CN113956041A - 一种纳米复相红外透明陶瓷材料及其制备方法 - Google Patents

一种纳米复相红外透明陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113956041A
CN113956041A CN202111349401.4A CN202111349401A CN113956041A CN 113956041 A CN113956041 A CN 113956041A CN 202111349401 A CN202111349401 A CN 202111349401A CN 113956041 A CN113956041 A CN 113956041A
Authority
CN
China
Prior art keywords
powder
nano
ceramic
hours
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111349401.4A
Other languages
English (en)
Inventor
范金太
张露露
张龙
姜本学
范翔龙
沈宗云
钱凯臣
王魏
孙炳恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN202111349401.4A priority Critical patent/CN113956041A/zh
Publication of CN113956041A publication Critical patent/CN113956041A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提出了一种纳米复相红外透明陶瓷材料及其制备方法,该材料的组成通式为Y2O3–Mg1‑xZnxO,其中,Y2O3的纳米粉末和Mg1‑xZnxO的纳米粉末的体积比为1:1,Mg1‑xZnxO固溶体中ZnO的摩尔百分数为0~30%。本发明中的Y2O3–Mg1‑ xZnxO纳米复相红外陶瓷材料,从两个方面降低了散射,从而提高了在近红外波段的透过率。首先由于ZnO的掺杂使MgO相的折射率提高,减小了与Y2O3相的折射率差,其次通过ZnO掺杂,降低了纳米复相红外透明陶瓷的致密化温度,减小了晶粒尺寸。此外由于ZnO的掺杂,通过固溶增韧,进一步提升了复相陶瓷的强度,以满足用作红外窗口材料更高的性能要求。

Description

一种纳米复相红外透明陶瓷材料及其制备方法
技术领域
本发明涉及陶瓷材料技术领域,具体涉及一种纳米复相红外透明陶瓷材料及其制备方法。
背景技术
红外窗口/整流罩是高马赫数导弹功能结构一体化的一个重要部件。随着飞行器从超音速向高超音速发展,红外窗口/整流罩的服役条件越发恶劣,对红外窗口材料提出了宽波段高透过率、良好的机械强度、抗热震性和低发射率等更高的性能要求。
近年来Y2O3–MgO纳米复相陶瓷收到广泛的关注,因为它具有出色的中波红外透过性能、极低的高温辐射系数、优良的高温力学性能、适中的热学性能以及仅次于蓝宝石的抗热震性,使其有望成为未来高马赫数导弹红外窗口的最佳候选材料。
美国加利福尼亚大学的DongTao Jiang等人(DongTao Jiang,et al.Journal ofthe American Ceramic Society,93,769(2010))采用喷雾热解法制备Y2O3-MgO纳米粉体,粒径大小为25nm的复相粉末。最后利用火花等离子体烧结(SPS)得到两相均匀分布的Y2O3–MgO纳米复相陶瓷,晶粒尺寸为200nm,3-6μm中红外波段内透过率达到70%。
美国康涅狄格大学的Chigozie K.Muoto等人(Chigozie K.Muoto,et al.Journalof the American Ceramic Society,94,372(2011))使用溶胶凝胶热分解工艺,从4种不同的醋酸盐和/或硝酸盐前驱体混合物制备了MgO–Y2O3(50%~50%)纳米复合粉体。研究了前驱体化学过程对由这些粉体制备出的陶瓷材料中相均匀性的影响。
Chun-Hu Chen等人(Chun-Hu Chen,et al.Journal of the American CeramicSociety,94,367(2011))利用柠檬酸和乙二醇之间的酯化反应使用金属硝酸盐制备出了MgO-Y2O3纳米复合粉体。对合成的粉体进行热压烧结,获得了相对密度96.6%的纳米复相陶瓷。
Shengquan Xu等人(Shengquan Xu,et al.Journal of the American CeramicSociety,98,1019(2015))使用溶胶凝胶燃烧法制备了50%:50%的MgO-Y2O3纳米复合粉体,复合粉体的平均颗粒尺寸为13nm,比表面积为45.9m2/g。随后通过热压烧结的方式获得了在5μm波长处的透过率为75%,截止波长达到9.89μm的MgO-Y2O3纳米复合陶瓷。
Jiwen Wang等人(Jiwen Wang,et al.Journal of the American CeramicSociety,95,1033(2012))采用溶胶-凝胶燃烧法合成了Y2O3-MgO-ZrO2复合纳米粉体,通过无压和热等静压烧结制备出Y2O3-MgO-ZrO2纳米复相陶瓷,研究发现,当ZrO2的掺入量为4.4%时,Y2O3-MgO纳米复相陶瓷在保持高透过率的前提下维氏硬度由10.6GPa上升至13.5GPa。
Y2O3–MgO纳米复相陶瓷材料由于两相之间的折射率差异导致光学散射损失,并导致从3μm到更短波长的透射率下降,甚至在小于1.5μm的波长范围内完全不透明,这排除了在近红外波段应用的可能性。除了减小晶粒尺寸,还可以通过减少纳米复合材料的两个纳米相之间的折射率差来降低散射。折射率可以通过掺杂物在其中一相形成固溶体相来改变,两个纳米相之间的折射率差得到改善,使纳米复合陶瓷具有更大的透过范围。
发明内容
本发明的目的在于提供一种红外宽波段、高透过率的Y2O3-Mg1-xZnxO纳米复相陶瓷的制备方法,克服现有红外透过Y2O3-MgO纳米复相陶瓷的光学散射的的缺陷。首先通过在MgO中掺杂ZnO,形成Mg1-xZnxO固溶体,来调节与Y2O3相的折射率差;其次ZnO的掺杂降低了纳米复相红外透明陶瓷的致密化温度,减小了晶粒尺寸,都有效减少了光学散射,使Y2O3-Mg1- xZnxO纳米复相陶瓷具有更宽波段的透过率。此外由于ZnO的掺杂,通过固溶增韧,进一步提升了复相陶瓷的强度。该方法采用溶胶-凝胶法制备Y2O3-Mg1-xZnxO复合纳米粉体,通过热压烧结获得了一种两相分布均匀、红外透过范围大的Y2O3-Mg1-xZnxO纳米复相陶瓷。
本发明的技术方案是这样实现的:
本发明提供一种纳米复相红外透明陶瓷材料的制备方法,包括采用溶胶-凝胶法利用柠檬酸和乙二醇之间的酯化反应使用金属的硝酸盐制备出Y2O3–Mg1-xZnxO复合纳米粉体;经球磨、过筛和煅烧后获得高活性复合纳米粉体,然后通过热压法制得Y2O3–Mg1-xZnxO纳米复相陶瓷。
作为本发明的进一步改进,具体包括以下步骤:
S1.高活性复合纳米粉体的制备:
S101.采用六水硝酸钇、六水硝酸镁和六水硝酸锌溶于去离子水配制溶液,磁力搅拌并加热至完全溶解成透明溶液;
S102.采用一水柠檬酸和乙二醇溶于去离子水配制溶液,磁力搅拌并加热至完全溶解成透明溶液;
S103.将步骤S101和步骤S102得到的溶液倒入同一石英烧杯中,磁力搅拌并加热至完全混合透明溶液;
S104.将所述的透明溶液置于马弗炉低温煅烧,得到多孔有机泡沫;
S105.将所述的有机泡沫装入石英托盘中,采用马弗炉对有机泡沫氧气气氛煅烧,得到Y2O3–Mg1-xZnxO复合纳米粉体;
S106将所述的Y2O3–Mg1-xZnxO复合纳米粉体球磨及过筛处理后,煅烧,获得高活性复合纳米粉体;
S2.复相陶瓷的制备:
S201.将所述的高活性复合纳米粉体装入模具中,采用热压炉对粉体进行热压烧结,获得陶瓷样品;
S202.对所述的陶瓷样品在马弗炉中进行退火处理;
S203.对步骤S202得到的退火处理样品进行双面镜面抛光,获得红外透明复相陶瓷产品。
作为本发明的进一步改进,步骤S101和步骤S102中所述的高纯度六水硝酸钇、六水硝酸镁、六水硝酸锌、一水柠檬酸和乙二醇是指纯度不小于99%。
作为本发明的进一步改进,步骤S101、步骤S102、步骤S103中所述的磁力搅拌中,磁子的转速为250-1250r/min,加热温度为60-100℃。
作为本发明的进一步改进,步骤S101、步骤S102、步骤S103中所述的加热温度为60-100℃。
作为本发明的进一步改进,步骤S106中所述的球磨及过筛,具体是采用氧化锆球磨罐及磨球,磨球直径为2mm,球磨的粉体与所用磨球的配比为1:12,用无水乙醇球磨24-48小时,粉体与无水乙醇的配比为1:2,在60-80℃下保温烘干24-48小时,用200目网筛过筛。
作为本发明的进一步改进,步骤S104中所述煅烧温度为200-220℃,煅烧时间为4小时;步骤S105中所述煅烧温度为800-900℃,煅烧时间为2-6小时;步骤S106中所述煅烧温度为400-600℃,煅烧时间为1-6小时。
作为本发明的进一步改进,步骤S201中所述烧结温度为1000-1400℃,保温时间1-2小时,加压压力为50-100MPa。
作为本发明的进一步改进,步骤S202中所述退火温度为800-1200℃,保温时间为24-60小时。
本发明进一步保护一种上述的制备方法制得的纳米复相红外透明陶瓷材料,该材料的组成通式为Y2O3–Mg1-xZnxO,其中,Y2O3的纳米粉末和Mg1-xZnxO的纳米粉末的体积比为1:1,Mg1-xZnxO固溶体中ZnO的摩尔百分数为0~30%。
本发明具有如下有益效果:
本发明制备方法制得的纳米复相红外透明陶瓷材料提高了在近红外波段的透过率。由于ZnO的掺杂使MgO相的折射率提高,减小了与Y2O3相的折射率差,通过ZnO掺杂,降低了纳米复相红外透明陶瓷的致密化温度,减小了晶粒尺寸。此外由于ZnO的掺杂,通过固溶增韧,进一步提升了Y2O3-Mg1-xZnxO复相陶瓷的强度。
本发明采用溶胶-凝胶法制备纳米复合粉体,利用柠檬酸和乙二醇之间的酯化反应形成类似溶胶凝胶的空间网状结构制备出超细、均一晶粒的高活性纳米粉体。制备工艺简单,易于工业化高产量大规模生产。
本发明采用热压后退火的方法,实现了近中外宽波段高透过率Y2O3-Mg1-xZnxO纳米复相陶瓷的制备,红外波段1.5-6μm的平均透过率大于70%,近红外截至边波长小于900nm,硬度大于11GPa,较Y2O3-MgO纳米复相红外陶瓷的近红外范围和硬度都又明显提升。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制备出的Y2O3-Mg0.75Zn0.25O复合纳米粉体的XRD图;
图2为实施例1所制得的Y2O3-Mg0.75Zn0.25O复合纳米粉体的SEM形貌图;
图3为实施例1所制得的Y2O3-Mg0.75Zn0.25O纳米复相红外陶瓷的SEM形貌图;
图4为实施例1所制得的Y2O3-Mg0.75Zn0.25O纳米复相红外陶瓷的红外透过率曲线;
图5为实施例2所制得的Y2O3-Mg0.8Zn0.2O纳米复相红外陶瓷的红外透过率曲线;
图6为实施例3所制得的Y2O3-Mg0.9Zn0.1O纳米复相红外陶瓷的红外透过率曲线;
图7为实施例4所制得的Y2O3-MgO纳米复相红外陶瓷的SEM形貌图;
图8为实施例4所制得的Y2O3-MgO纳米复相红外陶瓷的红外透过率曲线。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种纳米复相红外透明陶瓷材料,其组成通式为Y2O3-Mg1-xZnxO,纳米复相红外透明陶瓷材料是采用含有Y2O3的纳米粉末、MgO的纳米粉末和ZnO的纳米粉末组成的纳米复合粉体烧制而成。
其中,该纳米复合粉体中,因为ZnO的掺杂改变了MgO的晶格参数和密度,Y2O3、MgO和ZnO的纳米粉末含量随ZnO的含量变化而变化,以达到Y2O3/Mg1-xZnxO的体积比为1:1,ZnO的纳米粉末占Mg1-xZnxO纳米粉体摩尔量的百分数为0~30%。
具体地,在整个材料的复合中,ZnO中的Zn会替代MgO中的Mg,若ZnO的掺杂量大于30mol%,ZnO可能会出现析晶的现象而超过ZnO的固溶度,导致ZnO无法与MgO固溶,造成ZnO会以单独的晶体而存在,影响整个复合材料的光学性能。因此,ZnO的掺杂量控制在0~30mol%。
需要说明的是,因为制得所述纳米复合粉体采用溶胶-凝胶工艺,实际上氧化镁和氧化钇是无法分离的。但本发明中,定义的体积比1:1是在设定可以分开的情况下的纳米粉末的体积比。
由此,本发明首次将ZnO与Y2O3-MgO进行复合,并控制ZnO的掺杂量在0~30mol%,通过高温烧结作用,使ZnO固溶在MgO基体中。由于ZnO本身具有较高的折射率,可以提高MgO的折射率并减小与Y2O3的折射率差,从而减少了晶界散射,提高了材料在近红外波段的透过率;此外ZnO是Y2O3陶瓷的有效烧结助剂,能够降低烧结温度,提高晶界扩散和烧结率,从而进一步降低陶瓷材料的晶粒尺寸,提高透过率。本发明可使透明陶瓷材料在近红外波段获得高透过率,以满足透明陶瓷作为红外窗口材料更高的性能要求。
实施例1
称取纯度不少于99%的六水合硝酸钇155g、六水合硝酸镁154g和60g六水合硝酸锌于石英烧杯中,加入200ml去离子水溶解;另取一烧杯中加入165g一水柠檬酸和49g乙二醇并加入100g去离子水溶解;将两个烧杯分别放于磁力搅拌器上进项搅拌,直至原料全部溶解并得到透明澄清的溶液,磁子转速为750r/min,加热温度为60℃;将两烧杯中的溶液混合,再次在磁力搅拌器上进行搅拌,直至混合均匀。将混合后的溶液移入200℃的马弗炉中,保温4h,烧杯完全充满高度多孔的有机泡沫。然后将泡沫在马弗炉中氧气气氛下900℃煅烧4h得到Y2O3-Mg0.75Zn0.25O复合纳米粉体。将粉体置于氧化锆球磨罐加入氧化锆磨球和无水乙醇,置于行星式球磨机上以256r/min进行球磨48h,后置于60℃烘箱烘干,然后用200目网筛进行振动筛粉,将所得粉体置于马弗炉600℃煅烧2小时后获得高活性Y2O3-Mg0.75Zn0.25O复合纳米粉体。取10g粉体倒入石墨模具中,放入热压炉中加压至80MPa在1050℃保温2小时,降温后获得陶瓷样品;将该样品在900℃下退火处理24小时,然后进行双面高精度镜面抛光加工,获得厚度为1mm的Y2O3-Mg0.75Zn0.25O纳米复相红外陶瓷。图1为实施例1制备出的Y2O3-Mg0.75Zn0.25O复合纳米粉体的XRD图;从图中可以看出,各衍射峰分别对应立方氧化钇和立方氧化镁相。图2为实施例1所制得的Y2O3-Mg0.75Zn0.25O复合纳米粉体的TEM形貌图;图中粉体的晶粒分布均匀,大小在80nm左右。图3为实施例1所制得的Y2O3-Mg0.75Zn0.25O纳米复相红外陶瓷的SEM形貌图;从图中可以看出,晶粒尺寸在200nm以内。图4为实施例1所制得的Y2O3-Mg0.75Zn0.25O纳米复相红外陶瓷的中红外透过率曲线;由图可知,红外1.5-6μm的平均透过率大于70%。
实施例2
称取纯度不少于99%的六水合硝酸钇154g、六水合硝酸镁164g和48g六水合硝酸锌于石英烧杯中,加入200ml去离子水溶解;另取一烧杯中加入165g一水柠檬酸和49g乙二醇并加入100g去离子水溶解;将两个烧杯分别放于磁力搅拌器上进项搅拌,直至原料全部溶解并得到透明澄清的溶液,磁子转速为750r/min,加热温度为60℃;将两烧杯中的溶液混合,再次在磁力搅拌器上进行搅拌,直至混合均匀。将混合后的溶液移入200℃的马弗炉中,保温4h,烧杯完全充满高度多孔的有机泡沫。然后将泡沫在马弗炉中氧气气氛下900℃煅烧4h得到Y2O3-Mg0.8Zn0.2O复合纳米粉体。将粉体置于氧化锆球磨罐加入氧化锆磨球和无水乙醇,置于行星式球磨机上以256r/min进行球磨48h,后置于60℃烘箱烘干,然后用200目网筛进行振动筛粉,将所得粉体置于马弗炉600℃煅烧2小时后获得高活性Y2O3-Mg0.8Zn0.2O复合纳米粉体。取10g粉体倒入石墨模具中,放入热压炉中加压至80MPa在1050℃保温2小时,降温后获得陶瓷样品;将该样品在900℃下退火处理24小时,然后进行双面高精度镜面抛光加工,获得厚度为1mm的Y2O3-Mg0.8Zn0.2O纳米复相红外陶瓷。图5为实施例2所制得的Y2O3-Mg0.8Zn0.2O纳米复相红外陶瓷的红外透过率曲线;由图可知,红外1.5-6μm的平均透过率大于70%。
实施例3
称取纯度不少于99%的六水合硝酸钇163g、六水合硝酸镁196g和25g六水合硝酸锌于石英烧杯中,加入200ml去离子水溶解;另取一烧杯中加入175g一水柠檬酸和52g乙二醇并加入100g去离子水溶解;将两个烧杯分别放于磁力搅拌器上进项搅拌,直至原料全部溶解并得到透明澄清的溶液,磁子转速为750r/min,加热温度为60℃;将两烧杯中的溶液混合,再次在磁力搅拌器上进行搅拌,直至混合均匀。将混合后的溶液移入200℃的马弗炉中,保温4h,烧杯完全充满高度多孔的有机泡沫。然后将泡沫在马弗炉中氧气气氛下900℃煅烧4h得到Y2O3-Mg0.9Zn0.1O复合纳米粉体。将粉体置于氧化锆球磨罐加入氧化锆磨球和无水乙醇,置于行星式球磨机上以256r/min进行球磨48h,后置于60℃烘箱烘干,然后用200目网筛进行振动筛粉,将所得粉体置于马弗炉600℃煅烧2小时后获得高活性Y2O3-Mg0.9Zn0.1O复合纳米粉体。取10g粉体倒入石墨模具中,放入热压炉中加压至80MPa在1100℃保温2小时,降温后获得陶瓷样品;将该样品在900℃下退火处理24小时,然后进行双面高精度镜面抛光加工,获得厚度为1mm的Y2O3-Mg0.9Zn0.1O纳米复相红外陶瓷。图6为实施例3所制得的Y2O3-Mg0.9Zn0.2O纳米复相红外陶瓷的红外透过率曲线;由图可知,红外1.5-6μm的平均透过率大于70%。
实施例4
称取纯度不少于99%的六水合硝酸钇170g和六水合硝酸镁228g于石英烧杯中,加入200ml去离子水溶解;另取一烧杯中加入184g一水柠檬酸和55g乙二醇并加入100g去离子水溶解;将两个烧杯分别放于磁力搅拌器上进项搅拌,直至原料全部溶解并得到透明澄清的溶液,磁子转速为750r/min,加热温度为60℃;将两烧杯中的溶液混合,再次在磁力搅拌器上进行搅拌,直至混合均匀。将混合后的溶液移入200℃的马弗炉中,保温4h,烧杯完全充满高度多孔的有机泡沫。然后将泡沫在马弗炉中氧气气氛下900℃煅烧4h得到Y2O3-MgO复合纳米粉体。将粉体置于氧化锆球磨罐加入氧化锆磨球和无水乙醇,置于行星式球磨机上以256r/min进行球磨48h,后置于60℃烘箱烘干,然后用200目网筛进行振动筛粉,将所得粉体置于马弗炉600℃煅烧2小时后获得高活性Y2O3-MgO复合纳米粉体。取10g粉体倒入石墨模具中,放入热压炉中加压至80MPa在1350℃保温2小时,降温后获得陶瓷样品;将该样品在1200℃下退火处理24小时,然后进行双面高精度镜面抛光加工,获得厚度为1mm的Y2O3-MgO纳米复相红外陶瓷。图7为实施例4所制得的Y2O3-MgO纳米复相红外陶瓷的SEM形貌图,平均晶粒尺寸在210nm左右。图8为实施例4所制得的Y2O3-MgO纳米复相红外陶瓷的红外透过率曲线;由图可知,红外1.7-6μm的平均透过率大于70%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种纳米复相红外透明陶瓷材料的制备方法,其特征在于,包括采用溶胶-凝胶法利用柠檬酸和乙二醇之间的酯化反应使用金属的硝酸盐制备出Y2O3–Mg1-xZnxO复合纳米粉体;经球磨、过筛和煅烧后获得高活性复合纳米粉体,然后通过热压法制得Y2O3–Mg1-xZnxO纳米复相陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,具体包括以下步骤:
S1.高活性复合纳米粉体的制备:
S101.采用六水硝酸钇、六水硝酸镁和六水硝酸锌溶于去离子水配制溶液,磁力搅拌并加热至完全溶解成透明溶液;
S102.采用一水柠檬酸和乙二醇溶于去离子水配制溶液,磁力搅拌并加热至完全溶解成透明溶液;
S103.将步骤S101和步骤S102得到的溶液倒入同一石英烧杯中,磁力搅拌并加热至完全混合透明溶液;
S104.将所述的透明溶液置于马弗炉低温煅烧,得到多孔有机泡沫;
S105.将所述的有机泡沫装入石英托盘中,采用马弗炉对有机泡沫氧气气氛煅烧,得到Y2O3–Mg1-xZnxO复合纳米粉体;
S106将所述的Y2O3–Mg1-xZnxO复合纳米粉体球磨及过筛处理后,煅烧,获得高活性复合纳米粉体;
S2.复相陶瓷的制备:
S201.将所述的高活性复合纳米粉体装入模具中,采用热压炉对粉体进行热压烧结,获得陶瓷样品;
S202.对所述的陶瓷样品在马弗炉中进行退火处理;
S203.对步骤S202得到的退火处理样品进行双面镜面抛光,获得红外透明复相陶瓷产品。
3.根据权利要求2所述的制备方法,其特征在于,步骤S101和步骤S102中所述的高纯度六水硝酸钇、六水硝酸镁、六水硝酸锌、一水柠檬酸和乙二醇是指纯度不小于99%。
4.根据权利要求2所述的的制备方法,其特征在于,步骤S101、步骤S102、步骤S103中所述的磁力搅拌中,磁子的转速为250-1250r/min,加热温度为60-100℃。
5.根据权利要求2所述的的制备方法,其特征在于,步骤S101、步骤S102、步骤S103中所述的加热温度为60-100℃。
6.根据权利要求2所述的的制备方法,其特征在于,步骤S106中所述的球磨及过筛,具体是采用氧化锆球磨罐及磨球,磨球直径为2mm,球磨的粉体与所用磨球的配比为1:12,用无水乙醇球磨24-48小时,粉体与无水乙醇的配比为1:2,在60-80℃下保温烘干24-48小时,用200目网筛过筛。
7.根据权利要求2所述的的制备方法,其特征在于,步骤S104中所述煅烧温度为200-220℃,煅烧时间为4小时;步骤S105中所述煅烧温度为800-900℃,煅烧时间为2-6小时;步骤S106中所述煅烧温度为400-600℃,煅烧时间为1-6小时。
8.根据权利要求2所述的的制备方法,其特征在于,步骤S201中所述烧结温度为1000-1400℃,保温时间1-2小时,加压压力为50-100MPa。
9.根据权利要求2所述的的制备方法,其特征在于,步骤S202中所述退火温度为800-1200℃,保温时间为24-60小时。
10.一种如权利要求1-9任一项所述的制备方法制得的纳米复相红外透明陶瓷材料,该材料的组成通式为Y2O3–Mg1-xZnxO,其中,Y2O3的纳米粉末和Mg1-xZnxO的纳米粉末的体积比为1:1,Mg1-xZnxO固溶体中ZnO的摩尔百分数为0~30%。
CN202111349401.4A 2021-11-15 2021-11-15 一种纳米复相红外透明陶瓷材料及其制备方法 Pending CN113956041A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111349401.4A CN113956041A (zh) 2021-11-15 2021-11-15 一种纳米复相红外透明陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111349401.4A CN113956041A (zh) 2021-11-15 2021-11-15 一种纳米复相红外透明陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113956041A true CN113956041A (zh) 2022-01-21

Family

ID=79470616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111349401.4A Pending CN113956041A (zh) 2021-11-15 2021-11-15 一种纳米复相红外透明陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113956041A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110315808A1 (en) * 2010-06-23 2011-12-29 Zelinski Brian J Solid solution-based nanocomposite optical ceramic materials
CN103922742A (zh) * 2014-04-02 2014-07-16 中国科学院上海硅酸盐研究所 一种Y2O3-MgO纳米复相陶瓷及其制备方法
CN110922169A (zh) * 2019-11-25 2020-03-27 中国科学院上海光学精密机械研究所 一种Y2O3-MgO纳米复相红外透明陶瓷的制备方法
US20210221742A1 (en) * 2019-07-29 2021-07-22 Raytheon Company Multi-phase infrared transparent ceramic material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110315808A1 (en) * 2010-06-23 2011-12-29 Zelinski Brian J Solid solution-based nanocomposite optical ceramic materials
CN103922742A (zh) * 2014-04-02 2014-07-16 中国科学院上海硅酸盐研究所 一种Y2O3-MgO纳米复相陶瓷及其制备方法
US20210221742A1 (en) * 2019-07-29 2021-07-22 Raytheon Company Multi-phase infrared transparent ceramic material
CN110922169A (zh) * 2019-11-25 2020-03-27 中国科学院上海光学精密机械研究所 一种Y2O3-MgO纳米复相红外透明陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUN-HU CHEN: "A foaming esterification sol–gel route for the synthesis of magnesia–yttria nanocomposites", 《J. AM. CERAM. SOC》 *
SHENGQUAN XU: "Hot Pressing of Infrared-Transparent Y2O3-MgO Nanocomposites Using Sol-Gel Combustion Synthesized Powders", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *

Similar Documents

Publication Publication Date Title
CN110683769B (zh) 一种增强的钙硼硅微晶玻璃复合材料及其制备方法
WO2003004437A1 (fr) Article translucide fritte en oxyde de terre rare et procede de production
KR20100040289A (ko) 입방 구조를 가진 소결 제품
CN113563063B (zh) 高致密细晶粒的氧化锌掺杂氧化锡基陶瓷靶材及其制备方法
CN109369183B (zh) 一种红外透明陶瓷材料及其制备方法
KR20120098118A (ko) 투명도가 향상된 다결정 산질화알루미늄의 제조방법
CN101928145A (zh) 一种超细、高纯γ-AlON透明陶瓷粉末的制备方法
US7022262B2 (en) Yttrium aluminum garnet powders and processing
CN112299861B (zh) 一种AlON透明陶瓷伪烧结剂与应用及透明陶瓷的制备方法
CN114105639A (zh) 一种红外透明陶瓷材料及其制备方法
CN114988863B (zh) 非晶晶化制备镁铝尖晶石透明陶瓷的方法
JPH10273364A (ja) 透明酸化イットリウム焼結体の製造法
CN108329036B (zh) 一种超细高纯AlON粉体及其制备方法
Huang et al. Preparation and microwave dielectric properties of BaLi1+ xF3+ x (x= 0–0.01) ceramics
CN109053192B (zh) 一种MgAlON透明陶瓷粉体的制备方法
CN109354497B (zh) Ho掺杂的透明氧化钪陶瓷及其制备方法
Yang et al. AlON transparent ceramics from powders synthesized by improved direct nitridation
CN113956041A (zh) 一种纳米复相红外透明陶瓷材料及其制备方法
CN111499380B (zh) 一种锆铝基多相复合陶瓷及其制备方法
CN112028492B (zh) 一种M:YAG-Al2O3纳米层状复合透明陶瓷及其制备方法
CN116553922A (zh) 一种镁铝尖晶石透明陶瓷及其制备方法
CN114349500A (zh) 一种中波红外透明氧化锆陶瓷材料及其制备方法
Kim et al. Spark plasma sintering and decomposition of the Y3NbO7: Eu phase
CN108585878B (zh) 一种高硬度MgAlON透明陶瓷及其制备方法
CN112194485A (zh) 一种热障涂层陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220121