CN113967471A - 一种表面改性的磁性介孔二氧化硅微球的制备方法及应用 - Google Patents

一种表面改性的磁性介孔二氧化硅微球的制备方法及应用 Download PDF

Info

Publication number
CN113967471A
CN113967471A CN202111373035.6A CN202111373035A CN113967471A CN 113967471 A CN113967471 A CN 113967471A CN 202111373035 A CN202111373035 A CN 202111373035A CN 113967471 A CN113967471 A CN 113967471A
Authority
CN
China
Prior art keywords
mmsm
mesoporous silica
magnetic mesoporous
modified magnetic
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111373035.6A
Other languages
English (en)
Other versions
CN113967471B (zh
Inventor
胡旭佳
李正祥
杨明鸿
车桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202111373035.6A priority Critical patent/CN113967471B/zh
Publication of CN113967471A publication Critical patent/CN113967471A/zh
Application granted granted Critical
Publication of CN113967471B publication Critical patent/CN113967471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开一种表面改性的磁性介孔二氧化硅微球的制备方法及应用,以Fe3O4纳米颗粒为磁性核,以CTAB为大分子模板,在加热条件下加入TEOS形成SiO2包覆Fe3O4的稳定基底材料,高温煅烧除去模板分子,再以APTES对表面的活性硅羟基修饰从而引入氨基,以丁二酸酐在碱性条件下修饰表面氨基进一步引入羧基,最终将具有多级氨基结构的聚乙烯亚胺与羧基反应并接枝到材料表面,通过聚乙烯亚胺中的多级氨基结构与金属离子的络合达到吸附样品中微量金属离子的效果,合成的微球具有较强的磁响应性、较好的亲水性和规则有序的核壳结构,可用作吸附剂进行金属离子的吸附,也可以用作磁固相萃取材料用于样品中微量金属离子的预浓缩、分离。

Description

一种表面改性的磁性介孔二氧化硅微球的制备方法及应用
技术领域
本发明属于磁性吸附材料领域,具体涉及以聚乙烯亚胺进行表面改性的磁性介孔二氧化硅微球的制备方法及其作为吸附剂在吸附金属离子中的应用和作为磁固相萃取材料在检测皮蛋中Cu2+含量的应用。
背景技术
磁性吸附材料是目前的研究热点,在使用外部磁场的情况下很容易将其从溶液中分离出来,可重复使用,在水处理中的应用较为广泛。磁性纳米粒子,特别是Fe3O4,由于其特殊的磁性、生物相容性、低毒性以及易于经济的合成工艺,近年来引起了人们的广泛关注。此外,由于Fe3O4磁性纳米粒子的外部磁场不存在外部扩散阻力、高活性、高表面积和从液相中快速回收,Fe3O4基固相萃取材料作为一种有效的吸附剂,在痕量、微量物质的预浓缩和分离中亦有良好的应用前景。
皮蛋又名松花蛋,是中国的一种传统蛋制品,由于其独特的口感和风味而深受人们的喜爱。皮蛋的传统制法是将新咸鸭蛋浸渍在以红茶、植物灰、碱性物质、黄土、金属离子和水按一定比例配制而成的腌制泥浆中。为了使皮蛋中具有更好的口感和松花纹,人们通常在腌制泥浆中加入黄丹粉(其主要成分为PbO),但这会造成腌制好的皮蛋富含Pb。人们食用皮蛋后会导致Pb在人体内积累。改进皮蛋的腌制工艺后,人们使用CuSO4代替PbO添加到腌制泥浆中,但这同样会造成Cu2+在皮蛋中积累。因此,人们在食用皮蛋时不可避免地会摄入Cu2+,长期大量摄入铜会引起各种健康问题,特别是对肝脏、骨骼和中枢神经系统的伤害。因为皮蛋中Cu2+的含量较低,无法使用火焰原子吸收光谱法直接测定。
发明内容
本发明提供一种以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球的制备方法及其作为吸附剂在吸附金属离子中的应用和作为磁固相萃取材料在检测皮蛋中Cu2+含量的应用,以Fe3O4纳米颗粒为磁性核,以CTAB为大分子模板,在加热条件下加入TEOS形成SiO2包覆Fe3O4的稳定基底材料,高温煅烧除去模板分子,再以APTES对表面的活性硅羟基修饰从而引入氨基,以丁二酸酐在碱性条件下修饰表面氨基进一步引入羧基,最终将具有多级氨基结构的聚乙烯亚胺与羧基反应并将其接枝到材料表面,通过聚乙烯亚胺中的多级氨基结构与金属离子的络合达到吸附样品中微量金属离子的效果,合成的微球具有较强的磁响应性、较好的亲水性和规则有序的核壳结构,可用作吸附剂进行金属离子的吸附,也可以用作磁固相萃取材料用于样品中微量金属离子的预浓缩、分离。
本发明的技术方案如下:
一种以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球的制备方法,包括以下步骤:
(1)准确称取FeCl3·6H2O和FeCl2·4H2O,加入去离子水溶解并用浓氨水调pH=11,N2保护下搅拌加热反应,磁选分离冲洗黑色固体至洗脱液为中性,真空干燥得到Fe3O4纳米颗粒;
(2)准确称取Fe3O4纳米颗粒、CTAB和NaOH,加入去离子水溶解,滴加TEOS,搅拌加热反应,磁选分离固体、洗涤、干燥,煅烧以除去CTAB,煅烧后得到基底材料,即MMSM;
(3)准确称取MMSM溶于无水乙醇中,搅拌条件下加入APTES,氮气保护下加热反应,冷却后磁选分离、洗涤、干燥得到固体,即MMSM-NH2
(4)准确称取MMSM-NH2和丁二酸酐溶于无水甲苯中,搅拌条件下加入三乙胺,氮气保护下加热反应,冷却后磁选分离,使用无水甲苯和无水乙醇依次洗涤固体颗粒并真空干燥,得到MMSM-COOH;
(5)准确称取MMSM-COOH和聚乙烯亚胺溶于DMF中,超声加速分散,加热反应,冷却后磁选分离,使用无水乙醇与去离子水依次洗涤固体颗粒并真空干燥,得到最终产物以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球MMSM-PEI。
步骤(1)中FeCl2·4H2O、FeCl3·6H2O、去离子水的比为g:g:mL=1:3~4:100~180;浓氨水的质量百分比含量为26%;加热反应条件为:温度80~90℃,反应时间0.5~1h。
步骤(2)中CTAB、TEOS、Fe3O4纳米颗粒、NaOH、去离子水的比为g:g:g:g:mL=1:2.85~9.5:1~2.5:0.28:250~300;加热反应条件为:温度80~90℃,反应时间1~2h;煅烧是在马弗炉中550~600℃下煅烧5~6h。
步骤(3)中MMSM、APTES、无水乙醇的比为g:g:mL=1:3~4:150~200;加热反应条件为:温度35~40℃,反应时间12~24h;使用无水乙醇洗涤固体。
步骤(4)中MMSM-NH2、丁二酸酐、三乙胺、无水甲苯的比为g:g:g:mL=1:1:1.2~1.5:200~250;加热反应条件为:温度35~45℃,反应时间20~24h。
步骤(5)中MMSM-COOH、聚乙烯亚胺、DMF的比为g:g:mL=1:5~6:350~450;超声时间为20~30min;加热反应条件为:温度35~40℃,反应时间36~48h。
本发明还提供所述表面改性的磁性介孔二氧化硅微球作为金属离子吸附剂的应用,对铜离子的吸附效果好,pH=6.5,室温(25℃),40min即可达到吸附平衡,吸附剂可以重复使用。
本发明还提供所述表面改性的磁性介孔二氧化硅微球作为磁固相萃取材料的应用,具体的是作为磁固相萃取材料在检测皮蛋中微量Cu2+中的应用,表面改性的磁性介孔二氧化硅微球先吸附微量Cu2+,达到预浓缩的目的,再通过外部磁场分离微球,然后采用1mol/L的HNO3超声20min洗脱吸附在微球上的Cu2+,达到分离的目的,再进行Cu2+的检测,表面改性的磁性介孔二氧化硅微球可以重复利用。
与现有技术相比,本发明具有以下有益效果:
本发明聚乙烯亚胺表面改性的磁性介孔二氧化硅微球表面具有伯、仲、叔氨基,可与金属离子Cu2+络合从而达到大量吸附金属离子Cu2+的效果,并且聚乙烯亚胺接枝到材料表面进一步增加了材料的亲水性,可以增加材料与水的亲和性。
本发明提供的聚乙烯亚胺表面改性的磁性介孔二氧化硅微球对金属离子Cu2+具有优异的吸附作用,最大吸附容量为274.35mg/g,最佳的吸附条件为:pH=6.5,温度25℃,在40min时达到饱和吸附量,在1min内可通过外部磁场从溶液中分离出来,可以重复利用,该材料具有良好的化学惰性及结构稳定性,重复5次循环使用后其吸附效率依旧能达到首次的89.9%,作为磁固相萃取材料用于皮蛋中微量Cu2+的预浓缩与分离,并联合火焰原子吸收光谱法测定Cu2+效果显著。
附图说明
图1为聚乙烯亚胺表面改性的磁性介孔二氧化硅微球的制备路径;
图2为XRD表征图谱(图中a为Fe3O4纳米粒子、b为MMSM、c为MMSM-NH2、d为MMSM-COOH、e为MMSM-PEI);
图3为扫描电镜图(a为Fe3O4纳米粒子、b为MMSM-PEI);
图4为Fe3O4纳米粒子和MMSM-PEI的VSM表征图;
图5为不同pH值对MMSM-PEI吸附量和去除效率的影响;
图6为不同温度对MMSM-PEI吸附量的影响;
图7为时间对MMSM-PEI吸附量的影响;
图8为循环使用次数对MMSM-PEI吸附效果的影响。
具体实施方式
结合附图与具体实施方式对本发明进行阐述。除非特别说明,实施例中所使用的试剂、方法均为本领域常用的试剂,不做特别说明的情况下,均可以市场购买得到或者常规方法配制得到。
实施例1
一种以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球的制备方法,包括以下步骤:
(1)Fe3O4纳米粒子的合成:准确称取FeCl3·6H2O(6.63g)和FeCl2·4H2O(2.21g)于三颈瓶,加入225mL去离子水溶解,并用浓氨水(质量百分比含量为26%)调pH值至11,在N2保护下加热至80℃并机械搅拌反应0.5h,通过外部磁铁分离冲洗黑色固体至洗脱液为中性,50℃真空干燥12h得到Fe3O4纳米颗粒;
(2)磁性介孔二氧化硅微球(MMSM)的合成:准确称取Fe3O4纳米粒子(1g)、十六烷基三甲基溴化铵(CTAB,1g)、NaOH(0.28g)和硅酸四乙酯(TEOS,2.85g),将Fe3O4纳米颗粒、CTAB和NaOH加入三颈瓶中再加入250mL去离子水超声20min加速溶解,滴加TEOS,80℃下机械搅拌反应1h,通过外部磁铁分离固体,并用去离子水与无水乙醇依次洗涤至洗脱液为中性,50℃真空干燥12h,将干燥后的固体放入马弗炉中,在550℃下煅烧5h得到MMSM;
(3)氨基改性的磁性介孔二氧化硅微球(MMSM-NH2)的合成:准确称取MMSM(0.5g)和3-氨丙基三乙氧基硅烷(APTES,1.5g),将MMSM加入三颈瓶中,再加入75mL无水乙醇超声20min加速溶解,搅拌条件下加入APTES,35℃下氮气保护机械搅拌反应24h,通过外部磁铁分离固体,用无水乙醇洗涤3次,50℃真空干燥12h得到MMSM-NH2
(4)羧基改性的磁性介孔二氧化硅微球(MMSM-COOH)的合成:准确称取MMSM-NH2(0.3g)、丁二酸酐(0.3g)和三乙胺(0.36g),将MMSM-NH2(0.3g)、丁二酸酐(0.3g)加入三颈瓶中,再加入60mL无水甲苯,搅拌条件下加入三乙胺,35℃下氮气保护机械搅拌反应20h,通过外部磁铁分离固体,用无水甲苯和无水乙醇依次洗涤,50℃真空干燥12h得到MMSM-COOH;
(5)聚乙烯亚胺改性的磁性介孔二氧化硅微球(MMSM-PEI)的合成:准确称取MMSM-COOH(0.2g)和聚乙烯亚胺(1g)于三颈瓶,加入70mL二甲基甲酰胺(DMF),超声20min加速溶解,35℃下机械搅拌反应36h,通过外部磁铁分离固体,用去离子水和无水乙醇依次洗涤,50℃真空干燥12h,得到最终产物以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球MMSM-PEI。
实施例2
一种以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球的制备方法,包括以下步骤:
(1)Fe3O4纳米粒子的合成:准确称取FeCl3·6H2O(7.735g)和FeCl2·4H2O(2.21g)于三颈瓶,加入310mL去离子水溶解,并用浓氨水(质量百分比含量为26%)调pH值至11,在N2保护下加热至85℃并机械搅拌反应0.75h,通过外部磁铁分离冲洗黑色固体至洗脱液为中性,50℃真空干燥12h得到Fe3O4纳米颗粒;
(2)磁性介孔二氧化硅微球(MMSM)的合成:准确称取Fe3O4纳米粒子(1.75g)、十六烷基三甲基溴化铵(CTAB,1g)、NaOH(0.28g)和硅酸四乙酯(TEOS,4.4g),将Fe3O4纳米颗粒、CTAB和NaOH加入三颈瓶中再加入275mL去离子水超声20min加速溶解,滴加TEOS,85℃下机械搅拌反应2h,通过外部磁铁分离固体,并用去离子水与无水乙醇依次洗涤至洗脱液为中性,50℃真空干燥12h,将干燥后的固体放入马弗炉中,在575℃下煅烧6h得到MMSM;
(3)氨基改性的磁性介孔二氧化硅微球(MMSM-NH2)的合成:准确称取MMSM(0.5g)和3-氨丙基三乙氧基硅烷(APTES,1.9g),将MMSM加入三颈瓶中,再加入90mL无水乙醇超声20min加速溶解,搅拌条件下加入APTES,37℃下氮气保护机械搅拌反应18h,通过外部磁铁分离固体,用无水乙醇洗涤3次,50℃真空干燥12h得到MMSM-NH2
(4)羧基改性的磁性介孔二氧化硅微球(MMSM-COOH)的合成:准确称取MMSM-NH2(0.3g)、丁二酸酐(0.3g)和三乙胺(0.4g),MMSM-NH2(0.3g)、丁二酸酐(0.3g)于三颈瓶中,再加入70mL无水甲苯,搅拌条件下加入三乙胺,38℃下氮气保护机械搅拌反应24h,通过外部磁铁分离固体,用无水甲苯和无水乙醇依次洗涤,50℃真空干燥12h得到MMSM-COOH;
(5)聚乙烯亚胺改性的磁性介孔二氧化硅微球(MMSM-PEI)的合成:准确称取MMSM-COOH(0.2g)和聚乙烯亚胺(1.1g)与三颈瓶,加入80mL二甲基甲酰胺(DMF),超声25min加速溶解,37℃下机械搅拌反应48h,通过外部磁铁分离固体,用去离子水和无水乙醇依次洗涤,50℃真空干燥12h,得到最终产物以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球MMSM-PEI。
实施例3
一种以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球的制备方法,包括以下步骤:
(1)Fe3O4纳米粒子的合成:准确称取FeCl3·6H2O(8.84g)和FeCl2·4H2O(2.21g)于三颈瓶,加入400mL去离子水溶解,并用浓氨水(质量百分比含量为26%)调pH值至11,在N2保护下加热至90℃并机械搅拌反应1h,通过外部磁铁分离冲洗黑色固体至洗脱液为中性,50℃真空干燥12h得到Fe3O4纳米颗粒;
(2)磁性介孔二氧化硅微球(MMSM)的合成:准确称取Fe3O4纳米粒子(2.5g)、十六烷基三甲基溴化铵(CTAB,1g)、NaOH(0.28g)和硅酸四乙酯(TEOS,9.5g),将Fe3O4纳米颗粒、CTAB和NaOH加入三颈瓶中再加入300mL去离子水超声20min加速溶解,滴加TEOS,90℃下机械搅拌反应1.5h,通过外部磁铁分离固体,并用去离子水与无水乙醇依次洗涤至洗脱液为中性,50℃真空干燥12h,将干燥后的固体放入马弗炉中,在600℃下煅烧5.5h得到MMSM;
(3)氨基改性的磁性介孔二氧化硅微球(MMSM-NH2)的合成:准确称取MMSM(0.5g)和3-氨丙基三乙氧基硅烷(APTES,2g),将MMSM加入三颈瓶中,再加入100mL无水乙醇超声20min加速溶解,搅拌条件下加入APTES,40℃下氮气保护机械搅拌反应12h,通过外部磁铁分离固体,用无水乙醇洗涤3次,50℃真空干燥12h得到MMSM-NH2
(4)羧基改性的磁性介孔二氧化硅微球(MMSM-COOH)的合成:准确称取MMSM-NH2(0.3g)、丁二酸酐(0.3g)和三乙胺(0.45g),MMSM-NH2(0.3g)、丁二酸酐(0.3g)于三颈瓶中,再加入75mL无水甲苯,搅拌条件下加入三乙胺,45℃下氮气保护机械搅拌反应22h,通过外部磁铁分离固体,用无水甲苯和无水乙醇依次洗涤,50℃真空干燥12h得到MMSM-COOH;
(5)聚乙烯亚胺改性的磁性介孔二氧化硅微球(MMSM-PEI)的合成:准确称取MMSM-COOH(0.2g)和聚乙烯亚胺(1.2g)与三颈瓶,加入90mL二甲基甲酰胺(DMF),超声30min加速溶解,40℃下机械搅拌反应42h,通过外部磁铁分离固体,用去离子水和无水乙醇依次洗涤,50℃真空干燥12h,得到最终产物以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球MMSM-PEI。
本发明产物MMSM-PEI的合成策略步骤如图1所示,当聚乙烯亚胺接枝到材料上后,其表面的伯、仲、叔氨基与Cu2+络合从而可以达到吸附溶液中Cu2+的效果。
对实施例3中各个步骤合成的材料进行XRD表征,表征结果如图2所示,图中a为Fe3O4纳米粒子、b为MMSM、c为MMSM-NH2、d为MMSM-COOH、e为MMSM-PEI,Fe3O4纳米粒子、MMSM、MMSM-NH2、MMSM-COOH和MMSM-PEI有不同的衍射强度值,但是衍射峰几乎相同,2θ角度与标准纳米Fe3O4的文献值相近,出现了明显的(220)、(311)、(400)、(422)、(551)、(440)等特征衍射峰,此结果证实了磁芯Fe3O4已成功合成,并且在多步合成过程中始终完好,亦表明制备出的磁性纳米粒子物相为反尖晶石结构,峰型较尖锐,纳米粒子结晶较完整。
对实施例3中制备得到的Fe3O4纳米粒子和MMSM-PEI进行扫描电镜表征,表征结果如图3所示,图3a为Fe3O4纳米粒子的扫描电镜图,可以看发现Fe3O4纳米粒子的粒径在15nm左右,粒径分散均一,且都保持着规则的球形;图3b为MMSM-PEI扫描电镜图,可以发现其粒径大致在1μm左右,同样具有规则的球形,MMSM-PEI的粒径增大主要归根于多步的合成修饰,该结果证实了表面改性的策略的成功。
对实施例3中制备得到的Fe3O4纳米粒子和MMSM-PEI进行VSM表征,表征结果如图4所示,Fe3O4纳米粒子的饱和磁化率为67.72emu/g,MMSM-PEI为41.32emu/g,与Fe3O4纳米粒子相比,MMSM-PEI的饱和磁化率下降,这是因为对Fe3O4进行了表面改性,这可以归因于有机修饰形成的壳结构包覆Fe3O4而产生的屏蔽作用。
实施例4
实施例3制备得到的以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球MMSM-PEI作为吸附剂的应用:
pH值的影响:取10mgMMSM-PEI,使用无水硫酸铜配置Cu2+浓度为25mg/L的标准溶液,每一份标准液的体积都为20mL,并用NaOH(0.1mol/L)或HCl(0.1mol/L)调标准液的pH值至3~9,进行铜离子吸附实验,结果如图5所,从图中可以发现,pH值在3~7范围内,随着pH值的升高,Cu2+的吸附量以及标准液中Cu2+的除去效率逐渐增加,当继续增加至pH=9,吸附量和除去效率先增加后减小,并且,当pH大于7时,标准液中Cu2+开始形成淡蓝色絮状物沉淀,因此为了减小Cu2+在高pH值下形成的沉淀带来的影响,最大可能的保持吸附量,选择在pH=6.5时作为最佳的吸附pH值。
温度影响:取10mgMMSM-PEI,使用无水硫酸铜配置Cu2+浓度为25mg/L的标准溶液20mL,并用NaOH(0.1mol/L)或HCl(0.1mol/L)调标准液的pH=6.5,吸附时间为1h,取三个温度分别为25℃、35℃、45℃验证温度的影响,结果如图6所示,从图中可以发现,随着温度的升高,MMSM-PEI的吸附量下降,因此选择25℃作为最佳吸附温度。
时间影响:取10mgMMSM-PEI,使用无水硫酸铜配置Cu2+浓度为25mg/L的标准溶液20mL,并用NaOH(0.1mol/L)或HCl(0.1mol/L)调标准液的pH=6.5,吸附温度25℃,MMSM-PEI和MMSM的吸附量随吸附时间的变化关系如图7所示,根据图可以判断在40min时,MMSM-PEI吸附达到平衡,此后增加吸附时间MMSM-PEI的吸附量不会继续增加,且吸附效果MMSM-PEI优于MMSM,因此选择40min作为吸附平衡时间;随后改变Cu2+标准溶液的初始浓度从10~200mg/L,验证其最大吸附容量(mg/g),并结合Langmiur等温热力学方程对吸附过程的数据进行拟合,发现该MMSM-PEI吸附Cu2+属于单层吸附,计算得到的最大吸附量为274.35mg/g,说明具有优良的吸附效果。
循环次数的影响:取10mgMMSM-PEI,使用无水硫酸铜配置Cu2+浓度为25mg/L的标准溶液20mL,并用NaOH(0.1mol/L)或HCl(0.1mol/L)调标准液的pH=6.5,吸附温度25℃,吸附时间40min,吸附完成后再进行解吸,解吸过程具体为:通过外部磁场分离吸MMSM-PEI,加入到1mol/L的HNO3(5mL)并超声20min进行解吸;MMSM-PEI吸附与解吸循环过程的吸附效率与循环次数关系如图8所示,根据图可知,在1~5次循环使用过程,对应的吸附效率分别为100.0%、95.8%、92.4%、91.0%、89.9%,可见MMSM-PEI的重复使用效果良好。
实施例5
实施例3制备得到的以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球MMSM-PEI作为磁固相萃取材料的应用:
取市面上所售不同产地皮蛋,取蛋白、蛋黄各1g,经500℃干燥6h,将剩余灰分溶于2mL浓硝酸(质量分数68%),并用水稀释再定容至50mL容量瓶,过滤不溶性杂质并用NaOH(0.1mol/L)或盐酸(0.1mol/L)调节滤液pH=6.5,加入10mg实施例3制备得到的以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球MMSM-PEI至20mL的滤液中,振荡吸附40min后,通过外部磁场分离MMSM-PEI,取1mol/L的HNO3(5mL)超声20min洗脱吸附在MMSM-PEI上的Cu2+,联合火焰原子吸收光谱法测量洗脱液中Cu2+的含量水平。
对不同产地皮蛋的蛋白、蛋黄中Cu2+含量测定的结果如表1所示。
表1
Figure BDA0003363001390000081
皮蛋的产地不同,其对应的制作工艺存在差异。湖北武汉、云南昆明的皮蛋在制作过程中在腌制泥浆中添加了大量的CuSO4作为腌制辅助剂(经过检测湖北武汉、云南昆明的腌制泥浆中Cu2+含量为400ug/g以上),因此这两个地区制作的皮蛋在腌制过程中Cu2+进入到蛋白蛋黄中,在皮蛋内部积累,导致Cu2+含量水平升高,从表1中可知,对应的皮蛋总的Cu2 +含量水平分别为25.96ug/g、15.58ug/g,而对于四川广安的皮蛋,在制作过程中没有在腌制泥浆中加入CuSO4,可以发现其蛋白、蛋黄中Cu2+含量水平显著低于湖北武汉和云南昆明,对应的皮蛋总的Cu2+含量水平为3.61ug/g,但依然可以在蛋白蛋黄中检测出微量Cu2+,推测这可能与家禽的饲养方式以及该地区的环境因素相关。

Claims (10)

1.一种表面改性的磁性介孔二氧化硅微球的制备方法,其特征在于,包括以下步骤:
(1)称取FeCl3·6H2O和FeCl2·4H2O,加入去离子水溶解并用浓氨水调pH=11,N2保护下搅拌加热反应,磁选分离冲洗固体至洗脱液为中性,真空干燥得到Fe3O4纳米颗粒;
(2)称取Fe3O4纳米颗粒、CTAB和NaOH,加入去离子水溶解,滴加TEOS,搅拌加热反应,磁选分离固体、洗涤、干燥,煅烧后得到基底材料MMSM;
(3)称取MMSM溶于无水乙醇中,搅拌条件下加入APTES,氮气保护下加热反应,冷却后磁选分离、洗涤、干燥得到固体MMSM-NH2
(4)称取MMSM-NH2和丁二酸酐溶于无水甲苯中,搅拌条件下加入三乙胺,氮气保护下加热反应,冷却后磁选分离,使用无水甲苯和无水乙醇依次洗涤固体颗粒并真空干燥,得到MMSM-COOH;
(5)称取MMSM-COOH和聚乙烯亚胺溶于DMF中,超声分散,加热反应,冷却后磁选分离,使用无水乙醇与去离子水依次洗涤固体颗粒并真空干燥,得到以聚乙烯亚胺表面改性的磁性介孔二氧化硅微球。
2.根据权利要求1所述表面改性的磁性介孔二氧化硅微球的制备方法,其特征在于,步骤(1)中FeCl2·4H2O、FeCl3·6H2O、去离子水的比为g:g:mL=1:3~4:100~180;浓氨水的质量百分比含量为26%。
3.根据权利要求1所述表面改性的磁性介孔二氧化硅微球的制备方法,其特征在于,步骤(1)加热反应条件为:温度80~90℃,反应时间0.5~1h。
4.根据权利要求1所述表面改性的磁性介孔二氧化硅微球的制备方法,其特征在于,步骤(2)CTAB、TEOS、Fe3O4纳米颗粒、NaOH、去离子水的比为
g:g:g:g:mL=1:2.85~9.5:1~2.5:0.28:250~300。
5.根据权利要求1所述表面改性的磁性介孔二氧化硅微球的制备方法,其特征在于,步骤(2)加热反应条件为:温度80~90℃,反应时间1~2h;煅烧是550~600℃下保温5~6h。
6.根据权利要求1所述表面改性的磁性介孔二氧化硅微球的制备方法,其特征在于,步骤(3)中MMSM、APTES、无水乙醇的比为g:g:mL=1:3~4:150~200;加热反应条件为:温度35~40℃,反应时间12~24h;使用无水乙醇洗涤固体。
7.根据权利要求1所述表面改性的磁性介孔二氧化硅微球的制备方法,其特征在于,步骤(4)中MMSM-NH2、丁二酸酐、三乙胺、无水甲苯的比为g:g:g:mL=1:1:1.2~1.5:200~250;加热反应条件为:温度35~45℃,反应时间20~24h。
8.根据权利要求1所述表面改性的磁性介孔二氧化硅微球的制备方法,其特征在于,步骤(5)中MMSM-COOH、聚乙烯亚胺、DMF的比为g:g:mL=1:5~6:350~450;超声时间为20~30min;
加热反应条件为:温度35~40℃,反应时间36~48h。
9.权利要求1所述表面改性的磁性介孔二氧化硅微球作为金属离子吸附剂的应用。
10.权利要求1所述表面改性的磁性介孔二氧化硅微球作为磁固相萃取材料的应用,具体的是作为磁固相萃取材料在检测皮蛋中微量Cu2+中的应用,表面改性的磁性介孔二氧化硅微球先吸附微量Cu2+,达到预浓缩的目的,再通过外部磁场分离微球,然后采用1mol/L的HNO3超声20min洗脱吸附在微球上的Cu2+,达到分离的目的,再进行Cu2+的检测。
CN202111373035.6A 2021-11-19 2021-11-19 一种表面改性的磁性介孔二氧化硅微球的制备方法及应用 Active CN113967471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111373035.6A CN113967471B (zh) 2021-11-19 2021-11-19 一种表面改性的磁性介孔二氧化硅微球的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111373035.6A CN113967471B (zh) 2021-11-19 2021-11-19 一种表面改性的磁性介孔二氧化硅微球的制备方法及应用

Publications (2)

Publication Number Publication Date
CN113967471A true CN113967471A (zh) 2022-01-25
CN113967471B CN113967471B (zh) 2023-06-13

Family

ID=79589980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111373035.6A Active CN113967471B (zh) 2021-11-19 2021-11-19 一种表面改性的磁性介孔二氧化硅微球的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113967471B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115254008A (zh) * 2022-08-15 2022-11-01 大连工业大学 基于混合模式改性介孔二氧化硅材料、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103495368A (zh) * 2013-09-17 2014-01-08 南昌大学 一种热磁双重响应介孔硅微球的制备方法
CN107081138A (zh) * 2017-05-19 2017-08-22 上海工程技术大学 磁性聚苯乙烯基壳聚糖复合吸附剂及其制备方法与应用
CN111437792A (zh) * 2020-04-13 2020-07-24 山东建筑大学 一种用于去除水中铜离子的磁性介孔二氧化硅的合成方法
CN112403441A (zh) * 2020-11-30 2021-02-26 西北工业大学 一种由化学键负载有机胺的co2固体吸附剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103495368A (zh) * 2013-09-17 2014-01-08 南昌大学 一种热磁双重响应介孔硅微球的制备方法
CN107081138A (zh) * 2017-05-19 2017-08-22 上海工程技术大学 磁性聚苯乙烯基壳聚糖复合吸附剂及其制备方法与应用
CN111437792A (zh) * 2020-04-13 2020-07-24 山东建筑大学 一种用于去除水中铜离子的磁性介孔二氧化硅的合成方法
CN112403441A (zh) * 2020-11-30 2021-02-26 西北工业大学 一种由化学键负载有机胺的co2固体吸附剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TEHREEMA NAWAZ, ET AL: "Synthesis of diglycolic acid functionalized core-shell silica coated Fe3O4 nanomaterials for magnetic extraction of Pb(II) and Cr(VI) ions", SCIENTIFIC REPORTS *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115254008A (zh) * 2022-08-15 2022-11-01 大连工业大学 基于混合模式改性介孔二氧化硅材料、制备方法及其应用
CN115254008B (zh) * 2022-08-15 2023-06-13 大连工业大学 基于混合模式改性介孔二氧化硅材料、制备方法及其应用

Also Published As

Publication number Publication date
CN113967471B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
Vempati et al. Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite
Zheng et al. Functionalization of mesoporous Fe3O4@ SiO2 nanospheres for highly efficient U (VI) adsorption
Huang et al. Ionic liquid-coated Fe 3 O 4/APTES/graphene oxide nanocomposites: Synthesis, characterization and evaluation in protein extraction processes
JP5392638B2 (ja) 炭素質複合体及びその製造方法
CN111437792B (zh) 一种用于去除水中铜离子的磁性介孔二氧化硅的合成方法
CN109569548B (zh) 一种用于海水提铀的磁性纳米功能材料及其制备方法
CN109433158B (zh) 用于多模式肽段富集的磁性纳米复合材料及其制备方法与应用
Banaei et al. Synthesis and characterization of new modified silica coated magnetite nanoparticles with bisaldehyde as selective adsorbents of Ag (I) from aqueous samples
Shi et al. Green synthesis of Fe 3 O 4 nanoparticles with controlled morphologies using urease and their application in dye adsorption
CN107281999B (zh) 一种铁氧化物/二氧化锰纳米复合材料及其制备方法与应用
CN109569518B (zh) 半胱氨酸功能化的磁性中空铁酸锰纳米复合吸附剂的制备方法
CN113740390B (zh) 一种镍掺杂氧化铟纳米颗粒及其制备方法与应用
CN106430327A (zh) 一种多孔海胆状Fe3O4@C复合材料及其制备方法
Ling et al. Formation of uniform mesoporous TiO 2@ C–Ni hollow hybrid composites
CN110665465A (zh) 用于糖肽富集的磁性共价有机框架材料及其制备方法与应用
CN113967471B (zh) 一种表面改性的磁性介孔二氧化硅微球的制备方法及应用
CN113042000A (zh) 一种鸡粪衍生生物炭负载纳米零价铁复合材料及其制备方法和应用
JP6315831B2 (ja) セルロースの加水分解方法
CN108114694B (zh) 一种有机修饰磁性碱性钙基膨润土及其制备方法
Kubrakova et al. Microwave synthesis, properties and analytical possibilities of magnetite-based nanoscale sorption materials
Mehraban et al. Trace amount determination of Cd (II), Pb (II) and Ni (II) ions in agricultural and seafood samples after magnetic solid phase extraction by MIL-101 (Cr)/phenylthiosemicarbazide-functionalized magnetite nanoparticle composite
Liu et al. Comparison of the effects of microcrystalline cellulose and cellulose nanocrystals on Fe 3 O 4/C nanocomposites
CN110064357B (zh) 高效除锑吸附剂的制备方法及其在印染废水处理中的应用
Peng et al. Thiol-functionalized Fe 3 O 4/SiO 2 microspheres with superparamagnetism and their adsorption properties for Au (III) ion separation
CN113842889A (zh) 一种微波合成金属有机骨架材料DUT-5(Al)及其合成方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant