CN113943662B - 一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株及应用 - Google Patents

一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株及应用 Download PDF

Info

Publication number
CN113943662B
CN113943662B CN202111195832.XA CN202111195832A CN113943662B CN 113943662 B CN113943662 B CN 113943662B CN 202111195832 A CN202111195832 A CN 202111195832A CN 113943662 B CN113943662 B CN 113943662B
Authority
CN
China
Prior art keywords
cbxyn10c
trichoderma reesei
gene
cellulase
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111195832.XA
Other languages
English (en)
Other versions
CN113943662A (zh
Inventor
薛鲜丽
王德培
王静然
毕杭杭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202111195832.XA priority Critical patent/CN113943662B/zh
Publication of CN113943662A publication Critical patent/CN113943662A/zh
Application granted granted Critical
Publication of CN113943662B publication Critical patent/CN113943662B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • C12N9/2482Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01008Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01091Cellulose 1,4-beta-cellobiosidase (3.2.1.91)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株与应用。它是基于细菌Caldicellulosiruptor bescii来源的双功能木聚糖酶/纤维素酶CbXyn10c基因经过密码子优化,通过整合到里氏木霉中天冬氨酸蛋白酶基因的位置,从而获得成功表达CbXyn10C的里氏木霉菌株3株。该菌株成功过表达经密码子优化的CbXyn10c基因,命名为:CbXyn10C‑7,‑10,‑12里氏木霉菌株。本发明的目的是确定CbXyn10c基因可以通过密码子优化及整合到里氏木霉关键基因位点成功异源表达,可应用于同时提高里氏木霉纤维素酶/木聚糖酶的活性。

Description

一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉 菌株及应用
技术领域
本发明属于基因工程技术领域,特别是涉及里氏木霉菌株中异源表达细菌来源的双功能纤维素酶/木聚糖酶CbXyn10c及其应用。
背景技术
植物生物质分布广、含量丰富,是使用量最大的饲料原料,约占据总原料的52 %。植物细胞壁多糖包括纤维素、半纤维素(木聚糖、木葡聚糖和甘露聚糖等)和果胶等,它们是非淀粉多糖(NSP)的三大主要成分。对植物源性饲料而言,非淀粉多糖是饲料原料中主要的抗营养因子之一,其增加了食糜粘度,并阻碍了淀粉和蛋白质等营养成分的释放,从而降低了植物源性饲料的适口性、消化率等。在植物细胞壁NSP中,木聚糖和纤维素是含量最丰富的多糖,占到了70% - 90%。因此,在饲料原料中添加木聚糖酶和纤维素酶,可解除植物细胞壁的屏蔽作用,从而促进营养物质的释放,降低食糜粘度和料重比,提高原料利用率。除此之外,木聚糖酶和纤维素酶也广泛应用在食品、造纸、化工、纺织和生物燃料等领域。木聚糖酶和纤维素酶居高不下的使用成本和极少数实现工业化生产,阻碍了二者更广泛的应用在饲料等其它工业领域。因此,发掘更高比活的新酶、提高工业化生产酶的表达水平、对现有酶进行分子优化等均可有效降低酶的使用成本;另外,实现同时降解木聚糖和纤维素的双功能酶工业化生产也是一种降低酶的使用成本的有效方法。
申请人研究发现嗜热厌氧细菌Caldicellulosiruptor bescii来源的CbXyn10C即为双功能木聚糖/纤维素酶,是第一个能同时、高效降解木聚糖和微晶纤维素的GH10家族木聚糖酶,可以有效降低酿酒工业中麦芽浆的粘度,具有潜在的工业应用前景。遗憾的是在大肠杆菌和巨大/枯草芽孢中均未获得成功表达CbXyn10C/Cel48B的全长蛋白。目前也有研究是利用基因工程技术对C. bescii进行遗传改造,但C. bescii是从西伯利亚勘察半岛温泉中分离出来的嗜热厌氧细菌,其特殊的生长条件及严格的培养条件也阻碍了规模化的生产应用。
丝状真菌系统是主要的一种酶蛋白表达系统,创造着巨大的经济价值。市场上所使用的纤维素酶类酶制剂主要来源于丝状真菌木霉,其中里氏木霉(Trichoderma reesei)产纤维素酶的能力超过了100 g/L。再者,里氏木霉易于培养和符合美国FDA 认证的食品安全等优点,使其广泛应用在工业上表达内源或异源的糖苷水解酶类基因。里氏木霉是重要的工业生产菌株,具有很强的表达和分泌蛋白的能力,迄今为止在里氏木霉中成功表达细菌来源的基因还未见报道。细菌来源的异源基因若要成功在里氏木霉中表达,涉及到确保基因组水平的正确转录调控、转录后的正确翻译和折叠、蛋白的正常转运、避免胞内和胞外蛋白酶的降解以及蛋白酶的调控等。因此,在里氏木霉中表达了密码子优化的CbXyn10C,从12株的阳性转化子中获得3株在90℃检测到不同程度的木聚糖酶活性,其中酶活最高的转化子是CbXyn10C-12的表达框插入到了天冬氨酸蛋白酶的基因(XM_006961706.1)中。
发明内容
本发明是将具有双功能的纤维素酶/木聚糖酶CbXyn10C进行密码子的优化,并在里氏木霉中进行异源表达,筛选阳性转化子,并通过SDS-PAGE及蛋白质谱鉴定其正确表达,测定阳性转化子及宿主菌的诱导发酵液降解纤维素、木聚糖以及MUC的酶活性。本发明的目的是获得成功异源表达CbXyn10C的里氏木霉菌株并提高里氏木霉分泌的复合酶系的活性。
为实现上述目的,本发明公开了如下的技术内容:
一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株,其特征是:密码子优化的CbXyn10c基因的核酸序列如SEQ ID No .1所示,CbXyn10c基因所整合位点的天冬氨酸蛋白酶基因(XM_006961706.1)的核酸序列如SEQ ID No.2所示,所构载体的启动子Pcbh1的核酸序列如SEQ ID No.3所示,所构载体的终止子序列Tcbh2的核酸序列如SEQ IDNo.4所示。
本发明进一步公开了所述一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株的构建方法,其特征在于所选出发菌株为Trichoderma reeseiTU-6菌株,通过PEG-CaCl2介导的原生质体转化法将过表达CbXyn10c基因的质粒随机整合到里氏木霉基因组上进行表达。所述的构建方法,其特征是包括:CbXyn10c基因过表达载体的构建,即pPcbh1-10C,将此表达载体借助PEG-CaCl2介导的原生质体转化法转入里氏木霉中,筛选里氏木霉重组菌株的方法;其中所述里氏木霉重组菌株的构建方法包括如下步骤:
(a) 启动子Pcbh1、密码子优化的CbXyn10c目的基因、终止子Tcbh2的扩增;
(b) 将(a)中的片段通过Over-lapPCR进行融合,获得融合片段Pcbh1-CbXyn10c-Tcbh2;
(c)对pSKpyr4质粒进行EcoR I和PstI双酶切线性化处理;
(d)利用重组酶将(b)中片段与(c)中线性化质粒进行连接,构建重组质粒pPcbh1-10C;
(e) 通过PEG-CaCl2介导的原生质体转化法将(d)中的重组质粒转化里氏木霉,筛选目的基因成功表达的里氏木霉菌株。
本发明还公开了一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株在提高里氏木霉纤维素酶/木聚糖酶酶活性方面的应用;所述的提高里氏木霉纤维素酶/木聚糖酶酶活性指的是菌株发酵的复合酶系降解木聚糖类(包括桦木、榉木木聚糖等)和纤维素类(包括大麦葡聚糖、CMC-Na、微晶纤维素等)的底物的活性。实验结果显示:异源表达CbXyn10c菌株的木聚糖酶活性最高提高到13.23 ± 0.064 U/ml,是对照组的23.63倍;其降解CMC-Na和MUC的酶活分别提高到4.52 ± 0.07U/ml和18.97 ± 0.86 U/ml,分别是对照组的2.67倍和6.56倍。
(1)本发明获得的成功异源表达CbXyn10c基因的CbXyn10c-7,-10,-12里氏木霉菌株菌株,与原始菌株相比其在90℃条件下有显著的木聚糖酶的活性。
(2)本发明获得的异源表达里氏木霉菌株中,CbXyn10c-12较CbXyn10c-7,-10菌株相比CbXyn10C的表达量更高,且表达框整合到里氏木霉基因组天冬氨酸蛋白酶基因(XM_006961706.1)中。
(3)本发明异源表达里氏木霉菌株与原始菌株相比,CbXyn10c-12的木聚糖酶的活性、纤维素酶以及MUC的酶活均提高最多,分别提高23.63倍、2.67倍和6.56倍。
本发明更进一步公开了所述的一株成功表达目的基因的菌株,其特征是CbXyn10c基因整合里氏木霉木霉基因组的天冬氨酸蛋白酶基因(XM_006961706.1)关键位点,指的是表达量最高的转化子CbXyn10c-12的表达框插入到了天冬氨酸蛋白酶基因(XM_006961706.1)中。所述一株异源表达CbXyn10c基因的里氏木霉菌株在提高里氏木霉纤维素酶/木聚糖酶酶活方面的应用指的是转化子CbXyn10c-7,-10,-12的木聚糖酶的活性分别提高到7.77 ± 0.045、8.69 ± 0.130和13.23 ± 0.064 U/ml;其中Cb10C-10和Cb10C-12纤维素酶的活性提高相对较多,相对应的最高酶活达到了3.24 ± 0.087和4.52 ± 0.07 U/ml,分别是TU-6(1.69 ± 0.052 U/ml)的1.92和2.67倍;转化子CbXyn10c-7,-10,-12水解MUC的酶活分别达到14.28 ± 0.21、17.01 ± 0.21和18.97 ± 0.86 U/ml。
ATGAAGAAGCTCGTCAAGATCATCACCCACGTCGTCCTCATCACCTTCATTGCCGGCGTCTGCCTCTTCGGCACCATGAGCTACTACCCCATCGAGACTAAGGCCGCTCCTGATTGGAACATCCCCAGCCTCTACGAGTCCTACAAGAACGATTTCCGCATCGGCGTCGCTATCCCCGCCAAGTGCCTCTCCAACGATACCGATCGCCGCATGGTCCTCAAGCACTTCAACTCCATCACCGCCGAGAACGAGATGAAGCCCGAGAGCCTCCTCGCCGGCCAGACCTCCACCGGCCTCAACTACCGCTTCTCCACCGCCGATACCTTCGTCGATTTCGCCAACACCAACAACATCGGCATCCGCGGTCACACCCTCGTCTGGCACTCGCAGACCCCTGATTGGTTCTTCAAGGATTCCTCCGGCCAGCGCCTGACCAAGGATGCCCTGCTCGCCCGCCTCAAGCAGTACATCTACGATGTCGTCGGCCGCTACAAGGGCAAAGTCTACGCCTGGGATGTCGTCAACGAGGCCATCGATGAGAACCAGTCCGATGGCTACCGCCGCTCCACCTGGTACGAGATCTGCGGCCCTGAGTACATCGAGAAGGCTTTCATCTGGGCCCACGAGGCCGATCCTAACGCCAAGCTGTTCTACAACGATTACAACACCGAGATCTCCAAGAAGCGCGATTTCATCTACAACATGGTCAAGAACCTCAAGTCCAAGGGCATCCCCATCCACGGCATCGGCATGCAGTGCCACATCAACGTCAACTGGCCCTCCGTGTCCGAGATCGAGAACTCGATCAAGTTGTTCAGCAGCATCCCTGGCATCGAGATCCACATCACCGAGCTGGATATGTCCCTCTACAACTACGGCTCCTCCGAGAACTACTCGACCCCTCCTCAGGATCTCCTCCAGAAGCAGGCCCAGAAGTACAAAGAACTCTTCACCATGCTCAAGAAGTACACCAACGTCGTCAAGTGCGTCACCTTCTGGGGCCTCAAGGATGATTACTCCTGGCTCCGCTCCTTCAACGGCAAGAACGACTGGCCCCTCCTGTTCTTCGAGGACTACTCCGCCAAGTAG
SEQ ID NO.2
AGCAACCTTCTCCGATATTCAAGATGCAGACCTTTGGAGCTTTTCTCGTTTCCTTCCTCGCCGCCAGCGGCCTGGCCGCGGCCCTCCCCACCGAGGGTCAGAAGACGGCTTCCGTCGAGGTCCAGTACAACAAGAACTACGTCCCCCACGGCCCTACTGCTCTCTTCAAGGCCAAGAGAAAGTATGGCGCTCCCATCAGCGACAACCTGAAGTCTCTCGTGGCTGCCAGGCAGGCCAAGCAGGCTCTCGCCAAGCGCCAGACCGGCTCGGCGCCCAACCACCCCAGTGACAGCGCCGATTCGGAGTACATCACCTCCGTCTCCATCGGCACTCCGGCTCAGGTCCTCCCCCTGGACTTTGACACCGGCTCCTCCGACCTGTGGGTCTTTAGCTCCGAGACGCCCAAGTCTTCGGCCACCGGCCACGCCATCTACACGCCCTCCAAGTCGTCCACCTCCAAGAAGGTGTCTGGCGCCAGCTGGTCCATCAGCTACGGCGACGGCAGCAGCTCCAGCGGCGATGTCTACACCGACAAGGTCACCATCGGAGGCTTCAGCGTCAACACCCAGGGCGTCGAGTCTGCCACCCGCGTGTCCACCGAGTTCGTCCAGGACACGGTCATCTCTGGCCTCGTCGGCCTTGCCTTTGACAGCGGCAACCAGGTCAGGCCGCACCCGCAGAAGACGTGGTTCTCCAACGCCGCCAGCAGCCTGGCTGAGCCCCTTTTCACTGCCGACCTGAGGCACGGACAGAACGGCAGCTACAACTTTGGCTACATCGACACCAGCGTCGCCAAGGGCCCCGTTGCCTACACCCCCGTTGACAACAGCCAGGGCTTCTGGGAGTTCACTGCCTCGGGCTACTCTGTCGGCGGCGGCAAGCTCAACCGCAACTCCATCGACGGCATTGCCGACACCGGCACCACCCTGCTCCTCCTCGACGACAACGTCGTCGATGCCTACTACGCCAACGTCCAGTCGGCCCAGTACGACAACCAGCAGGAGGGTGTCGTCTTCGACTGCGACGAGGACCTCCCTTCGTTCAGCTTCGGTGTTGGAAGCTCCACCATCACCATCCCTGGCGATCTGCTGAACCTGACTCCCCTCGAGGAGGGCAGCTCCACCTGCTTCGGTGGCCTCCAGAGCAGCTCCGGCATTGGCATCAACATCTTTGGTGACGTTGCCCTCAAGGCTGCCCTGGTTGTCTTTGACCTCGGCAACGAGCGCCTGGGCTGGGCTCAGAAATAA
SEQ ID NO.3
GGGTTTGGAGCAATGTGGGACTTTGATGGTCATCAAACAAAGAACGAAGACGCCTCTTTTGCAAAGTTTTGTTTCGGCTACGGTGAAGAACTGGATACTTGTTGTGTCTTCTGTGTATTTTTGTGGCAACAAGAGGCCAGAGACAATCTATTCAAACACCAAGCTTGCTCTTTTGAGCTACAAGAACCTGTGGGGTATATATCTAGAGTTGTGAAGTCGGTAATCCCGCTGTATAGTAATACGAGTCGCATCTAAATACTCCGAAGCTGCTGCGAACCCGGAGAATCGAGATGTGCTGGAAAGCTTCTAGCGAGCGGCTAAATTAGCATGAAAGGCTATGAGAAATTCTGGAGACGGCTTGTTGAATCATGGCGTTCCATTCTTCGACAAGCAAAGCGTTCCGTCGCAGTAGCAGGCACTCATTCCCGAAAAAACTCGGAGATTCCTAAGTAGCGATGGAACCGGAATAATATAATAGGCAATACATTGAGTTGCCTCGACGGTTGCAATGCAGGGGTACTGAGCTTGGACATAACTGTTCCGTACCCCACCTCTTCTCAACCTTTGGCGTTTCCCTGATTCAGCGTACCCGTACAAGTCGTAATCACTATTAACCCAGACTGACCGGACGTGTTTTGCCCTTCATTTGGAGAAATAATGTCATTGCGATGTGTAATTTGCCTGCTTGACCGACTGGGGCTGTTCGAAGCCCGAATGTAGGATTGTTATCCGAACTCTGCTCGTAGAGGCATGTTGTGAATCTGTGTCGGGCAGGACACGCCTCGAAGGTTCACGGCAAGGGAAACCACCGATAGCAGTGTCTAGTAGCAACCTGTAAAGCCGCAATGCAGCATCACTGGAAAATACAAACCAATGGCTAAAAGTACATAAGTTAATGCCTAAAGAAGTCATATACCAGCGGCTAATAATTGTACAATCAAGTGGCTAAACGTACCGTAATTTGCCAACGGCTTGTGGGGTTGCAGAAGCAACGGCAAAGCCCCACTTCCCCACGTTTGTTTCTTCACTCAGTCCAATCTCAGCTGGTGATCCCCCAATTGGGTCGCTTGTTTGTTCCGGTGAAGTGAAAGAAGACAGAGGTAAGAATGTCTGACTCGGAGCGTTTTGCATACAACCAAGGGCAGTGATGGAAGACAGTGAAATGTTGACATTCAAGGAGTATTTAGCCAGGGATGCTTGAGTGTATCGTGTAAGGAGGTTTGTCTGCCGATACGACGAATACTGTATAGTCACTTCTGATGAAGTGGTCCATATTGAAATGTAAGTCGGCACTGAACAGGCAAAAGATTGAGTTGAAACTGCCTAAGATCTCGGGCCCTCGGGCCTTCGGCCTTTGGGTGTACATGTTTGTGCTCCGGGCAAATGCAAAGTGTGGTAGGATCGAACACACTGCTGCCTTTACCAAGCAGCTGAGGGTATGTGATAGGCAAATGTTCAGGGGCCACTGCATGGTTTCGAATAGAAAGAGAAGCTTAGCCAAGAACAATAGCCGATAAAGATAGCCTCATTAAACGGAATGAGCTAGTAGGCAAAGTCAGCGAATGTGTATATATAAAGGTTCGAGGTCCGTGCCTCCCTCATGCTCTCCCCATCTACTCATCAACTCAGATCCTCCAGGAGACTTGTACACCATCTTTTGAGGCACAGAAACCCAATAGTCAACCGCGGACTGCGCATCATGTATCGGAAGTTGGCCGTCATCTCGGCCTTCTTGGCCACAGCTCGTGCT
SEQ ID NO.4
AGCTCCGTGGCGAAAGCCTGACGCACCGGTAGATTCTTGGTGAGCCCGTATCATGACGGCGGCGGGAGCTACATGGCCCCGGGTGATTTATTTTTTTTGTATCTACTTCTGACCCTTTTCAAATATACGGTCAACTCATCTTTCACTGGAGATGCGGCCTGCTTGGTATTGCGATGTTGTCAGCTTGGCAAATTGTGGCTTTCGAAAACACAAAACGATTCCTTAGTAGCCATGCATTTTAAGATAACGGAATAGAAGAAAGAGGAAATTAAAAAAAAAAAAAAAACAAACATCCCGTTCATAACCCGTAGAATCGCCGCTCTTCGTGTATCCCAGTACCACGGCAAAGGTATTTCATGATCGTTCAATGTTGATATTGTTCCCGCCAGTATGGCTCCACCCCCATCTCCGCGAATCTCCTCTTCTCGAACGCGGTAGTGGCGCGCCAATTGGTAATGACCCATAGGGAGACAAACAGCATAATAGCAACAGTGGAAATTAGTGGCGCAATAATTGAGAACACAGTGAGACCATAGCTGGCGGCCTGGAAAGCACTGTTGGAGACCAACTTGTCCGTTGCGAGGCCAACTTGCATTGCTGTCAAGACGATGACAACGTAGCCGAGGACCGTCACAAGGGACGCAAAGTTGTCGCGGATGAGGTCTCCGTAGATGGCATAGCCGGCAATCCGAGAGTAGCCTCTCAACAGGTGGCCTTTTCGAAACCGGTAAACCTTGTTCAGACGTCCTAGCCGCAGCTCACCGTACCAGTATCGAGGATTGACGGCAGAATAGCAGTGGCTCTCCAGGATTTGACTGGACAAAATCTTCCAGTATTCCCAGGTCACAGTGTCTGGCAGAAGTCCCTTCTCGCGTGCGAGTCGAAAGTCGCTATAGTGCGCAATGAGAGCACAGTAGGAGAATAGGAACCCGCGAGCACATTGTTCAATCTCCACATGAATTGGATGACTGCTGGGCAGAATGTGCTGCCTCCAAAATCCTGCGTCCAACAGATACTCTGGCAGGGGCTTCAGATGAATGCCTCTGGGCCCCCAGATAAGATGCAGCTCTGGATTCTCGGTTACGATGATATCGCGAGAGAGCACGAGTTGGTGATGGAGGGGACGAGGAGGCATAGGTCGGCCGCAGGCCCATAACCAGTCTTGCACAGCATTGATCTTCCTCACGAGGAGCTCCTGATGCAGAAACTCCTCCATGTTGCTGATTGGGTTGAGAATTTCATCGCTCCTGGATCGTATGGTTGCTGGCAAGACCCTGCTTAACCGTGCCGTGTCATGGTCATCTCTGGTGGCTTCGTCGCTGGCCTGTCTTTGCAATTCGACAGCAAATGGTGGAGATCTCTCTATCGTGACAGTCATGGTAGCGATAGCTAGGTGTCGTTGCACGCACATAGGCCGAAATGCGAAGTGGAAAGAATTTCCCGGCGCGGAATGAAGTCTCGTCATTTTGTACTCGTACTCGACACCTCCACCGAAGTGTT
本发明更加详细的描述如下:
(1)一株异源CbXyn10c基因的里氏木霉菌株,其特征是:过表达菌株在90℃条件下能检测到显著的木聚糖酶活性、菌株整体纤维素酶的活性提高,且以4-甲基伞形酮纤维素为底物检测到较高的活性。
(2)本发明所述的异源表达CbXyn10c基因的里氏木霉菌株,其特征在于:该菌株表达CbXyn10c基因的表达框整合到天冬氨酸蛋白酶基因(XM_006961706.1)中,使CbXyn10c基因成功异源表达。
(3)本发明(2)所述的里氏木霉菌株,其特征是:密码子优化的CbXyn10c基因的核酸序列如SEQ ID No .1所示,CbXyn10c基因所整合位点的天冬氨酸蛋白酶基因的核酸序列如SEQ ID No.2所示,所构载体的启动子Pcbh1的核酸序列如SEQ ID No.3所示,所构载体的终止子序列Tcbh2的核酸序列如SEQ ID No.4所示。所选出发菌株为T. resseiTU-6菌株,通过PEG-CaCl2介导的原生质体转化法将异源表达CbXyn10c基因的质粒随机整合到里氏木霉基因组上进行表达。
本发明主要考察了能否在里氏木霉菌株中高效异源表达CbXyn10c基因以及提高复合酶系的活性,重点是解决里氏木霉难表达细菌来源的双功能纤维素酶/木聚糖酶的问题;发明的难点在于CbXyn10c基因的密码子优化及其表达框在里氏木霉基因组中关键性的位点恰当的整合,从而获得成功表达CbXyn10c基因的里氏木霉菌株;本发明的创新点在于在里氏木霉中探索异源表达细菌来源的基因尤其是具有双功能纤维素酶/木聚糖酶的基因及提高里氏木霉复合酶系活性方面的应用。
附图说明
图1为 TU-6及转化子的SDS-PAGE验证;
图2为 TU-6及转化子CbXyn10c-7,-10,-12的木聚糖酶活性的测定;
图3为 TU-6及CbXyn10c-7,-10,-12的水解MUC活性的测定;
图4为 TU-6及转化子CbXyn10c-7,-10,-12的内切纤维素酶活性的测定。
具体实施方式
下面通过具体的实施方案叙述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。其中产纤维素酶的菌株Trichoderma reesei在国家菌种保藏中心有保藏(保藏号为bio-68004)。本发明所用原料及试剂均有市售。
实施例1
1. 主要试剂
本实验用rTaq酶、PrimeSTAR高保真酶、限制性内切酶EcoRI、PstI、T4连接酶、RNA酶及所用DL10000 DNA Marker、DL5000 DNA Marker均购于TaKaRa公司;ClonExpressMultiS One Step Cloning Kit、2×Rapid Taq Master Mix购于南京诺唯赞生物科技有限公司;本实验所用Marker III,质粒小提试剂盒和普通琼脂糖凝胶DNA回收试剂盒购于天根生化科技有限公司;高效感受态细胞制备试剂盒购于上海捷瑞生物工程有限公司。本论文所有合成序列及引物由金唯智生物科技有限公司合成,其中正向引物为F,反向引物为R,实验所用到的引物见表1-2:
表1 本实验中用到的菌株和质粒
表2 本实验中用到引物
(1)表达载体pPcbh1-10C的构建(目的片段的扩增
pPcbh1-10C质粒构建过程相关目的片段的扩增,具有步骤:以T. reesei TU-6(来源于原始T. reesei 菌株敲除pyr4基因)基因组DNA为模板,分别扩增启动子Pcbh1的核酸序列(如SEQ ID No.3所示)和终止子序列Tcbh2的核酸序列(如SEQ ID No.4所示);以C. bessei基因组为模板扩增CbXyn10c基因的核酸序列(如SEQ ID No .1所示);将上述三个片段通过Over-lap PCR的方法融合成一个片段Pcbh1-CbXyn10c-Tcbh2。
(2)质粒双酶切线性化
将pSKpyr4质粒进行EcoR I和PstI双酶切线性化。
(3)胶回收
将上述(1)和(2)中的产物进行琼脂糖 DNA 凝胶(1 %TAE缓冲液)电泳检测,并将目的片段进行切胶回收。
(4)重组质粒的构建
将上述(3)中回收的片段Pcbh1-CbXyn10c-Tcbh2及线性化的pSKpyr4质粒通过ClonExpress MultiS One Step Cloning Kit进行连接,将连接产物转化至E. coliDH5α,挑取阳性转化子以M13F、Yz-Cb10C-R引物进行PCR验证,成功构建质粒pPcbh1-10C。
2. PEG-CaCl2介导的原生质体转化里氏木霉
(1)原生质体的制备
将里氏木霉TU-6接种于土豆培养基(PDA)平板上,30 ℃静置培养7 d待其产孢。将孢子刮下并接种于100 ml含有Uridine的PDB(Potato Dextrose Broth)培养基中,30 ℃、180 rpm振摇培养过夜。用200目目筛过滤收集萌发的菌丝,并用无菌水冲洗至没有培养基颜色为止;将菌体置于三角瓶中,悬浮于15 mL 1.2 MMgSO4溶液(含有15 mg cellulase和150 mg lysing enzymes“ONOZUKA”R-10,前者是日本YAKULT产品,后者是sigma产品);在30℃摇床中以80-100 rpm摇3 h,并在显微镜下观察原生质体的产生情况;待原生质体大量产生时,立即加入等体积的0.6 mol/LSorbitol溶液并轻柔混匀;用200目目筛过滤掉未酶解的菌丝,收集原生质体;在室温条件下,3500 rpm离心12 min,缓慢弃掉上清,并用1.0 MSorbitol溶液重悬,重复清洗3遍;最终将原生质体悬浮于200 μl的1.0 M sorbitol溶液中,并用血细胞计数板进行计数。
(2)PEG原生质体转化
将10 μg的pPcbh1-10C质粒和200 μl的原生质体混合均匀,加入500 µL 的50 %PEG缓冲液,混匀并置于冰上30 min;再加入1 ml的50 % PEG缓冲液,混匀并置于室温放置20 min;最后将混合物与100 ml的MM(Minimal midium)基础培养基+ 2 %的葡萄糖 + 1Msorbitol培养基混合均匀,平铺于4-5个10 cm的平板上,30 ℃培养4-7天。
(3)阳性转化子的筛选
转化子在含1 M山梨醇的MM+葡萄糖琼脂培养基上生长、选择。挑取单个克隆至含有MM +葡萄糖固体培养基的24孔板中于30 ℃培养2 d;使用牙签挑取少量的菌丝于10 μl的Univers All-tissue extraction PCR kit中的Enhancer中,98 ℃处理10-15 min进行菌丝的裂解;然后取1μl裂解液作为模板,使用验证引物Yz-Trchb1F和Yz-Cb10C-R进行PCR验证,筛选阳性转化子。
3. 阳性转化子的发酵培养及木聚糖酶和纤维素酶活性的测定
(1)阳性转化子与TU-6进行Avicel诱导培养
将出发菌株TU-6的孢子和各转化子的孢子,接种1×107于100 ml MM-glucose培养基中。30 ℃、180 rpm振摇培养2 d。将菌丝用200目目筛过滤,收集菌丝并用大量无菌水冲洗,以去除残余的葡萄糖。称取等量(900 mg)的菌丝,接种于100 mlMM-Avicel液体培养基中,出发菌株和每个转化子均做3个平行。30 ℃、180 rpm振摇培养7 d以诱导纤维素酶的生产。从第1 d开始,每24小时收集发酵液2ml,储存于4 ºC冰箱备用。
(2)转化子CbXyn10C表达量的SDS-PAGE验证及质谱鉴定
SDS-PAGE电泳检测(1)中发酵液上清中CbXyn10C分泌情况,并对疑似目的条带进行质谱鉴定。
(3)阳性转化子的木聚糖酶和纤维素酶活性的测定
对出发菌株TU-6和转化子发酵液以榉木木聚糖、CMC-Na和MUC为底物测定相应的酶活。
木聚糖酶酶活的测定:1%的Beechwood xylan底物用pH=6.5缓冲液配制,取500 μl的2%榉木木聚糖并各自加入450μl相应的缓冲液,在80 ℃反应条件下预热2 min,加入100μl适当稀释的酶液,准确孵育10 min,加入1.5 ml的DNS终止反应,待冷却至室温立即测定OD540值。
外切纤维素酶活的测定:用4-methylumbelliferyl-β-D-cellobioside (MUC,Sigma)作底物,称取15 mg MUC,溶于500 μl DMSO(Sigma),再将其转移到30 ml柠檬酸缓冲液(pH4.8,50mM)中。将12 μl适当稀释的酶液和200 μl MUC、25 μl葡萄糖(1 M)和25 μl柠檬酸缓冲液混合,此为不加纤维二糖实验组。在混合溶液中,葡萄糖会抑制BG降解MUC,因此,测得的活性实际为CBH和EG的活性。同时设加纤维二糖实验组:12 μl酶液和200μl MUC、25μl葡萄糖、25μl(50 mM)纤维二糖和25μl柠檬酸缓冲液,于50 ℃反应10 min。加入纤维二糖会抑制CBH的活性,因此测得的是EG的活性。加入250 μl Na2CO3(1 M)。取100 μl稀释11倍,于370 nm测定吸光度。将不加纤维二糖实验组OD值减去加纤维二糖实验组,即为外切纤维素酶较为特异的活性。一单位的外切纤维素酶酶活定义为每分钟催化1 nmol MUC水解所需要的酶量(U)。
内切纤维素酶酶活测定:采用羧甲基纤维素钠(CMC)作为底物进行测定。取1000mg羧甲基纤维素钠,用柠檬酸—磷酸氢二钠缓冲液(0.05 M、pH 5.0)定容至50 ml,得到2 %的羧甲基纤维素钠溶液。羧甲基纤维素钠溶液应立即使用,使用前适当摇匀。在4 ℃下避光保存,有效期为3天。取酶液100 µl,加入到10 ml柠檬酸—磷酸氢二钠缓冲液(0.05 M、pH5.0)中,得到稀释101倍的酶液。在各试管中加入2 %的羧甲基纤维素钠溶液和柠檬酸—磷酸氢二钠缓冲液(0.05M、pH 5.0)各0.45 ml,50 ℃水浴平衡后,加入已经稀释的酶液0.1ml(空白先不加),振荡混合均匀。50 ℃水浴保温30 min,迅速冷却。向各试管中加入1.5 mlDNS试剂,再向空白中加酶液0.1 ml,混合均匀。在沸水中煮10 min,迅速冷却。以0号管为参比,测定540 nm的吸光度。1 ml液体酶,在50℃、pH 5.0的条件下,每小时水解羧甲基纤维素钠,产生1 μmol还原糖(以葡萄糖计)所需要的酶量定义为一个酶活力单位(U)。
实施例2
CbXyn10C表达量的SDS-PAGE验证及质谱鉴定分析
取1 ml转化子第1天的发酵液进行SDS-PAGE验证(如图1)和蛋白质谱验证(如图1),确定了CbXyn10C的成功表达。分析SDS-PAGE结果,除泳道10、11转化子之外,泳道4、6、7(即成功表达CbXyn10C的转化子)比其余泳道的转化子和对照TU-6少了红色箭头“→”所指的条带,经质谱鉴定是天冬氨酸蛋白酶(XM_006961706.1)。
2. 阳性转化子与TU-6发酵液木聚糖酶活性的测定
阳性转化子与TU-6发酵液木聚糖酶活性的测定结果如图2所示:转化子CbXyn10C-7, -10,-12可以测到不同程度的Xylan的活性,在发酵第一天的时候酶活最高,CbXyn10C-7,-10,-12的酶活分别是7.77 ± 0.045、8.69 ± 0.130和13.23 ± 0.064 U/ml。
3. 阳性转化子与TU-6发酵液外切纤维素酶活性的测定
阳性转化子与TU-6发酵液外切纤维素酶酶活性的测定结果如图3所示:与TU-6对照菌株相比,转化子CbXyn10C-7,-10,-12可以测到不同程的MUC的活性,并且MUC呈现的趋势同所测到的Beechwood xylan的活性一致,在第一天时活性最高分别达到14.28 ±0.21、17.01 ± 0.21和18.97 ± 0.86 U/ml。
4. 阳性转化子与TU-6发酵液内切纤维素酶活性的测定
与TU-6相比,转化子水解CMC-Na的活性均有不同程度的提高(如图4所示)。其中Cb10C-10和Cb10C-12提高的活性相对较多,相对应的最高酶活达到了3.24 ± 0.087和4.52 ± 0.096 U/ml,分别是TU-6(1.69 ± 0.052 U/ml)的1.92和2.67倍。
序列表
<110> 天津科技大学
<120> 一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株及应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1089
<212> DNA
<213> 人工序列()
<400> 1
atgaagaagc tcgtcaagat catcacccac gtcgtcctca tcaccttcat tgccggcgtc 60
tgcctcttcg gcaccatgag ctactacccc atcgagacta aggccgctcc tgattggaac 120
atccccagcc tctacgagtc ctacaagaac gatttccgca tcggcgtcgc tatccccgcc 180
aagtgcctct ccaacgatac cgatcgccgc atggtcctca agcacttcaa ctccatcacc 240
gccgagaacg agatgaagcc cgagagcctc ctcgccggcc agacctccac cggcctcaac 300
taccgcttct ccaccgccga taccttcgtc gatttcgcca acaccaacaa catcggcatc 360
cgcggtcaca ccctcgtctg gcactcgcag acccctgatt ggttcttcaa ggattcctcc 420
ggccagcgcc tgaccaagga tgccctgctc gcccgcctca agcagtacat ctacgatgtc 480
gtcggccgct acaagggcaa agtctacgcc tgggatgtcg tcaacgaggc catcgatgag 540
aaccagtccg atggctaccg ccgctccacc tggtacgaga tctgcggccc tgagtacatc 600
gagaaggctt tcatctgggc ccacgaggcc gatcctaacg ccaagctgtt ctacaacgat 660
tacaacaccg agatctccaa gaagcgcgat ttcatctaca acatggtcaa gaacctcaag 720
tccaagggca tccccatcca cggcatcggc atgcagtgcc acatcaacgt caactggccc 780
tccgtgtccg agatcgagaa ctcgatcaag ttgttcagca gcatccctgg catcgagatc 840
cacatcaccg agctggatat gtccctctac aactacggct cctccgagaa ctactcgacc 900
cctcctcagg atctcctcca gaagcaggcc cagaagtaca aagaactctt caccatgctc 960
aagaagtaca ccaacgtcgt caagtgcgtc accttctggg gcctcaagga tgattactcc 1020
tggctccgct ccttcaacgg caagaacgac tggcccctcc tgttcttcga ggactactcc 1080
gccaagtag 1089
<210> 2
<211> 1247
<212> DNA
<213> 人工序列()
<400> 2
agcaaccttc tccgatattc aagatgcaga cctttggagc ttttctcgtt tccttcctcg 60
ccgccagcgg cctggccgcg gccctcccca ccgagggtca gaagacggct tccgtcgagg 120
tccagtacaa caagaactac gtcccccacg gccctactgc tctcttcaag gccaagagaa 180
agtatggcgc tcccatcagc gacaacctga agtctctcgt ggctgccagg caggccaagc 240
aggctctcgc caagcgccag accggctcgg cgcccaacca ccccagtgac agcgccgatt 300
cggagtacat cacctccgtc tccatcggca ctccggctca ggtcctcccc ctggactttg 360
acaccggctc ctccgacctg tgggtcttta gctccgagac gcccaagtct tcggccaccg 420
gccacgccat ctacacgccc tccaagtcgt ccacctccaa gaaggtgtct ggcgccagct 480
ggtccatcag ctacggcgac ggcagcagct ccagcggcga tgtctacacc gacaaggtca 540
ccatcggagg cttcagcgtc aacacccagg gcgtcgagtc tgccacccgc gtgtccaccg 600
agttcgtcca ggacacggtc atctctggcc tcgtcggcct tgcctttgac agcggcaacc 660
aggtcaggcc gcacccgcag aagacgtggt tctccaacgc cgccagcagc ctggctgagc 720
cccttttcac tgccgacctg aggcacggac agaacggcag ctacaacttt ggctacatcg 780
acaccagcgt cgccaagggc cccgttgcct acacccccgt tgacaacagc cagggcttct 840
gggagttcac tgcctcgggc tactctgtcg gcggcggcaa gctcaaccgc aactccatcg 900
acggcattgc cgacaccggc accaccctgc tcctcctcga cgacaacgtc gtcgatgcct 960
actacgccaa cgtccagtcg gcccagtacg acaaccagca ggagggtgtc gtcttcgact 1020
gcgacgagga cctcccttcg ttcagcttcg gtgttggaag ctccaccatc accatccctg 1080
gcgatctgct gaacctgact cccctcgagg agggcagctc cacctgcttc ggtggcctcc 1140
agagcagctc cggcattggc atcaacatct ttggtgacgt tgccctcaag gctgccctgg 1200
ttgtctttga cctcggcaac gagcgcctgg gctgggctca gaaataa 1247
<210> 3
<211> 1750
<212> DNA
<213> 人工序列()
<400> 3
gggtttggag caatgtggga ctttgatggt catcaaacaa agaacgaaga cgcctctttt 60
gcaaagtttt gtttcggcta cggtgaagaa ctggatactt gttgtgtctt ctgtgtattt 120
ttgtggcaac aagaggccag agacaatcta ttcaaacacc aagcttgctc ttttgagcta 180
caagaacctg tggggtatat atctagagtt gtgaagtcgg taatcccgct gtatagtaat 240
acgagtcgca tctaaatact ccgaagctgc tgcgaacccg gagaatcgag atgtgctgga 300
aagcttctag cgagcggcta aattagcatg aaaggctatg agaaattctg gagacggctt 360
gttgaatcat ggcgttccat tcttcgacaa gcaaagcgtt ccgtcgcagt agcaggcact 420
cattcccgaa aaaactcgga gattcctaag tagcgatgga accggaataa tataataggc 480
aatacattga gttgcctcga cggttgcaat gcaggggtac tgagcttgga cataactgtt 540
ccgtacccca cctcttctca acctttggcg tttccctgat tcagcgtacc cgtacaagtc 600
gtaatcacta ttaacccaga ctgaccggac gtgttttgcc cttcatttgg agaaataatg 660
tcattgcgat gtgtaatttg cctgcttgac cgactggggc tgttcgaagc ccgaatgtag 720
gattgttatc cgaactctgc tcgtagaggc atgttgtgaa tctgtgtcgg gcaggacacg 780
cctcgaaggt tcacggcaag ggaaaccacc gatagcagtg tctagtagca acctgtaaag 840
ccgcaatgca gcatcactgg aaaatacaaa ccaatggcta aaagtacata agttaatgcc 900
taaagaagtc atataccagc ggctaataat tgtacaatca agtggctaaa cgtaccgtaa 960
tttgccaacg gcttgtgggg ttgcagaagc aacggcaaag ccccacttcc ccacgtttgt 1020
ttcttcactc agtccaatct cagctggtga tcccccaatt gggtcgcttg tttgttccgg 1080
tgaagtgaaa gaagacagag gtaagaatgt ctgactcgga gcgttttgca tacaaccaag 1140
ggcagtgatg gaagacagtg aaatgttgac attcaaggag tatttagcca gggatgcttg 1200
agtgtatcgt gtaaggaggt ttgtctgccg atacgacgaa tactgtatag tcacttctga 1260
tgaagtggtc catattgaaa tgtaagtcgg cactgaacag gcaaaagatt gagttgaaac 1320
tgcctaagat ctcgggccct cgggccttcg gcctttgggt gtacatgttt gtgctccggg 1380
caaatgcaaa gtgtggtagg atcgaacaca ctgctgcctt taccaagcag ctgagggtat 1440
gtgataggca aatgttcagg ggccactgca tggtttcgaa tagaaagaga agcttagcca 1500
agaacaatag ccgataaaga tagcctcatt aaacggaatg agctagtagg caaagtcagc 1560
gaatgtgtat atataaaggt tcgaggtccg tgcctccctc atgctctccc catctactca 1620
tcaactcaga tcctccagga gacttgtaca ccatcttttg aggcacagaa acccaatagt 1680
caaccgcgga ctgcgcatca tgtatcggaa gttggccgtc atctcggcct tcttggccac 1740
agctcgtgct 1750
<210> 4
<211> 1500
<212> DNA
<213> 人工序列()
<400> 4
agctccgtgg cgaaagcctg acgcaccggt agattcttgg tgagcccgta tcatgacggc 60
ggcgggagct acatggcccc gggtgattta ttttttttgt atctacttct gacccttttc 120
aaatatacgg tcaactcatc tttcactgga gatgcggcct gcttggtatt gcgatgttgt 180
cagcttggca aattgtggct ttcgaaaaca caaaacgatt ccttagtagc catgcatttt 240
aagataacgg aatagaagaa agaggaaatt aaaaaaaaaa aaaaaacaaa catcccgttc 300
ataacccgta gaatcgccgc tcttcgtgta tcccagtacc acggcaaagg tatttcatga 360
tcgttcaatg ttgatattgt tcccgccagt atggctccac ccccatctcc gcgaatctcc 420
tcttctcgaa cgcggtagtg gcgcgccaat tggtaatgac ccatagggag acaaacagca 480
taatagcaac agtggaaatt agtggcgcaa taattgagaa cacagtgaga ccatagctgg 540
cggcctggaa agcactgttg gagaccaact tgtccgttgc gaggccaact tgcattgctg 600
tcaagacgat gacaacgtag ccgaggaccg tcacaaggga cgcaaagttg tcgcggatga 660
ggtctccgta gatggcatag ccggcaatcc gagagtagcc tctcaacagg tggccttttc 720
gaaaccggta aaccttgttc agacgtccta gccgcagctc accgtaccag tatcgaggat 780
tgacggcaga atagcagtgg ctctccagga tttgactgga caaaatcttc cagtattccc 840
aggtcacagt gtctggcaga agtcccttct cgcgtgcgag tcgaaagtcg ctatagtgcg 900
caatgagagc acagtaggag aataggaacc cgcgagcaca ttgttcaatc tccacatgaa 960
ttggatgact gctgggcaga atgtgctgcc tccaaaatcc tgcgtccaac agatactctg 1020
gcaggggctt cagatgaatg cctctgggcc cccagataag atgcagctct ggattctcgg 1080
ttacgatgat atcgcgagag agcacgagtt ggtgatggag gggacgagga ggcataggtc 1140
ggccgcaggc ccataaccag tcttgcacag cattgatctt cctcacgagg agctcctgat 1200
gcagaaactc ctccatgttg ctgattgggt tgagaatttc atcgctcctg gatcgtatgg 1260
ttgctggcaa gaccctgctt aaccgtgccg tgtcatggtc atctctggtg gcttcgtcgc 1320
tggcctgtct ttgcaattcg acagcaaatg gtggagatct ctctatcgtg acagtcatgg 1380
tagcgatagc taggtgtcgt tgcacgcaca taggccgaaa tgcgaagtgg aaagaatttc 1440
ccggcgcgga atgaagtctc gtcattttgt actcgtactc gacacctcca ccgaagtgtt 1500

Claims (2)

1.一株异源表达木聚糖酶/纤维素酶基因的里氏木霉菌株,其特征是:所述木聚糖酶/纤维素酶基因为CbXyn10c,密码子优化的CbXyn10c基因的核酸序列如SEQ ID No .1所示,CbXyn10c基因的表达框整合到天冬氨酸蛋白酶基因中,所述天冬氨酸蛋白酶基因的核酸序列如SEQ ID No.2所示。
2.权利要求1所述一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株在提高里氏木霉纤维素酶/木聚糖酶酶活性方面的应用;所述的提高里氏木霉纤维素酶/木聚糖酶酶活性指的是菌株发酵的复合酶系降解木聚糖类和纤维素类的底物的活性。
CN202111195832.XA 2021-10-14 2021-10-14 一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株及应用 Active CN113943662B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111195832.XA CN113943662B (zh) 2021-10-14 2021-10-14 一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111195832.XA CN113943662B (zh) 2021-10-14 2021-10-14 一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株及应用

Publications (2)

Publication Number Publication Date
CN113943662A CN113943662A (zh) 2022-01-18
CN113943662B true CN113943662B (zh) 2023-12-22

Family

ID=79329770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111195832.XA Active CN113943662B (zh) 2021-10-14 2021-10-14 一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株及应用

Country Status (1)

Country Link
CN (1) CN113943662B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115960869B (zh) * 2022-12-12 2024-01-30 华东理工大学 一种木聚糖酶及其分泌表达菌株的构建和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876706A (zh) * 2012-08-01 2013-01-16 中国科学院微生物研究所 高通量筛选高效表达外源蛋白的重组里氏木霉的方法
CN109234301A (zh) * 2018-09-11 2019-01-18 中国农业科学院饲料研究所 用于快速提高里氏木霉产纤维素酶系酶活的重组表达载体及其应用
CN112961788A (zh) * 2021-02-24 2021-06-15 江南大学 一种在里氏木霉中高产木聚糖酶的方法及其应用
CN113462582A (zh) * 2021-03-24 2021-10-01 天津科技大学 一株过表达Spt7基因的黑曲霉工程菌株与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816129B2 (en) * 1994-07-29 2010-10-19 Ab Enzymes Gmbh Production and secretion of proteins of bacterial origin in filamentous fungi
US6569646B2 (en) * 2001-02-23 2003-05-27 Council Of Scientific And Industrial Research Process for the production of an enzyme preparation containing xylanase and carboxymethyl cellulase from termitomyces clypeatus having accession no 11CB-411

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876706A (zh) * 2012-08-01 2013-01-16 中国科学院微生物研究所 高通量筛选高效表达外源蛋白的重组里氏木霉的方法
CN109234301A (zh) * 2018-09-11 2019-01-18 中国农业科学院饲料研究所 用于快速提高里氏木霉产纤维素酶系酶活的重组表达载体及其应用
CN112961788A (zh) * 2021-02-24 2021-06-15 江南大学 一种在里氏木霉中高产木聚糖酶的方法及其应用
CN113462582A (zh) * 2021-03-24 2021-10-01 天津科技大学 一株过表达Spt7基因的黑曲霉工程菌株与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The N-Terminal GH10 Domain of a Multimodular Protein from Caldicellulosiruptor bescii Is a Versatile Xylanase/ -Glucanase That Can Degrade Crystalline Cellulose;Xianli Xue等;Applied and Environmental Microbiology;第25卷(第11期);摘要 *

Also Published As

Publication number Publication date
CN113943662A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
Zhang et al. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1
Zhang et al. Development of the cellulolytic fungus Trichoderma reesei strain with enhanced β-glucosidase and filter paper activity using strong artifical cellobiohydrolase 1 promoter
CN106978360B (zh) 一株高产纤维素酶里氏木霉重组菌株及其应用
US10415045B2 (en) Fungal production system
CN112961788B (zh) 一种在里氏木霉中高产木聚糖酶的方法及其应用
AU2007244753B2 (en) Thermostable cellulase and methods of use
CN105802854B (zh) 一种纤维素酶高产菌株及其应用
CN107012102B (zh) 一株在可溶性和非可溶性碳源诱导下高产纤维素酶的里氏木霉基因工程菌及构建方法和应用
CN104975039B (zh) 一种重组质粒及其在降解纤维素原料中的应用
WO2021143696A1 (zh) 调控里氏木霉蛋白表达效率的因子、调控方法及应用
CN105238704A (zh) 一种快速提高里氏木霉纤维素酶酶活的方法
CN101870985B (zh) 一种内切-β-葡聚糖酶基因
CN107709559B (zh) 新型木聚糖酶
CN113943662B (zh) 一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株及应用
Jin et al. Heterologous expression of an endo-β-1, 4-glucanase gene from the anaerobic fungus Orpinomyces PC-2 in Trichoderma reesei
Wang et al. Co-expression of beta-glucosidase and laccase in Trichoderma reesei by random insertion with enhanced filter paper activity
US8088612B2 (en) Thermostable cellulase and methods of use
CN114875059B (zh) 一种新型里氏木霉异源蛋白表达系统的构建及其应用
CN115896049B (zh) 纤维二糖脱氢酶基因、载体、重组菌及它们的应用
CN113980939B (zh) 一种耐葡萄糖的β-葡萄糖苷酶及其表达基因和应用
CN115725550B (zh) 一种木聚糖酶突变体及其应用
WO2015076260A1 (ja) 耐熱性キシラナーゼ
CN111088244B (zh) 蛋白酶基因在促进纤维素酶生产和复杂氮源利用中的应用
CN118480452A (zh) 一种提高里氏木霉产纤维素酶的方法及应用
RU2612158C1 (ru) Новый рекомбинантный штамм мицелиального гриба penicillium canescens cs15, продуцирующий целлюлазу clostridium thermocellum, и способ его культивирования

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant