CN113968722A - 一种利用钾长石水洗废料制备多孔陶瓷的方法 - Google Patents

一种利用钾长石水洗废料制备多孔陶瓷的方法 Download PDF

Info

Publication number
CN113968722A
CN113968722A CN202111283343.XA CN202111283343A CN113968722A CN 113968722 A CN113968722 A CN 113968722A CN 202111283343 A CN202111283343 A CN 202111283343A CN 113968722 A CN113968722 A CN 113968722A
Authority
CN
China
Prior art keywords
porous ceramic
temperature
washing waste
foaming
potassium feldspar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111283343.XA
Other languages
English (en)
Other versions
CN113968722B (zh
Inventor
张军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Hanshi Environmental Protection Equipment Co ltd
Original Assignee
Shandong Hanshi Environmental Protection Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Hanshi Environmental Protection Equipment Co ltd filed Critical Shandong Hanshi Environmental Protection Equipment Co ltd
Priority to CN202111283343.XA priority Critical patent/CN113968722B/zh
Publication of CN113968722A publication Critical patent/CN113968722A/zh
Application granted granted Critical
Publication of CN113968722B publication Critical patent/CN113968722B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1324Recycled material, e.g. tile dust, stone waste, spent refractory material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • C04B2235/775Products showing a density-gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种利用钾长石水洗废料制备从表面到内部气孔尺寸呈梯度分布的多孔陶瓷的方法,包括步骤:将钾长石水洗废料与碳化硅进行混合、磨细后,经干燥过筛处理,获得多孔陶瓷粉末原料;将所述多孔陶瓷粉末原料均匀平铺入外壁及底部具有透气性的坩埚中振实,在氮气气氛中进行高温加热并保温,在保温过程中通入一定量的空气,制得气孔尺寸从表面到内部呈现梯度减小的多孔陶瓷;本发明所述方法工艺过程简单,无需复杂的升降温程序及其他特殊处理手段,仅通过控制通入的空气量,即可制备出从表面到内部气孔尺寸呈梯度分布的多孔陶瓷。

Description

一种利用钾长石水洗废料制备多孔陶瓷的方法
技术领域
本发明涉及多孔陶瓷制备技术领域,具体涉及一种利用钾长石水洗废料制备从表面到内部气孔尺寸呈梯度分布的多孔陶瓷的方法。
背景技术
随着我国工业技术的发展,对于矿物资源的需要越来越大,导致在工业生产过程中产生了大量的工业固体废弃物。钾长石水洗废料是钾长石矿石在经过破碎和水洗工艺后浮在水面上的固体废弃物。每年钾长石精料的生产导致了其大量堆存,不仅会占用大量的有用土地,造成资源的浪费,而且会造成环境污染。由于钾长石水洗废料中含有大量烧制陶瓷所需要的SiO2、Al2O3和CaO等,钾长石水洗废料中的Fe2O3、Na2O和K2O也可以作为助熔剂,降低烧制陶瓷所需的温度。可以用钾长石水洗废料为原材料制备多孔陶瓷。
多孔陶瓷具有高表面积、高渗透性、低密度、低比热和隔音隔热性能好等优点,这就使得多孔陶瓷在催化剂载体、高温物质过滤器、热保护系统、热交换器和建筑隔音隔热材料等方面有着良好的应用前景。目前,多孔陶瓷的制备方法较多,包括部分烧结法、有机泡沫浸渍法、添加造孔剂法、直接发泡法、凝胶灌注法、冷冻干燥法和三维打印法等。相比于其他方法,直接发泡法具有工艺简单,工作量小等优点,且直接发泡法生产的陶瓷具有40%~90%的高孔隙率,能够满足大部分的应用场景的要求。但是由于用此方法制备多孔陶瓷难以控制工艺条件,在短时间内会产生大量气体,导致制备的多孔陶瓷会出现孔径不均匀的现象,使得多孔陶瓷在作为隔热材料的时候导热率不均匀,会影响多孔陶瓷的整体隔热性能。如果能够使多孔陶瓷的孔洞分布呈现规律的梯度分布,就能使多孔陶瓷在与环境不同接触面上出现不同的导热率,从而满足其对于特殊应用场景的隔热、保温要求。
中国发明专利(ZL201811357859.2)公布了一种分层分区制料布料生产发泡陶瓷的方法,方法中通过将陶瓷原料分别与不同重量的发泡剂混合制成发泡剂含量不同、颗粒大小不一的多孔陶瓷颗粒料,之后按照发泡剂含量高、粒径小的在下层,发泡剂含量少、粒径较大的排列顺序逐层布料在高温下烧结制成了孔径分布均匀的多孔陶瓷材料。但是该技术需要制备不同发泡剂含量的原料粉体,还需要分层铺料,所以生产过程繁琐,生产效率受到限制。
中国发明专利(ZL202010847090.3)公开了一种梯度结构多孔陶瓷的制备方法,方法中将赤泥、粉煤灰和发泡剂经初步粉碎、干燥处理之后按一定比例配料,混合均匀后通过压制成型,通过一定的烧成工序制成了多孔陶瓷材料。该方法制成的多孔陶瓷在竖直截面方向孔洞呈现出较为明显的梯度结构分布,可以适应不同应用场景对于材料保温性能的要求。但是目前所报道的技术存在整体孔隙率较低、压制成型需求压力过大,无法大规模生产应用的问题,需要探寻一种工艺要求简单的梯度结构多孔陶瓷的制备方法。
从目前所公布的多孔陶瓷生产工艺中可以看出,所有加热及发泡过程均在空气下进行的。我们经过研究发现,发泡剂(碳化硅、炭等)在500℃就开始被氧化,这样造成了发泡剂的浪费;并且发泡剂氧化的程度与粉料中的成分(如含铁量等)和堆积密度等有关,所以是不可控的,即等升温到了发泡温度,发泡剂的剩余量很不确定,那得到的多孔陶瓷的气孔率就难以控制了。我们通过对发泡过程及原理的深入研究,提出通过控制通入空气的量来控制发泡过程,以获得梯度分布孔结构的方法。通过大量实验,证实了方法可行。该方法中通过控制通入空气的量,而空气是从表面向材料内部扩散完成发泡的,所以可以直接控制材料内外碳化硅的氧化程度,从而获得梯度分布孔结构,不需要特殊的压制和分层布料。更重要的是,在升温阶段用氮气保护,有效防止了碳化硅的不可控氧化,大幅节约了碳化硅用量,降低了成本。
发明内容
为解决上述技术缺陷,本发明采用的技术方案在于,提供了一种利用钾长石水洗废料制备从表面到内部气孔尺寸呈梯度分布的多孔陶瓷的方法,包括步骤:
S1,粉料混匀:将钾长石水洗废料和碳化硅进行混合、磨细后,在高温下进行干燥处理,再进行过筛处理,完全过筛后获得多孔陶瓷原料粒度小于90目;
S2,装模及发泡:将所述多孔陶瓷粉末原料均匀平铺入外壁及底部具有透气性的坩埚中并振实,在氮气气氛中加热至发泡温度并保温;在保温期间通入空气,且控制空气的通入量,即可得到气孔尺寸从表面到内部呈现梯度减小的多孔陶瓷。
较佳的,所述步骤S1中,将质量分数为99.0 wt%~99.8 wt%的所述钾长石水洗废料和质量分数0.2 wt%~1.0 wt%的碳化硅进行均匀混合。
较佳的,所述步骤S2中,所述通入空气的体积为[原料中所含碳化硅量(克)×(0.1~2.5)] (升)。
较佳的,所述步骤S2中的高温发泡过程中到达目标发泡温度前的升温速率为2~5℃/min,所述发泡温度为1100 ℃~1200 ℃,保温10~90分钟。
与现有技术相比,本发明的特点和有益效果是:
1.本发明所用材料除了发泡剂碳化硅之外完全是固体废弃物,不仅可以避免资源的浪费,极大地减小生产升本并且可以避免其对于环境的污染;
2.本发明所述方法工艺过程简单,有利于工业化生产;
3.本发明升温程序较为简单,制备的多孔陶瓷梯度结构孔洞分布与一般的多孔陶瓷具有明显的差别,可以适应不同使用环境对于保温材料的要求。
附图说明
图1为实施例1中制备出的多孔陶瓷垂直方向截面实物图。
具体实施方式
以下结合具体实施方式对本发明作进一步说明。应该明白的是,下述说明仅是为了解释本发明,并不对其内容进行限定。如无特别说明,下述所用各成分的含量为重量百分比含量。
实施例1
(1)原料的预制与配料:添加钾长石水洗废料19.88克,碳化硅0.12克,分别占样品总质量的99.4 wt%和0.6 wt%,在球磨机中高速研磨均匀,研磨介质为蒸馏水。将研磨好的浆料在110℃下干燥处理4小时,之后过90目筛得到多孔陶瓷粉末原料。
(2)发泡程序与降温:将多孔陶瓷粉末原料平铺入外壁及底部具有透气性的坩埚中刮平后振实,在高温炉氮气气氛中以5℃/min的升温速率升温至1150℃,保温时间为30分钟,在保温期间按照[样品所含碳化硅的量(克)×0.5](升)的量通入空气,之后继续保持氮气气氛,即可得到一种新型钾长石水洗废料多孔陶瓷,并且在竖直截面从表面到内部孔径分布呈现出较为明显的梯度分布。
实物如图1所示。与一般的多孔陶瓷相比,实例1所得多孔陶瓷从表面到内部气孔尺寸逐渐减小,呈现出明显的梯度分布。
实施例2
(1)原料的预制与配料:添加钾长石水洗废料19.80克,碳化硅0.20克,分别占样品总质量的99.0 wt%和1.0 wt%,在球磨机中高速研磨均匀,研磨介质为蒸馏水。将研磨好的浆料在110℃下干燥处理4小时,之后过90目筛得到多孔陶瓷粉末原料。
(2)发泡程序与降温:将多孔陶瓷粉末原料平铺入外壁及底部具有透气性的坩埚中刮平后振实,在高温炉氮气气氛中以2℃/min的升温速率升温至1200℃,保温时间为10分钟,在保温期间按照[样品所含碳化硅的量(克)×2.5](升)的量通入空气,之后继续保持氮气气氛,即可得到一种新型钾长石水洗废料多孔陶瓷,并且在竖直截面从表面到内部孔径分布呈现出较为明显的梯度分布。
实施例3
(1)原料的预制与配料:添加钾长石水洗废料19.96克,碳化硅0.04克,分别占样品总质量的99.8 wt%和0.2 wt%,在球磨机中高速研磨均匀,研磨介质为蒸馏水。将研磨好的浆料在110℃下干燥处理4小时,之后过90目筛得到多孔陶瓷粉末原料。
(2)发泡程序与降温:将多孔陶瓷粉末原料平铺入外壁及底部具有透气性的坩埚中刮平后振实,在高温炉氮气气氛中以5℃/min的升温速率升温至1100℃,保温时间为90分钟,在保温期间按照[样品所含碳化硅的量(克)×0.1](升)的量通入空气,之后继续保持氮气气氛,即可得到一种新型钾长石水洗废料多孔陶瓷,并且在竖直截面从表面到内部孔径分布呈现出较为明显的梯度分布。

Claims (4)

1.一种利用钾长石水洗废料制备多孔陶瓷的方法,其特征在于,包括步骤:
S1,粉料混匀:将钾长石水洗废料和碳化硅进行混合、磨细后,在高温下进行干燥处理,再进行过筛处理,完全过筛后获得多孔陶瓷原料粒度小于90目;
S2,装模及发泡:将所述多孔陶瓷粉末原料均匀平铺入外壁及底部具有透气性的坩埚中并振实,在氮气气氛中加热至发泡温度并保温;在保温期间通入空气,且控制空气的通入体积,即可得到气孔尺寸从表面到内部呈现梯度减小的多孔陶瓷。
2.如权利要求1所述的方法,其特征在于,所述步骤S1中,将质量分数为99.0 wt%~99.8wt%的所述钾长石水洗废料和质量分数0.2 wt%~1.0 wt%的碳化硅进行均匀混合。
3.如权利要求1所述的方法,其特征在于,所述步骤S2中,所述通入空气的体积为[原料中所含碳化硅量(克)×(0.1~2.5)](升)。
4.如权利要求1所述的方法,其特征在于,所述步骤S2中的高温发泡过程中,到达目标发泡温度前的升温速率为2~5 ℃/min,所述发泡温度为1100 ℃~1200 ℃,保温10~90分钟。
CN202111283343.XA 2021-11-01 2021-11-01 一种利用钾长石水洗废料制备多孔陶瓷的方法 Active CN113968722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111283343.XA CN113968722B (zh) 2021-11-01 2021-11-01 一种利用钾长石水洗废料制备多孔陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111283343.XA CN113968722B (zh) 2021-11-01 2021-11-01 一种利用钾长石水洗废料制备多孔陶瓷的方法

Publications (2)

Publication Number Publication Date
CN113968722A true CN113968722A (zh) 2022-01-25
CN113968722B CN113968722B (zh) 2022-10-25

Family

ID=79589159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111283343.XA Active CN113968722B (zh) 2021-11-01 2021-11-01 一种利用钾长石水洗废料制备多孔陶瓷的方法

Country Status (1)

Country Link
CN (1) CN113968722B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504807A (zh) * 2022-09-29 2022-12-23 聊城大学 一种制备孔径均匀的多孔陶瓷方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138084A (ja) * 1993-11-15 1995-05-30 Sumitomo Osaka Cement Co Ltd 気孔率傾斜型軽量セラミックス成形体及びその製造方法
JPH09309774A (ja) * 1996-05-27 1997-12-02 Mitsubishi Materials Corp 気孔を傾斜配向した軽量セラミックス連続気孔体の製造方法
EP2105421A1 (de) * 2008-03-20 2009-09-30 Rauschert Heinersdorf-Pressig GmbH Porenkeramik
WO2009138432A1 (en) * 2008-05-13 2009-11-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ceramic foam with gradient of porosity in heterogeneous catalysis
CN102417366A (zh) * 2011-08-30 2012-04-18 北京理工大学 一种孔梯度碳化硅多孔陶瓷及其制备方法
US20130307177A1 (en) * 2012-05-18 2013-11-21 Snu R&Db Foundation Method for manufacturing porous ceramic bodies with gradient of porosity
CN111943716A (zh) * 2020-08-20 2020-11-17 安徽工业大学 一种新型赤泥-粉煤灰基梯度结构多孔陶瓷的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138084A (ja) * 1993-11-15 1995-05-30 Sumitomo Osaka Cement Co Ltd 気孔率傾斜型軽量セラミックス成形体及びその製造方法
JPH09309774A (ja) * 1996-05-27 1997-12-02 Mitsubishi Materials Corp 気孔を傾斜配向した軽量セラミックス連続気孔体の製造方法
EP2105421A1 (de) * 2008-03-20 2009-09-30 Rauschert Heinersdorf-Pressig GmbH Porenkeramik
WO2009138432A1 (en) * 2008-05-13 2009-11-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ceramic foam with gradient of porosity in heterogeneous catalysis
CN102417366A (zh) * 2011-08-30 2012-04-18 北京理工大学 一种孔梯度碳化硅多孔陶瓷及其制备方法
US20130307177A1 (en) * 2012-05-18 2013-11-21 Snu R&Db Foundation Method for manufacturing porous ceramic bodies with gradient of porosity
CN111943716A (zh) * 2020-08-20 2020-11-17 安徽工业大学 一种新型赤泥-粉煤灰基梯度结构多孔陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王录才等: "《泡沫金属制备、性能及应用》", 31 October 2012, 北京:国防工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504807A (zh) * 2022-09-29 2022-12-23 聊城大学 一种制备孔径均匀的多孔陶瓷方法
CN115504807B (zh) * 2022-09-29 2023-08-08 聊城大学 一种制备孔径均匀的多孔陶瓷方法

Also Published As

Publication number Publication date
CN113968722B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
CN107011868B (zh) 一种石蜡/铁尾矿陶瓷复合相变储能材料的熔融浸渗制备方法
CN108484115B (zh) 一种利用固体废弃物制备的多孔材料
CN109704725B (zh) 城镇污水处理污泥陶瓷抛光渣陶粒及其制备方法
CN105693277B (zh) 一种用作微生物陶粒滤料的铁尾矿多孔材料及其制备方法和应用
CN104909799A (zh) 一种轻质高强陶粒及其制备工艺
CN109516772A (zh) 一种轻质高强废玻璃陶粒及其制备方法
CN102807349A (zh) 一种用陶瓷废渣生产的发泡混凝土砌块及其制造方法
CN111116210A (zh) 一种利用生物煤生态烧结弃土制备轻质陶粒的方法
CN103936454B (zh) 一种以金铜尾矿为主原料的多孔保温陶瓷及其制备方法
CN109776067A (zh) 一种利用陶土制备烧结透水材料的方法
CN112552072A (zh) 一种建筑废弃物再生发泡陶瓷及其制备方法
CN112341238A (zh) 一种陶粒及其制备方法
CN103288421A (zh) 一种烧结型陶粒及其制备方法
CN113968722B (zh) 一种利用钾长石水洗废料制备多孔陶瓷的方法
CN110436938A (zh) 发泡陶瓷墙板及其制备方法
CN113087492A (zh) 铁尾矿制备的烧结透水砖及其制备方法
CN113562999A (zh) 一种利用垃圾电厂焚烧飞灰制备的轻质陶粒及其制备方法
CN103360105A (zh) 一种核壳结构的煤矸石-赤泥轻质陶砂的制备方法
CN104860712A (zh) 一种利用废弃熔融石英坩埚制备微孔轻质隔热骨料的方法
CN113788704B (zh) 一种梯度孔隙结构的多孔陶瓷的制备方法
CN115710136B (zh) 一种中空保温陶粒及其制备方法
CN109704805B (zh) 一种铁尾矿制备微晶发泡材料及其制造方法
CN111943716A (zh) 一种新型赤泥-粉煤灰基梯度结构多孔陶瓷的制备方法
CN115340405B (zh) 一种铝灰微孔砖及其制备方法
CN115536358A (zh) 一种工业固废碳化固化免烧砌块及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant