鼓风干燥箱烘干2.5h,得到改性Si3N4
步骤3:将150mLLiCO3试剂和170gα-Al2O3微粉放入球磨罐中,球磨11h,干燥,用40目筛过筛,得到LiAlO2烧结助剂。
步骤4:将Al2O3烧结助剂和改性Si3N4,放入球磨罐中,球磨11h,干燥,用40目筛过筛,在75Mpa下机压,压制成型。用电炉在N2气氛中加热至1550℃,保温2.5h,得到Si3N4陶瓷基片。
步骤5:将Si3N4陶瓷基片用圆形切割机加工成待焊试样,放入75℃的蒸馏水中,超声清洗5min,洗去表面杂质后烘干。Si3N4陶瓷基片两面丝网印刷上活性金属焊料,75℃烘箱烘干。将印好焊料的基片两面覆上无氧铜,放入真空钎焊炉,真空度为为5×10-4Pa,每分钟温度上升13℃,上升至670℃,保温25min,然后每分钟温度上升13℃,上升至800℃,保温25min。最后每分钟温度下降13℃,下降至670℃,冷却,得到样品。
实施例7:使用Ag-Cu-Ti活性金属焊料,其余与实施例1相同。
步骤1:将12gTi粉末用球磨机球磨,采用Al2O3为球磨介质,分别加入10mm和6mm两种不同直径的球磨若干个于球磨罐内,抽真空至5.5pa,转速为275r/min,球磨3.5h。然后加入72gAg72Cu28合金粉末搅拌均匀,制成活性金属焊料。
步骤2:取100gSi3N4、7gβ-Si3N4晶种、15g二甲基氯硅烷和5g二氯甲烷于球磨罐中,加入NaOH和3000mL去离子水,封口后置于球磨机上球磨21h,转速为290r/min,球磨后用去离子水洗涤,离心,在温度为115℃的鼓风干燥箱烘干2.5h,得到改性Si3N4
步骤3:将150mLLiCO3试剂和170gα-Al2O3微粉放入球磨罐中,球磨11h,干燥,用40目筛过筛,得到LiAlO2烧结助剂。
步骤4:将LiAlO2烧结助剂和改性Si3N4,放入球磨罐中,球磨11h,干燥,用40目筛过筛,在75Mpa下机压,压制成型。用电炉在N2气氛中加热至1550℃,保温2.5h,得到Si3N4陶瓷基片。
步骤5:将Si3N4陶瓷基片用圆形切割机加工成待焊试样,放入75℃的蒸馏水中,超声清洗5min,洗去表面杂质后烘干。Si3N4陶瓷基片两面丝网印刷上活性金属焊料,75℃烘箱烘干。将印好焊料的基片两面覆上无氧铜,放入真空钎焊炉,真空度为为5×10-4Pa,每分钟温度上升13℃,上升至670℃,保温25min,然后每分钟温度上升13℃,上升至800℃,保温25min。最后每分钟温度下降13℃,下降至670℃,冷却,得到样品。
实施例8:加入的NaOH与粉体的质量比为0.3:1,其余与实施例1相同。
步骤1:将12gTi与3gSiCp粉末一起用球磨机球磨,采用Al2O3为球磨介质,分别加入10mm和6mm两种不同直径的球磨若干个于球磨罐内,抽真空至5.5pa,转速为275r/min,球磨3.5h。然后加入72gAg72Cu28合金粉末搅拌均匀,制成活性金属焊料。
步骤2:取100gSi3N4、7gβ-Si3N4晶种、15g二甲基氯硅烷和5g二氯甲烷于球磨罐中,加入NaOH和3000mL去离子水,封口后置于球磨机上球磨21h,转速为290r/min,球磨后用去离子水洗涤,离心,在温度为115℃的鼓风干燥箱烘干2.5h,得到改性Si3N4
步骤3:将150mLLiCO3试剂和170gα-Al2O3微粉放入球磨罐中,球磨11h,干燥,用40目筛过筛,得到LiAlO2烧结助剂。
步骤4:将LiAlO2烧结助剂和改性Si3N4,放入球磨罐中,球磨11h,干燥,用40目筛过筛,在75Mpa下机压,压制成型。用电炉在N2气氛中加热至1550℃,保温2.5h,得到Si3N4陶瓷基片。
步骤5:将Si3N4陶瓷基片用圆形切割机加工成待焊试样,放入75℃的蒸馏水中,超声清洗5min,洗去表面杂质后烘干。Si3N4陶瓷基片两面丝网印刷上活性金属焊料,75℃烘箱烘干。将印好焊料的基片两面覆上无氧铜,放入真空钎焊炉,真空度为为5×10-4Pa,每分钟温度上升13℃,上升至670℃,保温25min,然后每分钟温度上升13℃,上升至800℃,保温25min。最后每分钟温度下降13℃,下降至670℃,冷却,得到样品。
实施例9:使用氧化铝陶瓷覆铜基板。
实验:
下表为实施例1~9,综合性能对比:
根据商用陶瓷基板技术指标;
氮化硅陶瓷基板综合性能:弯曲强度:650~900;断裂韧性:6.5~7;热导率:60~90;在40~250℃下,耐热循环次数可以达到1000次以上。
氧化铝陶瓷基板综合性能:弯曲强度:250~400;断裂韧性:3.8~4.5;热导率:22~35;在40~250℃下,不能进行耐热循环。
Figure BDA0003341850780000081
Figure BDA0003341850780000091
结论:实施例1~3的结果表明,这种高导热高稳定性的覆铜基板力学性能好,弯曲强度可以达到850MPa以上,断裂韧性可达到6.8MPa·m1/2,导热性高,稳定性好,导热率可达90W·(m·K)-1,很好地保证了基板的散热性能。并且在-40~250℃高低温循环冲击下,这种高导热高稳定性的覆铜基板在1000次循环后没有产生微裂纹。因此这种高导热高稳定性的覆铜基板作为基板材料在稳定性、热导率、力学性能等方面具有非常明显的优势,极具应用前景。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种高导热高稳定性的覆铜基板的加工工艺,其特征在于:包括以下步骤:
步骤1:将LiAlO2烧结助剂和改性Si3N4,放入球磨罐中,球磨10~12h,干燥,用40目筛过筛,装入模具中,在70~80Mpa的真空度下机压,压制成型,得到Si3N4块;在N2气氛中加热至1500~1600℃,保温2~3h,得到Si3N4陶瓷基片;
步骤2:将Si3N4陶瓷基片切割加工成待焊试样,放入70~80℃的蒸馏水中,超声清洗4~6min,洗去表面杂质后烘干;Si3N4陶瓷基片两面丝网印刷上活性金属焊料,80℃烘箱烘干;将印好焊料的基片两面覆上无氧铜,放入真空度为5×10-4Pa的真空钎焊炉中加热,冷却至660~680℃,得到覆铜基板。
2.根据权利要求1所述的一种高导热高稳定性的覆铜基板的加工工艺,其特征在于:步骤1中,所述LiAlO2烧结助剂的制备方法为:将LiCO3试剂和α-Al2O3微粉放入球磨罐中,球磨10~12h,干燥,用40目筛过筛,得到LiAlO2烧结助剂。
3.根据权利要求1所述的一种高导热高稳定性的覆铜基板的加工工艺,其特征在于:步骤1中,所述改性Si3N4通过对Si3N4表面进行二甲基氯硅烷的接枝反应制备得到。
4.根据权利要求1所述的一种高导热高稳定性的覆铜基板的加工工艺,其特征在于:步骤1中,所述改性Si3N4的制备方法为:取纯Si3N4、β-Si3N4晶种、二甲基氯硅烷和二氯甲烷于球磨罐中,加入NaOH和去离子水,封口后置于球磨机上球磨20~22h,转速为300r/min,球磨后用去离子水洗涤,离心,在温度为110~120℃的鼓风干燥箱烘干2~3h,得到改性Si3N4
5.根据权利要求4所述的一种高导热高稳定性的覆铜基板的加工工艺,其特征在于:β-Si3N4晶种中β含量为40%~44%。
6.根据权利要求4所述的一种高导热高稳定性的覆铜基板的加工工艺,其特征在于:加入NaOH,使粉体与NaOH的质量比为1:0.5。
7.根据权利要求1所述的一种高导热高稳定性的覆铜基板的加工工艺,其特征在于:步骤2中,所述活性金属焊料的制备方法为:将Ti与SiCp粉末一起用球磨机球磨,球磨4~5h抽真空至5pa,转速为250r/min;然后加入Ag72Cu28合金粉末搅拌均匀,制成Ag-Cu-Ti+SiCp活性金属焊料。
8.根据权利要求1所述的一种高导热高稳定性的覆铜基板的加工工艺,其特征在于:步骤2中,加热过程为每分钟温度上升10~16℃,上升至660~680℃,保温20~30min,然后每分钟温度上升10~16℃,上升至780~820℃,保温20~30min。
9.根据权利要求1~8中任意一项所述的一种高导热高稳定性的覆铜基板的加工工艺制备得到的一种高导热高稳定性的覆铜基板。
CN202111323270.2A 2021-11-08 2021-11-08 一种高导热高稳定性的覆铜基板及其加工工艺 Active CN113968742B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111323270.2A CN113968742B (zh) 2021-11-08 2021-11-08 一种高导热高稳定性的覆铜基板及其加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111323270.2A CN113968742B (zh) 2021-11-08 2021-11-08 一种高导热高稳定性的覆铜基板及其加工工艺

Publications (2)

Publication Number Publication Date
CN113968742A true CN113968742A (zh) 2022-01-25
CN113968742B CN113968742B (zh) 2023-03-03

Family

ID=79589512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111323270.2A Active CN113968742B (zh) 2021-11-08 2021-11-08 一种高导热高稳定性的覆铜基板及其加工工艺

Country Status (1)

Country Link
CN (1) CN113968742B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394838A (zh) * 2022-02-09 2022-04-26 江苏耀鸿电子有限公司 一种高击穿强度的高频覆铜基板及其制备方法
CN116120073A (zh) * 2022-12-29 2023-05-16 滁州用朴新材料科技有限公司 一种氮化硅陶瓷刀具及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020164475A1 (en) * 2000-09-20 2002-11-07 Hitachi Metals, Ltd. Silicon nitride powder, silicon nitride sintered body, sintered silicon nitride substrate, and circuit board and thermoelectric module comprising such sintered silicon nitride substrate
CN109942301A (zh) * 2019-04-22 2019-06-28 中钢集团洛阳耐火材料研究院有限公司 一种低成本氮化硅陶瓷的制备方法
CN110357643A (zh) * 2019-07-25 2019-10-22 航天特种材料及工艺技术研究所 光固化3d打印用氮化硅陶瓷浆料、制备方法及氮化硅陶瓷
CN110590377A (zh) * 2019-10-29 2019-12-20 中钢集团洛阳耐火材料研究院有限公司 一种高β相致密氮化硅陶瓷及低温制备方法
CN113307647A (zh) * 2021-04-16 2021-08-27 长春工业大学 一种氮化铝陶瓷覆铜板的间接钎焊方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020164475A1 (en) * 2000-09-20 2002-11-07 Hitachi Metals, Ltd. Silicon nitride powder, silicon nitride sintered body, sintered silicon nitride substrate, and circuit board and thermoelectric module comprising such sintered silicon nitride substrate
CN109942301A (zh) * 2019-04-22 2019-06-28 中钢集团洛阳耐火材料研究院有限公司 一种低成本氮化硅陶瓷的制备方法
CN110357643A (zh) * 2019-07-25 2019-10-22 航天特种材料及工艺技术研究所 光固化3d打印用氮化硅陶瓷浆料、制备方法及氮化硅陶瓷
CN110590377A (zh) * 2019-10-29 2019-12-20 中钢集团洛阳耐火材料研究院有限公司 一种高β相致密氮化硅陶瓷及低温制备方法
CN113307647A (zh) * 2021-04-16 2021-08-27 长春工业大学 一种氮化铝陶瓷覆铜板的间接钎焊方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵兴祥等: "聚乙二醇表面改性对纳米Si3N4分散性的影响研究", 《广州化工》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394838A (zh) * 2022-02-09 2022-04-26 江苏耀鸿电子有限公司 一种高击穿强度的高频覆铜基板及其制备方法
CN116120073A (zh) * 2022-12-29 2023-05-16 滁州用朴新材料科技有限公司 一种氮化硅陶瓷刀具及其制备方法
CN116120073B (zh) * 2022-12-29 2023-11-24 滁州用朴新材料科技有限公司 一种氮化硅陶瓷刀具及其制备方法

Also Published As

Publication number Publication date
CN113968742B (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
CN113968742B (zh) 一种高导热高稳定性的覆铜基板及其加工工艺
CN107916356B (zh) 一种高导热的金刚石/铜复合材料的制备方法
CN114907135B (zh) 一种氮化铝覆铜陶瓷基板的制备方法
CN104822223A (zh) 一种陶瓷基电路板及其制备方法
CN102049514B (zh) 氧化铝陶瓷纳米金属化膏剂用粉料及其制备方法
CN1155759A (zh) 氮化硅陶瓷电路基片及使用该陶瓷基片的半导体器件
CN103204682A (zh) 一种高导热氮化铝陶瓷散热基片及其制备方法
CN111499417B (zh) 一种微波磁控管用绝缘环及其制备方法
CN117069509A (zh) 覆铜陶瓷基板及其制备方法
CN108002854B (zh) 一种高导热高抗蚀电煅煤基炭砖及其制备方法
CN114717441B (zh) 一种低成本制备低密度高热导率的金刚石/铜复合材料的方法
CN112279628B (zh) 一种氧化铝复合陶瓷及其制备方法和应用
CN113800918B (zh) 一种痕量原位碳诱导的Si3N4导热陶瓷材料及制备方法
CN115233197A (zh) 一种镀氮化钛金刚石及其生产工艺
CN114890776A (zh) 一种低温共烧玻璃/陶瓷复合材料及其制备方法
CN115304383A (zh) 一种氮化铝基板及其制备方法与应用
CN114560706A (zh) 一种高热导氮化铝陶瓷基板的制备方法
CN114284422A (zh) 一种适用于CoSb3基热电材料的高熵电极及热电材料与高熵电极的连接方法
CN114315371A (zh) 一种氮化铝陶瓷基板
CN109822099B (zh) 一种微波热压炉专用模具的制备方法
CN112853144A (zh) 一种金刚石/石墨烯/金属的复合材料的制备方法
CN108172680B (zh) 一种立方相Ca2Ge热电材料及其制备方法
CN111378877A (zh) 一种高硅铝电子封装材料及其制备方法
CN101928144A (zh) 一种LaMgAl11O19-8YSZ复相陶瓷及其制备方法
CN117229067B (zh) 一种低压氮化-包埋制备氮化硅陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant