CN113966412A - 可流动pecvd的低沉积速率 - Google Patents

可流动pecvd的低沉积速率 Download PDF

Info

Publication number
CN113966412A
CN113966412A CN202080043118.6A CN202080043118A CN113966412A CN 113966412 A CN113966412 A CN 113966412A CN 202080043118 A CN202080043118 A CN 202080043118A CN 113966412 A CN113966412 A CN 113966412A
Authority
CN
China
Prior art keywords
plasma
equal
less
flowable
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080043118.6A
Other languages
English (en)
Inventor
江施施
P·曼纳
A·B·玛里克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN113966412A publication Critical patent/CN113966412A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/0215Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing tantalum, e.g. TaSiOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76837Filling up the space between adjacent conductive structures; Gap-filling properties of dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

公开了用于以低沉积速率沉积膜的PECVD方法,包括间歇性地活化等离子体。能够使用至少聚硅烷前驱物和等离子体气体以沉积可流动膜。公开的工艺的沉积速率可以小于
Figure DDA0003396647850000011

Description

可流动PECVD的低沉积速率
技术领域
本公开大致上关于沉积薄膜的方法。特别地,本公开关于用以相对低的速率沉积的可流动膜填充窄沟槽的工艺。
背景技术
在微电子组件的制造中,对许多应用而言,需要没有空隙地填充深宽比(aspectratio,AR)大于10:1的窄沟槽。一种应用是针对浅沟槽隔离(STI)。对于此应用而言,该膜需要在整个沟槽中具有高质量(例如,湿蚀刻速率比小于2)且泄漏非常低。随着结构尺寸减小并且深宽比增加,所沉积的可流动膜的后固化方法变得困难。造成整个经填充的沟槽中的膜具有有差异的组成。
非晶硅已广泛地用于半导体制造工艺中以作为牺牲层,因为非晶硅相对于其他膜(例如,氧化硅、氮化硅、非晶碳等)能够提供良好的蚀刻选择性。随着半导体制造中临界尺寸(CD)的减小,对于先进晶片制造而言,填充高深宽比的缝隙变得越来越敏感。当前的金属置换栅极工艺涉及熔炉多晶硅或非晶硅虚拟栅极(dummy gate)。由于工艺的本质,接缝会在硅虚拟栅极的中间形成。此接缝可能会在后工艺期间打开并且引发结构失效。
非晶硅(a-Si)的常规等离子体增强化学气相沉积(PECVD)在窄沟槽的顶部上形成“蘑菇形”膜。这是由于等离子体无法穿透到深沟槽中。结果是,从顶部夹止(pinch off)窄沟槽;在沟槽的底部形成空隙。
一般使用远程等离子体(RPS)沉积介电膜(例如,氧化硅、氮化硅、碳氮化硅等)的可流动工艺。RPS在沉积腔室外部生成反应性自由基。然后,反应性自由基引入沉积腔室,并与含硅的前驱物反应,而沉积可流动膜。
为了沉积可流动硅膜(其中不容许有除了氢之外的其他元素),氢自由基是唯一选择。然而,由于氢自由基的寿命短,所以利用远程等离子体沉积膜可能是有挑战性的,这是因为许多自由基在从远程源转移到沉积腔室期间会淬灭(quench)。
用于沉积可流动硅膜的其他工艺使用直接CCP。但是,当使用直接等离子体时,自由基的密度增加。当使用CCP时,CCP也会分解含硅的前驱物。因此,相较于远程等离子体工艺,直接CCP工艺的沉积速率通常会高得多。
对于可流动工艺而言,非常重要的是要控制沉积速率,以达到期望的厚度。厚度对于在沉积期间周期性处理和/或固化膜的“沉积/处理(dep/treat)”工艺而言至关重要。沉积/处理工艺依赖可能仅影响沉积膜的一定深度的处理。如果所沉积的膜多于能够受到处理的膜,则会发生不完整的处理。
因此,在本领域中需要低沉积速率的方法,所述方法允许更好地控制通过PECVD沉积的可流动膜的厚度。
发明内容
本公开的一个或多个实施例涉及一种方法,所述方法包括:将上面有至少一个特征的基板表面同时暴露于包含聚硅烷前驱物和等离子体气体的反应物。以规则的间隔点燃等离子体气体以形成等离子体,并且在至少一个特征内在基板表面上沉积可流动膜。
本公开的另外的实施例涉及一种方法,所述方法包括:将上面有至少一个特征的基板表面同时暴露于包含聚硅烷前驱物和等离子体气体的反应物。以规则的间隔点燃等离子体气体以形成等离子体,并在至少一个特征内在基板表面上沉积可流动的含硅膜。所述规则的间隔具有小于40%的占空比。以小于或等于约
Figure BDA0003396647830000021
的速率沉积可流动含硅膜。
本公开的进一步实施例涉及一种方法,所述方法包括:将上面有至少一个特征的基板表面同时暴露于包含聚硅烷前驱物和等离子体气体的反应物。聚硅烷前驱物包括乙硅烷、丙硅烷、丁硅烷、新戊硅烷、或环己硅烷、TSA、TEOS、TRIES、TMOS、TRIMOS中的一者或多者。等离子体气体包括He、Ar、Kr、H2、N2、O2、O3、或NH3中的一者或多者。以规则的间隔点燃等离子体气体以形成等离子体,并在至少一个特征内在基板表面上沉积可流动膜。规则的间隔具有小于40%的占空比。等离子体的功率小于或等于约200W。所述膜包括Si、SiN、SiO、SiC、SiCN、SiOC、SiON、SiCON中的一者或多者。基板表面的温度保持在小于或等于约50℃。所述可流动膜以小于或等于约
Figure BDA0003396647830000031
的速率沉积。
附图说明
为了能够详细地理解本发明的上述特征的方式,可通过参考实施例(其中一些于附图中说明)而对上文简短概述的本发明进行更特定的描述。然而,应注意,附图仅说明本发明的典型实施例,因此不应视为对本发明范围的限制,因为本发明可容许其他等效实施例。
图1显示根据本公开的一个或多个实施例的基板特征的剖视图;以及
图2显示其上有可流动膜的图1的基板特征的剖视图。
具体实施方式
在描述本发明的几个示例性实施例之前,应理解本发明不限于以下描述中所提出的构造或工艺步骤的细节。本发明能够具有其他实施例,且能够以各种方式实现或执行。
如本文所用,“基板”是指在制造工艺期间在其上面执行膜处理的任何基板或基板上所形成的材料表面。例如,取决于应用,能够在上面执行处理的基板表面包括诸如以下的材料:硅、氧化硅、应变硅、绝缘体上硅(SOI)、碳掺杂的氧化硅、非晶硅、掺杂硅、锗、砷化镓、玻璃、蓝宝石、以及任何其他材料,诸如金属、金属氮化物、金属合金,和其他导电材料。基板包括(但不限于)半导体晶片。基板可暴露于预处理工艺,以研磨、蚀刻、还原、氧化、羟基化、退火、UV固化、电子束固化和/或烘烤基板表面。除了直接在基板本身的表面上进行膜处理之外,在本发明中,所公开的任何膜处理步骤也可在基板上的下层上执行,如下文更详细地公开,并且术语“基板表面”旨在包括如上下文所指的此类下层。因此,例如,在膜/层或部分膜/层已经沉积于基板表面上的情况中,新沉积的膜/层的暴露表面成为基板表面。
本公开的实施例提供以低沉积速率沉积膜(例如,可流动含硅膜)的方法。一些实施例有利地提供低沉积速率,低沉积速率在循环式沉积处理工艺中提供了更容易的厚度控制。一些实施例有利地在具有小尺寸的高AR沟槽中提供无接缝的高质量含非晶硅膜。
本公开的一个或多个实施例涉及其中使用以规则的间隔点燃的等离子体沉积可流动膜的工艺。换言之,等离子体仅间歇地施加。能够使用等离子体增强化学气相沉积(PECVD)在低温(例如,低于50℃)使用聚硅烷前驱物沉积膜。用于该工艺的等离子体功率能够保持在低于约200W,以降低反应动力并且获得无雾(haze free)膜。乙硅烷、丙硅烷、丁硅烷、新戊硅烷、环己硅烷是能够使用的典型聚硅烷。
该工艺的实施例允许通过将烃、氧源、和氮源添加至可流动硅工艺而制备包含碳、氧或氮中的一者或多者的可流动膜。另外,能够通过将适当的金属前驱物添加至该可流动硅工艺,而沉积可流动金属硅化物(WSi、TaSi、NiSi)。
如在本说明书和所附的权利要求中所用,“可流动膜”是能够移动且流入开口(例如,沟槽)并且覆盖不规则(粗糙)表面的流体材料。在一些实施例中,可流动膜经固化而移除或减少膜的流体本质,而产生固体或非流体膜。
图1显示具有特征110的基板100的局部剖视图。为了说明,该图式显示具有单个特征的基板。然而,本领域技术人员会了解,能够有超过一个特征。特征110的形状可以是任何适合的形状,包括但不限于沟槽和圆柱形通孔(via)。如在这方面所用,术语“特征”是指任何刻意的表面不规则性。特征的适合示例包括但不限于具有顶部、两个侧壁和底部的沟槽、具有顶部和两个侧壁的峰。特征能够具有任何适合的深宽比(特征的深度对特征的宽度之比)。在一些实施例中,深宽比大于或等于约5∶1、10∶1、15∶1、20∶1、25∶1、30∶1、35∶1或40∶1。
基板100具有基板表面120。至少一个特征110在基板表面120中形成开口。特征110从基板表面120延伸达深度D直至底表面112。特征110具有第一侧壁114和第二侧壁116,第一侧壁114和第二侧壁116限定特征110的宽度W。由侧壁和底部形成的开口区域也被称为缝隙。
本公开的一个或多个实施例涉及处理方法,其中提供上面有至少一个特征的基板表面。如在这方面所用,术语“提供”是指将基板放进一位置或一环境以进一步处理。定位或提供基板以处理能够包括将基板留在与先前处理操作相同的位置、处理腔室或基座中。
如图2所示,可流动膜150沉积在基板表面120以及至少一个特征110的第一侧壁114、第二侧壁116、和底表面112上。
一些实施例中,可流动膜150填充至少一个特征110,使得实质上无接缝形成。接缝是在特征110的侧壁之间(但不必然在侧壁中间)的特征中所形成的缝隙。如在这方面所用,术语“实质上无接缝”是指在侧壁之间的膜中形成的任何缝隙小于侧壁的截面面积的约1%。
可通过任何适合的等离子体增强化学气相沉积(PECVD)工艺来沉积可流动膜150。在一些实施例中,使用直接等离子体通过PECVD工艺沉积可流动膜。在一些实施例中,可流动膜是使用CCP等离子体通过PECVD工艺沉积。
一些实施例的PECVD工艺包括将基板表面暴露于反应性气体。在一些实施例中,反应性气体包含多种反应物。在这些实施例中,反应物同时暴露于基板表面。例如,反应物可包括聚硅烷前驱物和等离子体气体。等离子体气体能够是任何能够被点燃以形成等离子体和/或能够用作聚硅烷前驱物的载体或稀释剂的适合的气体。在一些实施例中,该反应物中的一者或多者一起流入处理腔室。在一些实施例中,反应物分别流入处理腔室。
一些实施例的工艺在处理期间打开和关闭等离子体。换言之,一些实施例的等离子体以规则的间隔点燃。
在一些实施例中,聚硅烷前驱物包括更高级的硅烷,也称为多硅物质(polysilicon species)或多硅前驱物。一些实施例的聚硅烷前驱物包含以下中的一者或多者:乙硅烷、丙硅烷、和丁硅烷。在一些实施例中,多硅前驱物包含新戊硅烷和环己硅烷中的一者或多者。在一些实施例中,多硅前驱物包含三甲硅烷基胺(trisilylamine,TSA)、四乙氧基硅烷(TEOS)、三乙氧基硅烷(TRIES)、四甲氧基硅烷(TMOS)、或三甲氧基硅烷(TRIMOS)中的一者或多者。在一些实施例中,聚硅烷前驱物包含以下项或基本上由以下项组成:乙硅烷、丙硅烷、丁硅烷、新戊硅烷、或环己硅烷。如在这方面所用,术语“基本上由……组成”是指反应性气体的硅物质以摩尔计由大于或等于约95%、大于或等于约98%、大于或等于约99%、大于或等于约99.5%,或大于或等于约99.9%的指定物质构成。例如,基本上由丁硅烷组成的聚硅烷前驱物是指反应性气体的硅物质以摩尔计大于或等于约95%或更多的丁硅烷。
在一些实施例中,等离子体气体包括He、Ar、H2、Kr、N2、O2、O3或NH3中的一者或多者。一些实施例的等离子体气体用作反应性气体的(多种)其他反应物(例如,聚硅烷前驱物)的稀释剂或载气。
通过点燃等离子体气体以形成等离子体,在处理腔室内产生或点燃等离子体(例如,直接等离子体)。如先前所述,可以以规则的间隔点燃等离子体。“规则的”间隔意味着等离子体点燃的时间大约相等地隔开。在一些实施例中,规则的间隔意味着点燃等离子体的时间大约相同。在一些实施例中,规则的间隔意味等离子体被点燃持续大约相同的时间量,并且点燃之间的时间差大约相同。换言之,在处理期间,将会开启等离子体源以生成等离子体,并且关闭等离子体源以使等离子体气体维持不受等离子体的影响。
等离子体的循环能够以任何时间范围发生。例如,在周期重复之前,等离子体可以开启一秒,然后关闭一秒,或者在周期重复之前,等离子体可以开启50毫秒,然后关闭50毫秒。
类似地,等离子体周期的活化时期和失活时期可以是不均等的。例如,等离子体可以开启400毫秒,关闭100毫秒,或者可以开启100毫秒并关闭400毫秒。等离子体处于活化的周期的百分比称为等离子体的占空比。例如,400毫秒活化和100毫秒失活会是约80%的占空比。
在一些实施例中,规则间隔的占空比在约5%至约90%的范围内。在一些实施例中,规则间隔具有小于或等于约90%、小于或等于约80%、小于或等于约70%、小于或等于约60%、小于或等于约50%、小于或等于约40%、小于或等于约30%、小于或等于约25%、小于或等于约20%、小于或等于约15%、或小于或等于约10%的占空比。
等离子体功率能够维持在足够低的功率,以防止多硅物质还原成硅烷和/或最小化或防止膜中形成雾度。在一些实施例中,等离子体功率在约10W至约200W的范围内。在一些实施例中,等离子体功率小于或等于约200W、小于或等于约150W、小于或等于约100W、小于或等于约50W、小于或等于约25W、或小于或等于约20W。
等离子体频率可以是任何适合的频率。在一些实施例中,等离子体具有约10Hz至约10kHz范围内的频率。在一些实施例中,等离子体频率小于或等于约10kHz、小于或等于约5kHz、小于或等于约2kHz、小于或等于约1kHz、小于或等于约500Hz、小于或等于约200Hz、小于或等于约100Hz、小于或等于约50Hz、或小于或等于约20Hz。在一些实施例中,等离子体频率大于或等于约10Hz、大于或等于约20Hz、大于或等于约50Hz、大于或等于约100Hz、大于或等于约200Hz、大于或等于约500Hz、大于或等于约1kHz、大于或等于约2kHz、或大于或等于约5kHz。
能够控制等离子体的参数,以提供预定的沉积速率。可预期上文讨论的每一等离子体参数都会影响可流动膜的沉积速率。
沉积速率提供为在给定的时间单位内给定的沉积的膜的厚度(在因流动而造成任何变化之前)。例如,对于沉积速率为
Figure BDA0003396647830000071
的膜而言,将在30秒内于平坦表面上沉积
Figure BDA0003396647830000072
在一些实施例中,以在大约
Figure BDA0003396647830000073
至大约
Figure BDA0003396647830000074
的范围内的速率沉积可流动膜。在一些实施例中,以小于或等于约
Figure BDA0003396647830000075
小于或等于约
Figure BDA0003396647830000081
小于或等于约
Figure BDA0003396647830000082
小于或等于约
Figure BDA0003396647830000083
小于或等于约
Figure BDA0003396647830000084
小于或等于约
Figure BDA0003396647830000085
小于或等于约
Figure BDA0003396647830000086
或小于或等于约
Figure BDA0003396647830000087
的速率沉积可流动膜。
除了控制等离子体暴露的参数之外,也能够控制其他工艺参数。具体而言,为了维持沉积的可流动膜的流动性,能够调整沉积温度、处理压力、等离子体与晶片之间的间距、聚硅烷前驱物的选择、以及反应性气体中前驱物与任何稀释剂之间的比例。
能够在任何适合的温度沉积可流动膜150。在一些实施例中,可流动膜150在约-100℃至约50℃的温度范围内沉积。能够将温度保持在低温,以保持正在形成的组件的热预算,并在等离子体失活时限制反应。在一些实施例中,沉积可流动膜的温度低于约50℃、25℃、20℃、10℃、5℃、0℃、-10℃、-20℃、-25℃、-50℃或-80℃。
可流动膜150能够在任何适合的腔室压力下沉积。在一些实施例中,在约1托耳至约10托耳的范围内的压力下沉积可流动膜150。在一些实施例中,压力大于或等于约1托耳、大于或等于约2托耳、大于或等于约3托耳、大于或等于约5托耳、大于或等于约7托耳、或大于或等于约9托耳。在一些实施例中,压力小于或等于约10托耳、小于或等于约9托耳、小于或等于约8托耳,小于或等于约7托耳,小于或等于约5托耳,或小于或等于约3托耳。
能够通过改变反应物的组成物而调整可流动膜的组成物。在一些实施例中,可流动膜包括硅。在一些实施例中,可流动膜基本上由硅组成。如在这方面所用,术语“基本上由……组成”意味着可流动膜在原子基础上由大于或等于约98%、大于或等于约99%、大于或等于约99.5%、或大于或等于约99.9%的硅构成(不包括氢)。
在一些实施例中,可流动膜包括以下各项中的一种或多种:SiN、SiO、SiC、SiOC、SiCN、SiON、SiCON。为了沉积含氧膜,反应性气体可以包括例如O2、臭氧、N2O或水中的一者或多者。为了沉积含氮膜,反应性气体可包括例如氨、肼、NO2或N2中的一者或多者。为了沉积含碳膜,反应性气体可包含例如丙烯和乙炔中的一者或多者。本领域技术人员会理解,能够于反应物中包括多种物质的组合或是其他物质,以改变可流动膜的组成物。
在一些实施例中,可流动膜包括金属硅化物。反应性气体混合物可包括例如:包含钨、钽、或镍中的一者或多者的前驱物。能够包括其他金属前驱物以改变可流动膜的组成物。
在一些实施例中,在沉积可流动膜150之后,将膜固化而硬化可流动膜。在一些实施例中,在固化之后,固化膜形成实质上无接缝的间隙填充物。在一些实施例中,通过将膜暴露于UV固化工艺中而固化可流动膜。所述UV固化工艺能够在大约10℃至大约550℃的温度范围内进行。UV固化工艺能够发生长达充分硬化可流动膜所需的任何适合的时间范围。在一些实施例中,UV固化发生长达少于或等于约10分钟、9分钟、8分钟、7分钟、6分钟、5分钟、4分钟、3分钟、2分钟或1分钟。
在一些实施例中,固化可流动膜包括暴露于等离子体或电子束。用于固化膜的等离子体暴露包括与PECVD等离子体分开的等离子体。等离子体物质和处理腔室能够相同,但是等离子体固化是与PECVD工艺不同的步骤。
本公开的一些实施例提供了具有低氢含量的固化的缝隙填充膜。在一些实施例中,在固化膜之后,缝隙填充膜的氢含量小于或等于约10原子百分比。在一些实施例中,固化的膜的氢含量小于或等于约5原子百分比。
根据一个或多个实施例,在沉积膜之前和/或之后使基板进行处理。此处理能够在同一腔室中或在一个或多个不同的处理腔室中进行。在一些实施例中,将基板从第一腔室移至不同的第二腔室以进行进一步处理。基板能够直接从第一腔室移动到不同的处理腔室,或者基板能够从第一腔室移动至一个或多个移送腔室,然后移动至不同的处理腔室。因此,处理设备可包括与移送站连通的多个腔室。这类设备可称为“群集工具”或“群集系统”等。
通常,群集工具是包括多个腔室的模块化系统,腔室执行各种功能,包括基板定心(center-finding)和定向(orientation)、脱气(degassing)、退火、沉积和/或蚀刻。根据一个或多个实施例,群集工具包括至少第一腔室和中央移送腔室。中央移送腔室可以容纳机器人,机器人能够在处理腔室和装载锁定腔室之间穿梭传送基板。移送腔室通常保持在真空条件,并且提供中间的阶段,以用于将基板从一个腔室穿梭传送到另一腔室和/或至定位在群集工具的前端的装载锁定腔室。可适于本发明的两个已知的群集工具是
Figure BDA0003396647830000101
Figure BDA0003396647830000102
这两者都可以从美国加州圣克拉拉市的应用材料公司获得。但是,腔室的确切布置方式和组合可改变,以为了执行本文所述的工艺的特定步骤。可使用的其他处理腔室包括但不限于循环层沉积(CLD)、原子层沉积(ALD)、化学气相沉积(CVD)、物理气相沉积(PVD)、蚀刻、预清洁、化学式清洁、热处理(例如RTP)、等离子体氮化、脱气、定向、羟基化和其他基板工艺。通过在群集工具上的腔室中执行工艺,可避免大气杂质对基板造成表面污染而在沉积后续膜之前在不氧化。
根据一个或多个实施例,基板持续处于真空或“装载锁定”的条件下,并且当从一个腔室移动到下一个腔室时不暴露于环境空气中。因此,移送腔室处于真空状态,并在真空压力下“抽空降压(pump down)”。惰性气体可以存在于处理腔室或移送腔室中。在一些实施例中,惰性气体用作净化气体,以移除一些或所有反应物。根据一个或多个实施例,在沉积腔室的出口处注入净化气体,以防止反应物从沉积腔室移动到移送腔室和/或另外的处理腔室。因此,惰性气体的气流在腔室的出口处形成了帘幕。
基板能够在单个基板沉积腔室中进行处理,其中将单个基板装载、处理和卸除,之后再处理另一基板。基板也能够以类似于输送器系统的连续方式进行处理,其中将多个基板单个地装载到腔室的第一部分中,移动通过腔室并从腔室的第二部分中卸除。腔室的形状和相关的输送器系统能够形成直线路径或弯曲路径。另外,处理腔室可以是旋转式传送带(carousel),其中多个基板绕着中心轴移动并且在整个旋转式传送带路径上暴露于沉积、蚀刻、退火、清洁等工艺。
在处理期间,能够加热或冷却基板。这样的加热或冷却能够通过任何适合手段完成,包括但不限于改变基板支撑件的温度以及使加热或冷却的气体流至基板表面。在一些实施例中,基板支撑件包括加热器/冷却器,加热器/冷却器能够受到控制以传导地改变基板温度。在一个或多个实施例中,所采用的气体(反应性气体或惰性气体)被加热或冷却以局部改变基板温度。在一些实施例中,加热器/冷却器定位在腔室内邻近基板表面处,以对流地改变基板温度。
在处理期间,基板也能够是静止的或旋转的。旋转的基板能够连续旋转或以分立的步骤旋转。例如,可以在整个工艺期间旋转基板,或者可以在暴露于不同的反应性气体或净化气体之间使基板旋转少量。在处理期间(无论连续或多步骤)旋转基板都可通过使例如气流几何形状中局部可变性的影响最小化而有助于产生更均匀的沉积或蚀刻。
在整个说明书中,对“一个实施例”、“某些实施例”、“一个或多个实施例”或“一实施例”的详述意味着与所述实施例相关描述的特定特征、结构、材料、或特性包括在该发明的至少一个实施例中。因此,在整个说明书中各处出现的词汇诸如“在一个或多个实施例中”、“在某些实施例中”、“在一个实施例中”或“在一实施例中”不必然是指该发明的相同实施例。再者,该特定的特征、结构、材料或特性可于一个或多个实施例中以任何适合的方式组合。
尽管在此已参考特定实施例描述本发明,但应理解,这些实施例仅是说明本发明的原理和应用。对于本领域技术人员而言,会明了在不脱离本发明的精神和范围的情况下,可以对本发明的方法和设备进行各种修改和变化。因此,希望本发明包括在所附权利要求及其等效例的范围内的修改和变化。

Claims (20)

1.一种方法,包括:
将上面有至少一个特征的基板表面同时暴露于包含聚硅烷(polysilane)前驱物和等离子体气体的反应物;以及
以规则的间隔点燃所述等离子体气体以形成等离子体,并且在所述至少一个特征内于所述基板表面上沉积可流动膜。
2.如权利要求1所述的方法,其中所述可流动膜以一速率沉积,所述速率小于或等于约每分钟500埃。
3.如权利要求1所述的方法,其中所述规则的间隔具有一占空比,所述占空比的范围是约5%至约90%。
4.如权利要求3所述的方法,其中所述占空比小于或等于约40%。
5.如权利要求1所述的方法,其中所述聚硅烷前驱物包括乙硅烷、丙硅烷、丁硅烷、新戊硅烷、或环己硅烷中的一者或多者。
6.如权利要求1所述的方法,其中所述等离子体气体包括He、Ar、Kr、H2、N2、O2、O3、或NH3中的一者或多者。
7.如权利要求1所述的方法,其中所述等离子体的功率小于或等于约200W。
8.如权利要求1所述的方法,其中所述等离子体的频率在约10Hz至约10kHz的范围内。
9.如权利要求1所述的方法,其中形成所述可流动膜发生在少于或等于约50℃的温度。
10.如权利要求1所述的方法,其中形成所述可流动膜发生在约1托耳至约10托耳的范围内的压力。
11.如权利要求1所述的方法,其中所述可流动膜包括Si、SiN、SiO、SiC、SiCN、SiOC、SiON、SiCON中的一者或多者。
12.如权利要求11所述的方法,其中所述反应物进一步包括丙烯、乙炔、氨、肼、NO2、N2、N2O、O2、臭氧、或水中的一者或多者。
13.如权利要求1所述的方法,其中所述可流动膜包括金属硅化物。
14.如权利要求13所述的方法,其中所述反应物进一步包括钨、钽、和/或镍前驱物中的一者或多者。
15.一种方法,包括:
将上面有至少一个特征的基板表面同时暴露于包含聚硅烷前驱物和等离子体气体的多个反应物;以及
以规则的间隔点燃等离子体气体以形成等离子体,并且在所述至少一个特征内在所述基板表面上沉积可流动含硅膜,所述规则的间隔具有小于40%的占空比,并且所述可流动含硅膜是以小于或等于约
Figure FDA0003396647820000021
的速率沉积。
16.如权利要求15所述的方法,其中所述可流动含硅膜包括Si、SiN、SiO、SiC、SiCN、SiOC、SiON、SiCON中的一者或多者。
17.如权利要求15所述的方法,其中所述聚硅烷前驱物包括乙硅烷、丙硅烷、丁硅烷、新戊硅烷、或环己硅烷中的一者或多者,所述等离子体气体包括He、Ar、Kr、H2、N2、O2、O3、或NH3中的一者或多者。
18.如权利要求15所述的方法,其中所述等离子体具有一功率和一频率,所述功率小于或等于约200W,所述频率在约10Hz至约10kHz的范围内。
19.如权利要求15所述的方法,其中形成所述可流动含硅膜发生在少于或等于约50℃的温度以及约1托耳至约10托耳的范围内的压力。
20.一种方法,包括:
将上面有至少一个特征的基板表面同时暴露于包含聚硅烷前驱物和等离子体气体的多个反应物,所述聚硅烷前驱物包括乙硅烷、丙硅烷、丁硅烷、新戊硅烷、或环己硅烷、TSA、TEOS、TRIES、TMOS、或TRIMOS中的一者或多者,所述等离子体气体包括He、Ar、Kr、H2、N2、O2、O3、或NH3中的一者或多者;以及
以规则的间隔点燃等离子体气体以形成等离子体,并且在所述至少一个特征内在所述基板表面上沉积可流动膜,所述规则的间隔具有小于40%的占空比,所述等离子体的功率小于或等于约200W,所述膜包括Si、SiN、SiO、SiC、SiCN、SiOC、SiON、SiCON中的一者或多者,所述基板表面的温度保持在小于或等于约50℃的温度,并且所述可流动膜以小于或等于约
Figure FDA0003396647820000031
的速率沉积。
CN202080043118.6A 2019-06-08 2020-06-08 可流动pecvd的低沉积速率 Pending CN113966412A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962858994P 2019-06-08 2019-06-08
US62/858,994 2019-06-08
PCT/US2020/036585 WO2020251882A1 (en) 2019-06-08 2020-06-08 Low deposition rates for flowable pecvd

Publications (1)

Publication Number Publication Date
CN113966412A true CN113966412A (zh) 2022-01-21

Family

ID=73651198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080043118.6A Pending CN113966412A (zh) 2019-06-08 2020-06-08 可流动pecvd的低沉积速率

Country Status (6)

Country Link
US (1) US11578409B2 (zh)
KR (1) KR102650586B1 (zh)
CN (1) CN113966412A (zh)
SG (1) SG11202112688QA (zh)
TW (1) TW202108813A (zh)
WO (1) WO2020251882A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220298636A1 (en) * 2021-03-22 2022-09-22 Applied Materials, Inc. Methods and apparatus for processing a substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593741A (en) * 1992-11-30 1997-01-14 Nec Corporation Method and apparatus for forming silicon oxide film by chemical vapor deposition
US20120111831A1 (en) * 2010-11-05 2012-05-10 Asm Japan K.K. Method of depositing film with tailored comformality
US20160276150A1 (en) * 2015-03-17 2016-09-22 Applied Materials, Inc. Pulsed plasma for film deposition
US20180286669A1 (en) * 2017-04-04 2018-10-04 Applied Materials, Inc. Two-Step Process for Silicon Gapfill
US20180330980A1 (en) * 2017-05-13 2018-11-15 Applied Materials, Inc. Cyclic flowable deposition and high-density plasma treatment processes for high quality gap fill solutions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745346B2 (en) 2008-10-17 2010-06-29 Novellus Systems, Inc. Method for improving process control and film conformality of PECVD film
US8741394B2 (en) * 2010-03-25 2014-06-03 Novellus Systems, Inc. In-situ deposition of film stacks
US9076646B2 (en) * 2010-04-15 2015-07-07 Lam Research Corporation Plasma enhanced atomic layer deposition with pulsed plasma exposure
US8728956B2 (en) 2010-04-15 2014-05-20 Novellus Systems, Inc. Plasma activated conformal film deposition
US20120149213A1 (en) * 2010-12-09 2012-06-14 Lakshminarayana Nittala Bottom up fill in high aspect ratio trenches
WO2013025480A1 (en) 2011-08-12 2013-02-21 Massachusetts Institute Of Technology Methods of coating surfaces using initiated plasma-enhanced chemical vapor deposition
US20170372919A1 (en) * 2016-06-25 2017-12-28 Applied Materials, Inc. Flowable Amorphous Silicon Films For Gapfill Applications
CN112219261A (zh) 2018-04-03 2021-01-12 应用材料公司 利用h2等离子体的可流动膜固化

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593741A (en) * 1992-11-30 1997-01-14 Nec Corporation Method and apparatus for forming silicon oxide film by chemical vapor deposition
US20120111831A1 (en) * 2010-11-05 2012-05-10 Asm Japan K.K. Method of depositing film with tailored comformality
US20160276150A1 (en) * 2015-03-17 2016-09-22 Applied Materials, Inc. Pulsed plasma for film deposition
CN107430992A (zh) * 2015-03-17 2017-12-01 应用材料公司 用于膜沉积的脉冲化等离子体
US20180286669A1 (en) * 2017-04-04 2018-10-04 Applied Materials, Inc. Two-Step Process for Silicon Gapfill
US20180330980A1 (en) * 2017-05-13 2018-11-15 Applied Materials, Inc. Cyclic flowable deposition and high-density plasma treatment processes for high quality gap fill solutions

Also Published As

Publication number Publication date
TW202108813A (zh) 2021-03-01
US20200385865A1 (en) 2020-12-10
WO2020251882A1 (en) 2020-12-17
US11578409B2 (en) 2023-02-14
SG11202112688QA (en) 2021-12-30
KR20220005659A (ko) 2022-01-13
WO2020251882A8 (en) 2021-07-08
KR102650586B1 (ko) 2024-03-21

Similar Documents

Publication Publication Date Title
KR102271768B1 (ko) 반응성 어닐링을 사용하는 갭충전
US20170372919A1 (en) Flowable Amorphous Silicon Films For Gapfill Applications
KR102269470B1 (ko) 실리콘 갭충전을 위한 2-단계 프로세스
CN110546753B (zh) 高深宽比结构中的间隙填充的方法
TWI733850B (zh) 使用沉積/蝕刻技術之無接縫溝道填充
JP2019024080A (ja) 連続した堆積−エッチング−処理方法を使用した酸化ケイ素及び窒化ケイ素のボトムアップ成長
KR102650586B1 (ko) 유동성 pecvd를 위한 낮은 증착 레이트들
KR20200040916A (ko) 실리사이드화에 의한 금속-함유 막들의 부피 팽창
US20220238331A1 (en) Gapfill process using pulsed high-frequency radio-frequency (hfrf) plasma
US20230340661A1 (en) Gapfill Process Using Pulsed High-Frequency Radio-Frequency (HFRF) Plasma
TWI780922B (zh) 形成鎢支柱的方法
KR20240008945A (ko) 유동성 cvd 막 결함 감소
CN114144866A (zh) 可流动cvd膜的表面粗糙度

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination