CN113946012A - 一种抗弯曲光纤及其制备方法 - Google Patents

一种抗弯曲光纤及其制备方法 Download PDF

Info

Publication number
CN113946012A
CN113946012A CN202111285806.6A CN202111285806A CN113946012A CN 113946012 A CN113946012 A CN 113946012A CN 202111285806 A CN202111285806 A CN 202111285806A CN 113946012 A CN113946012 A CN 113946012A
Authority
CN
China
Prior art keywords
optical fiber
outer cladding
layer
boron
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111285806.6A
Other languages
English (en)
Other versions
CN113946012B (zh
Inventor
汪振东
李怡臻
王润涵
黄荣
李德武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Optical Fibre and Cable Co Ltd
Original Assignee
Yangtze Optical Fibre and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Optical Fibre and Cable Co Ltd filed Critical Yangtze Optical Fibre and Cable Co Ltd
Priority to CN202111285806.6A priority Critical patent/CN113946012B/zh
Publication of CN113946012A publication Critical patent/CN113946012A/zh
Application granted granted Critical
Publication of CN113946012B publication Critical patent/CN113946012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • C03C25/109Multiple coatings with at least one organic coating and at least one inorganic coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/285Acrylic resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/48Coating with two or more coatings having different compositions
    • C03C25/54Combinations of one or more coatings containing organic materials only with one or more coatings containing inorganic materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

本发明涉及一种抗弯曲光纤及其制备方法,包括有芯层和包覆芯层的内包层,内包层外包覆有外包层,其特征在于所述的外包层为氟硼钛混合掺杂的纳米多孔二氧化硅薄膜层,所述外包层的相对折射率差Δ3为‑0.70%~‑1.60%。外包层由氟硼钛混合掺杂的二氧化硅溶胶‑凝胶涂覆后经高温固化而成。本发明折射率低,抗弯曲性能好;可适于弯曲性能极高的场合和环境使用;溶胶‑凝胶法制备纳米多孔二氧化硅薄膜只需要简单的提拉装置和固化炉,不需要复杂的真空系统,其设备简单,原材料成本低廉。薄膜厚度和成分易控制、与玻璃结合力强、热稳定性优异,掺杂和折射率易控制。掺杂和折射率易控制,拉丝和外包层涂覆一并合成,制作成本低。

Description

一种抗弯曲光纤及其制备方法
技术领域
本发明涉及一种抗弯曲光纤及其制备方法,属于光通信传输技术领域。
背景技术
现代智能系统、高清数字电视、智能汽车的信息传输容量要求越来越高,传统的铜轴线缆渐渐的不再能满足高传输速率的应用场景。而普通光纤制造工艺生产的光纤在耐弯折方面始终不能与铜线缆相比,例如5mm以下的弯曲半径,光纤的附加损耗会非常大,直接影响到信号的传输质量,甚至使信号传输中断。
现有的抗弯曲光纤,其制作方法主要是在真空环境下沉积掺锗芯层和掺氟石英玻璃包层,但是氟在气相反应中转换效率低,且真空系统改造成本高,很难在现有工艺基础上实现更深的氟掺杂。
发明内容
为方便介绍本发明内容,定义部分术语:
孔隙率:
Figure BDA0003332940940000011
V是材料的绝对密实体积,V0是材料在松散状态下的体积;
芯层:居于光纤横截面的中心部分,是光纤的主要导光区域;
内包层:光纤横截面中紧邻芯层的环形区域;
外包层:光纤横截面中紧邻内包层的环形区域;
相对折射率差Δ:
Figure BDA0003332940940000012
式中ni为对应掺杂或多孔膜层的折射率,n0为纯二氧化硅膜层的折射率,一般地,n0=1.4575。
本发明所要解决的技术问题在于针对上述现有技术存在的不足提供一种抗弯曲光纤及其制备方法,她不仅抗弯曲性能优异,而且制作工艺简便,成本低。
本发明为解决上述提出的问题所采用的技术方案为:包括有芯层和包覆芯层的内包层,内包层外包覆有外包层,其特征在于所述的外包层为为氟硼钛混合掺杂纳米多孔二氧化硅薄膜层,所述外包层的相对折射率差Δ3为-0.70%~-1.60%。
按上述方案,所述的氟硼钛混合掺杂纳米多孔二氧化硅薄膜层的孔隙率为10%~70%。
按上述方案,所述的氟硼钛混合掺杂纳米多孔二氧化硅薄膜层为氟、硼、钛一种或几种混合掺杂的二氧化硅薄膜层,薄膜层中氟的掺杂摩尔浓度为0%~10%,硼的掺杂摩尔浓度为0%~20%,钛的掺杂摩尔浓度为0%~5%,基料为正硅酸乙酯。
按上述方案,所述的光纤为多模光纤,其芯层半径为23.0~32.0μm,所述的内包层半径40.0~58.5μm,内包层为纯二氧化硅玻璃层,所述的外包层半径为49.0~63.0μm。
按上述方案,所述的外包层由氟硼钛混合掺杂的二氧化硅溶胶-凝胶涂覆后经高温固化而成。
按上述方案,所述的多模光纤在波长850nm处弯曲半径为1mm条件下弯曲1圈的弯曲附加损耗≤1.5dB,所述多模光纤的抗拉强度达5.3GPa。
优选地,所述多模光纤,其芯层半径为31~31.5μm;内包层半径49.5~50.5μm。
本发明光纤的制作方法技术方案为:先制备具有芯层和内包层结构的光纤预制棒芯棒,将光纤预制棒芯棒装夹至拉丝炉加温熔融拉丝,拉制出的裸光纤通过保温套冷凝,进入溶胶-凝胶涂敷器涂覆氟硼钛混合掺杂二氧化硅溶胶-凝胶,涂覆溶胶-凝胶后穿入高温固化装置进行固化处理,形成氟硼钛混合掺杂纳米多孔二氧化硅薄膜层,构成外包层,然后再经树脂涂覆和紫外固化,最后被牵引装置向下牵引收丝至光纤卷筒。
按上述方案,所述的溶胶-凝胶涂敷器设置多组,外包层经多次涂覆固化处理,每次涂敷的外包层薄膜厚度为100~700nm,光纤的外包层直径可以被精准控制。
按上述方案,所述氟硼钛混合掺杂二氧化硅溶胶-凝胶的制备方法为:将正硅酸乙酯加入无水乙醇中,无水乙醇和正硅酸乙酯的摩尔比为1:10~1:30,搅拌2小时,然后在搅拌条件下以一定摩尔比例加入硼酸、钛酸四丁酯、氟化氨逐滴加入到得到混合溶胶。继续搅拌溶胶2~4小时。二氧化硅薄膜前驱体为正硅酸乙酯,硼掺杂前驱体为硼酸,钛掺杂前驱体为钛酸四丁酯,氟掺杂前驱体为氟化氨。
按上述方案,所述多模光纤外包层的固化温度为800~950℃。
按上述方案,所述多模光纤,其树脂涂覆层材料优选为丙烯酸树脂或耐高温的聚酰亚胺涂料;当所述高分子材料为丙烯酸树脂时,所述多模光纤外径为245±10μm;当所述高分子材料为耐高温的聚酰亚胺涂料时,所述多模光纤外径为160±10μm。
本发明的有益效果在于:1、外包层为氟硼钛混合掺杂的纳米多孔二氧化硅薄膜层,折射率更低,抗弯曲性能更好;可适于弯曲性能极高的场合和环境使用;2、溶胶-凝胶法制备纳米多孔二氧化硅薄膜只需要简单的提拉装置和退火炉,不需要复杂的真空系统,其设备简单,原材料成本低廉。制备的薄膜厚度、成分易控制、与玻璃结合力强、热稳定性优异,制备工艺简便,掺杂和折射率易控制,拉丝和外包层涂覆一并合成,制作成本低;3、本发明可在配制溶胶时确定最终膜层的折射率,其折射率可以由膜层中的微孔洞控制,容易实现更低折射率的玻璃包层,进而实现更加优异的光纤抗弯曲性能。
附图说明
图1是本发明一个实施例的多模光纤径向结构示意图。
图2是本发明提供的光纤制作方法示意图。
图3是本发明外包层折射率和孔隙率关系图。
图4是本发明一个实施例的多模光纤折射率剖面图。
图5是本发明实施例6提供的光纤弯曲损耗和普通多模光纤的弯曲损耗对比图。
图6是本发明实施例6提供的多模光纤抗拉强度的韦伯分布。
具体实施方式
以下结合附图及实施例,对本发明作进一步详细说明。
包括有芯层100和包覆芯层的内包层200,内包层外包覆有外包层300,外包层外涂覆树脂涂覆层400。所述的光纤为多模光纤,其芯层半径为23.0~32.0μm,呈抛物线渐变型折射率分布,芯层中心位最大相对折射率差为Δ1max,所述的内包层半径40.0~58.5μm,内包层为纯二氧化硅玻璃层,所述的外包层为氟硼钛混合掺杂的二氧化硅薄膜层,所述外包层的相对折射率差为Δ3。
外包层的孔隙率越高则外包层的折射率越低,光纤弯曲附加衰减越小,但是随着孔隙率的增加,薄膜和玻璃的结合力降低,所能对光纤提供的保护作用减小,会降低光纤的强度。适量的硼和钛掺杂可以改善光纤表面的强度,但是过多的掺杂会大量破环光纤中的Si-O健,使光纤的抗拉强度降低。
本发明光纤的制作过程为:先制备具有芯层和内包层结构的光纤预制棒芯棒,将光纤预制棒2芯棒装夹至拉丝炉1加温熔融拉丝,拉制出的裸光纤21通过冷却管3冷却,进入溶胶-凝胶涂敷器4涂覆氟硼钛混合掺杂的二氧化硅溶胶-凝胶,涂覆溶胶-凝胶后穿入高温固化装置5进行固化处理,所述的溶胶-凝胶涂敷器设置多组,外包层经多次涂覆固化处理,最后形成外包层,然后再经树脂涂覆和紫外固化,最后被牵引装置6向下牵引收丝至光纤卷筒7。
表1为本发明6个实施例的具体参数表。外包层为氟硼钛混合掺杂的二氧化硅薄膜层构成。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
硼或氟掺杂可以获得相对于纯二氧化硅低的折射率,硼掺杂还可以改善光纤的表面强度。硼掺杂摩尔浓度范围为0%~20%。
钛掺杂可以获得相对于纯二氧化硅高的折射率,并且二氧化钛具备光催化效果,钛掺杂可以使光纤表面具备自洁净效果,减少光纤在后继加工时因为外界环境异物导致的强度变差。钛掺杂浓度在0%~5%之间,优选地,钛掺杂摩尔浓度为3.5%。
表1
Figure BDA0003332940940000041

Claims (10)

1.一种抗弯曲光纤,包括有芯层和包覆芯层的内包层,内包层外包覆有外包层,其特征在于所述的外包层为为氟硼钛混合掺杂纳米多孔二氧化硅薄膜层,所述外包层的相对折射率差Δ3为-0.70%~-1.60%。
2.按权利要求1所述的抗弯曲光纤,其特征在于所述的氟硼钛混合掺杂纳米多孔二氧化硅薄膜层的孔隙率为10%~70%。
3.按权利要求1或2所述的抗弯曲光纤,其特征在于所述的氟硼钛混合掺杂纳米多孔二氧化硅薄膜层为氟、硼、钛一种或几种混合掺杂的二氧化硅薄膜层,薄膜层中氟的掺杂摩尔浓度为0%~10%,硼的掺杂摩尔浓度为0%~20%,钛的掺杂摩尔浓度为0%~5%。
4.按权利要求1或2所述的抗弯曲光纤,其特征在于所述的光纤为多模光纤,其芯层半径为23.0~32.0μm,所述的内包层半径40.0~58.5μm,内包层为纯二氧化硅玻璃层,所述的外包层半径为49.0~63.0μm。
5.按权利要求1或2所述的抗弯曲光纤,其特征在于所述的外包层由氟硼钛混合掺杂的二氧化硅溶胶-凝胶涂覆后经高温固化而成。
6.按权利要求4所述的抗弯曲光纤,其特征在于所述的多模光纤在波长850nm处弯曲半径为1mm条件下弯曲1圈的弯曲附加损耗≤1.5dB,所述多模光纤的抗拉强度达5.3GPa。
7.一种抗弯曲光纤的制备方法,其特征在于先制备具有芯层和内包层结构的光纤预制棒芯棒,将光纤预制棒芯棒装夹至拉丝炉加温熔融拉丝,拉制出的裸光纤通过保温套冷凝,进入溶胶-凝胶涂敷器涂覆氟硼钛混合掺杂二氧化硅溶胶-凝胶,涂覆溶胶-凝胶后穿入高温固化装置进行固化处理,形成氟硼钛混合掺杂纳米多孔二氧化硅薄膜层,构成外包层,然后再经树脂涂覆和紫外固化,最后被牵引装置向下牵引收丝至光纤卷筒。
8.按权利要求7所述的抗弯曲光纤的制备方法,其特征在于所述的溶胶-凝胶涂敷器设置多组,外包层经多次涂覆固化处理,每次涂敷的外包层薄膜厚度为100~700nm。
9.按权利要求7或8所述的抗弯曲光纤的制备方法,其特征在于所述氟硼钛混合掺杂二氧化硅溶胶-凝胶的制备方法为:将正硅酸乙酯加入无水乙醇中,无水乙醇和正硅酸乙酯的摩尔比为1:10~1:30,搅拌2小时,然后在搅拌条件下以一定摩尔比例加入硼酸、钛酸四丁酯、氟化氨逐滴加入到得到混合溶胶;继续搅拌溶胶2~4小时;二氧化硅薄膜前驱体为正硅酸乙酯,硼掺杂前驱体为硼酸,钛掺杂前驱体为钛酸四丁酯,氟掺杂前驱体为氟化氨。
10.按权利要求7或8所述的抗弯曲光纤的制备方法,其特征在于所述多模光纤外包层的固化温度为800~950℃。
CN202111285806.6A 2021-11-02 2021-11-02 一种抗弯曲光纤及其制备方法 Active CN113946012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111285806.6A CN113946012B (zh) 2021-11-02 2021-11-02 一种抗弯曲光纤及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111285806.6A CN113946012B (zh) 2021-11-02 2021-11-02 一种抗弯曲光纤及其制备方法

Publications (2)

Publication Number Publication Date
CN113946012A true CN113946012A (zh) 2022-01-18
CN113946012B CN113946012B (zh) 2023-04-07

Family

ID=79337355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111285806.6A Active CN113946012B (zh) 2021-11-02 2021-11-02 一种抗弯曲光纤及其制备方法

Country Status (1)

Country Link
CN (1) CN113946012B (zh)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230472A (en) * 1979-02-22 1980-10-28 Corning Glass Works Method of forming a substantially continuous optical waveguide
US5123940A (en) * 1990-02-23 1992-06-23 At&T Bell Laboratories Sol-gel doping of optical fiber preform
EP0687927A1 (en) * 1994-06-10 1995-12-20 CeramOptec GmbH Microporous silica coated silica fibers and methods of manufacture
US5790742A (en) * 1995-12-12 1998-08-04 Matsushita Electric Works, Ltd. Optical fiber
US6189340B1 (en) * 1996-06-17 2001-02-20 Corning Incorporated Process for forming a titania-containing preform silica glass blank
CN1363529A (zh) * 2001-01-05 2002-08-14 朗迅科技公司 凹陷折射率光纤的制造
US20030209516A1 (en) * 2002-05-10 2003-11-13 Fengqing Wu Optical fiber preform manufacture using improved VAD
JP2004244241A (ja) * 2003-02-12 2004-09-02 Showa Electric Wire & Cable Co Ltd 水素発生方法
CN1582260A (zh) * 2001-12-19 2005-02-16 皮雷利&C.有限公司 用于制造具有微结构的光纤的方法
JP2006126725A (ja) * 2004-11-01 2006-05-18 Sumitomo Electric Ind Ltd 光ファイバ
US20080013905A1 (en) * 2006-06-30 2008-01-17 Bookbinder Dana C Low bend loss optical fiber with high modulus coating
CN102193142A (zh) * 2011-06-28 2011-09-21 长飞光纤光缆有限公司 一种抗弯曲大芯径高数值孔径多模光纤
CN102782540A (zh) * 2010-02-24 2012-11-14 康宁股份有限公司 三层包覆光纤和具有三层包覆光纤的装置
CN103323910A (zh) * 2013-06-21 2013-09-25 长飞光纤光缆有限公司 一种双包层光纤
CN105060701A (zh) * 2015-07-24 2015-11-18 长飞光纤光缆股份有限公司 一种大尺寸弯曲不敏感多模光纤预制棒的制备方法
CN105198201A (zh) * 2015-10-21 2015-12-30 长飞光纤光缆股份有限公司 一种石英玻璃预制件的制备方法
CN106030358A (zh) * 2014-02-17 2016-10-12 肖特股份有限公司 光子晶体光纤、特别地用于ir波长范围的单模光纤以及用于其生产的处理
CN106125192A (zh) * 2016-06-01 2016-11-16 中天科技光纤有限公司 一种超低损耗大有效面积光纤及其制备工艺
CN108333667A (zh) * 2018-01-22 2018-07-27 长飞光纤光缆股份有限公司 一种抗机械疲劳耐湿耐温光纤
CN112400127A (zh) * 2018-04-30 2021-02-23 康宁股份有限公司 小直径低衰减光纤
CN112424658A (zh) * 2018-04-30 2021-02-26 康宁股份有限公司 外直径小的低衰减光纤
US20210253468A1 (en) * 2018-06-20 2021-08-19 The University Court Of The University Of Edinburgh Coherent imaging fibre and method

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230472A (en) * 1979-02-22 1980-10-28 Corning Glass Works Method of forming a substantially continuous optical waveguide
US5123940A (en) * 1990-02-23 1992-06-23 At&T Bell Laboratories Sol-gel doping of optical fiber preform
EP0687927A1 (en) * 1994-06-10 1995-12-20 CeramOptec GmbH Microporous silica coated silica fibers and methods of manufacture
US5790742A (en) * 1995-12-12 1998-08-04 Matsushita Electric Works, Ltd. Optical fiber
US6189340B1 (en) * 1996-06-17 2001-02-20 Corning Incorporated Process for forming a titania-containing preform silica glass blank
CN1363529A (zh) * 2001-01-05 2002-08-14 朗迅科技公司 凹陷折射率光纤的制造
CN1582260A (zh) * 2001-12-19 2005-02-16 皮雷利&C.有限公司 用于制造具有微结构的光纤的方法
US20030209516A1 (en) * 2002-05-10 2003-11-13 Fengqing Wu Optical fiber preform manufacture using improved VAD
JP2004244241A (ja) * 2003-02-12 2004-09-02 Showa Electric Wire & Cable Co Ltd 水素発生方法
JP2006126725A (ja) * 2004-11-01 2006-05-18 Sumitomo Electric Ind Ltd 光ファイバ
US20080013905A1 (en) * 2006-06-30 2008-01-17 Bookbinder Dana C Low bend loss optical fiber with high modulus coating
CN102782540A (zh) * 2010-02-24 2012-11-14 康宁股份有限公司 三层包覆光纤和具有三层包覆光纤的装置
CN102193142A (zh) * 2011-06-28 2011-09-21 长飞光纤光缆有限公司 一种抗弯曲大芯径高数值孔径多模光纤
CN103323910A (zh) * 2013-06-21 2013-09-25 长飞光纤光缆有限公司 一种双包层光纤
CN106030358A (zh) * 2014-02-17 2016-10-12 肖特股份有限公司 光子晶体光纤、特别地用于ir波长范围的单模光纤以及用于其生产的处理
CN105060701A (zh) * 2015-07-24 2015-11-18 长飞光纤光缆股份有限公司 一种大尺寸弯曲不敏感多模光纤预制棒的制备方法
CN105198201A (zh) * 2015-10-21 2015-12-30 长飞光纤光缆股份有限公司 一种石英玻璃预制件的制备方法
CN106125192A (zh) * 2016-06-01 2016-11-16 中天科技光纤有限公司 一种超低损耗大有效面积光纤及其制备工艺
CN108333667A (zh) * 2018-01-22 2018-07-27 长飞光纤光缆股份有限公司 一种抗机械疲劳耐湿耐温光纤
CN112400127A (zh) * 2018-04-30 2021-02-23 康宁股份有限公司 小直径低衰减光纤
CN112424658A (zh) * 2018-04-30 2021-02-26 康宁股份有限公司 外直径小的低衰减光纤
US20210253468A1 (en) * 2018-06-20 2021-08-19 The University Court Of The University Of Edinburgh Coherent imaging fibre and method

Also Published As

Publication number Publication date
CN113946012B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2022036861A1 (zh) 光纤及光纤制备方法
WO2011147272A1 (zh) 一种抗弯曲多模光纤
CN102354019B (zh) 弯曲不敏感微结构光纤及其制造方法
EP2638419A1 (en) Multi-core optical fiber ribbons and methods for making the same
WO2013177996A1 (zh) 一种渐变折射率抗弯曲多模光纤
KR101273801B1 (ko) 구부림 손실 강화 광섬유
WO2013104244A1 (zh) 一种弯曲不敏感单模光纤
CN106443876B (zh) 一种低串扰少模光纤
WO2010020139A1 (zh) 弯曲损耗不敏感的单模光纤
KR101591956B1 (ko) 낮은 구부림 손실 광섬유
WO2011088706A1 (zh) 一种高带宽多模光纤
WO2013073354A1 (ja) 光ファイバおよび光伝送システム
CN109061793B (zh) 一种七芯小径单模光纤及其制造方法
US8606065B2 (en) Optical fiber and method for fabricating the same
US20180217325A1 (en) Bend-resistant mini optical fiber and manufacturing method thereof
CN103323908A (zh) 一种单模光纤及其制造方法
WO1996030788A1 (en) Optical waveguide
CN106338793B (zh) 一种少模光纤
CN113946012B (zh) 一种抗弯曲光纤及其制备方法
CN111381314B (zh) 一种小外径单模光纤
WO2020119244A1 (zh) 光纤及其制备方法
WO2020157767A1 (en) Ultra-low loss optical fiber
WO2022134668A1 (zh) 光纤结构、光纤结构的生产方法及光缆结构
CN115636581B (zh) 光纤预制件、光纤拉丝装置以及光纤拉丝方法
CN116324544A (zh) 光纤结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant