CN113943427A - 一种耐低温、抗失水导电水凝胶的制备方法及其应变传感器 - Google Patents
一种耐低温、抗失水导电水凝胶的制备方法及其应变传感器 Download PDFInfo
- Publication number
- CN113943427A CN113943427A CN202111157399.0A CN202111157399A CN113943427A CN 113943427 A CN113943427 A CN 113943427A CN 202111157399 A CN202111157399 A CN 202111157399A CN 113943427 A CN113943427 A CN 113943427A
- Authority
- CN
- China
- Prior art keywords
- hydrogel
- polyvinyl alcohol
- borax
- glycerol
- nano tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000017 hydrogel Substances 0.000 title claims abstract description 95
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 238000006297 dehydration reaction Methods 0.000 title abstract description 6
- 230000018044 dehydration Effects 0.000 title abstract description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 94
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 41
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 41
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 36
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 36
- 229910021538 borax Inorganic materials 0.000 claims abstract description 34
- 239000004328 sodium tetraborate Substances 0.000 claims abstract description 34
- 235000010339 sodium tetraborate Nutrition 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 6
- 235000011187 glycerol Nutrition 0.000 claims description 32
- 239000000243 solution Substances 0.000 claims description 24
- 238000007710 freezing Methods 0.000 claims description 14
- 230000008014 freezing Effects 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- 238000010257 thawing Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- 239000002105 nanoparticle Substances 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- PLKATZNSTYDYJW-UHFFFAOYSA-N azane silver Chemical compound N.[Ag] PLKATZNSTYDYJW-UHFFFAOYSA-N 0.000 claims description 4
- 238000004132 cross linking Methods 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 238000010382 chemical cross-linking Methods 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- 239000006185 dispersion Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 5
- 230000007547 defect Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 239000002904 solvent Substances 0.000 abstract description 2
- 230000008859 change Effects 0.000 description 13
- 239000000843 powder Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000009210 therapy by ultrasound Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 229920005839 ecoflex® Polymers 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000011540 sensing material Substances 0.000 description 2
- -1 silver nanoparticle-modified carbon nanotubes Chemical class 0.000 description 2
- 241001089723 Metaphycus omega Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 238000010413 gardening Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
- G01B7/18—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2329/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
- C08K2003/387—Borates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
- C08K5/053—Polyhydroxylic alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明提供一种耐低温、抗失水导电水凝胶的制备方法和其应变传感器。本发明所述水凝胶以聚乙烯醇和硼砂为水凝胶骨架,以水为溶剂,并掺入银纳米颗粒修饰的碳纳米管作为导电物质,甘油作为提高水凝胶的抗失水性能的物质掺入体系中。本发明的方法操作简单,制备得到的聚乙烯醇水凝胶同时具有弹性、延展性、导电性、抗低温以及抗失水性,克服了传统水凝胶导电性差、易失水以及不耐低温等特点,可以将其应用在低温材料以及应变传感等领域。
Description
【技术领域】
本发明属于高分子材料技术领域,具体涉及一种聚乙烯醇/硼砂/甘油/碳纳米管耐低温导电水凝胶的制备方法和应用。
【技术背景】
水凝胶是一种由交联聚合物组成的不溶于水的新型功能高分子材料,以其含水量高、柔软、具有橡胶般的粘稠性、种类繁多和良好的生物相容性在农林、园艺、纺织、医疗、人类仿生皮肤等方面具有广泛的应用。
超低分子量聚乙烯醇树脂,可在60-90℃水中溶解,其水溶液有很好的粘接性、成膜性和乳化性。它形成的膜具有优异的接着力,耐溶剂性,耐摩擦性,伸张强度与氧气阻绝性,同时,利用聚乙烯醇所制备得到的水凝胶除了具备一般凝胶的性能外,还具有低毒性、机械性能良好(高弹性模量和高机械强度)、吸水量大和生物相容性等优点,由于其机械性能良好,在可穿戴领域具有广泛的应用。
然而,目前大部分水凝胶材料在干旱条件下容易失水变干,在严寒气候下容易冻结失效,丧失很多功能,如弹性、导电性、透明性和自适应性等。文章ExtremelyStretchable Strain Sensors Based on Conductive Self-Healing Dynamic Cross-Links Hydrogels for Human-Motion Detection(Guofa Cai,Jiangxin Wang,Kai Qian,Jingwei Chen,Shaohui Li,and Pooi See Lee,Advanced Science.2017,4,1600190)中介绍的聚乙烯醇/具有较低的导电性能且几乎不具备保水性能;文章A self-healable andhighly flexible supercapacitor integrated by dynamically cross-linkedelectro-conductive hydrogels based on nanocellulose-templated carbonnanotubes embedded in a viscoelastic polymer network(Jingquan Han,HuixiangWang,Yiying Yue,Changtong Mei,Jizhang Chen,Chaobo Huang,Qinglin Wu,Xinwu Xu,Carbon.2019,149,1-18),中介绍的水凝胶只采用了聚乙烯醇和水的简单体系,当温度低于零下时,该水凝胶很容易冻结成刚性固体;文章Supramolecular nanofibrillarhydrogels as highly stretchable,elastic and sensitive ionic sensors(XiaohuiZhang,Nannan Sheng,Linan Wang,Yeqiang Tan,Chunzhao Liu,Yanzhi Xia,Zhihong Nieand Kunyan Sui,MATERIALS HORIZONS.2019,6,326-333)中介绍了海藻酸钠纳米纤维和聚丙烯酰胺构成的双网络水凝胶,其不具备防冻和保湿能力,阻碍了其应用发展。对于穿戴式导电水凝胶柔性器件,水凝胶内水的冻结会导致器件失去弹性和导电性以及其他性能,严重限制其在低温环境下的应用。因此,开发一种高导电、高拉伸、耐低温、保水性较好的水凝胶在传感领域具有重要意义。
【发明内容】
本发明提供了一种简单易实现的聚乙烯醇/硼砂/甘油/碳纳米管导电水凝胶的制备方法,该凝胶同时经历了化学交联和物理交联两个过程,通过添加银纳米颗粒修饰的碳纳米管(AgNPs@CNTs)作为导电骨架材料,使水凝胶在保持原本聚乙烯醇水凝胶的拉伸性能的同时,还兼具了导电性、弹性、抗低温性以及保湿性能,改善了水凝胶不导电、易失水、无法在低温下使用等缺点,在柔性传感以及仿生皮肤等领域存在着潜在的应用价值。
本发明提供一种可拉伸、耐低温、抗失水的导电水凝胶,其制备方法包括以下步骤:
步骤一、配置银氨溶液,将碳纳米管分散在银氨溶液中加热搅拌,利用254nm波长的紫外灯对分散的碳纳米管进行辐照,得到银纳米颗粒修饰的碳纳米管;
步骤二、将步骤一得到的银纳米颗粒修饰的碳纳米管经抽滤真空干燥后得到AgNPs@CNTs粉末,将其超声分散在去离子水溶液中,加入聚乙烯醇粉末,使其溶胀,静置消泡后,在90℃下加热搅拌2h,得到溶液A;
步骤三、将硼砂溶解在去离子水中,得到溶液B,向溶液A中加入甘油和溶液B,充分搅拌均匀,倒入模具中,在-20℃到-25℃环境下,反复冻融两次后即得到可拉伸、耐低温的抗失水导电水凝胶。
本发明的方案中,步骤一中,银氨溶液的浓度为8-10wt%,紫外灯加热搅拌照射时间为12h,碳纳米管溶液浓度为10-20mg/ml。
本发明的方案中,步骤二中,聚乙烯醇、银纳米颗粒修饰的碳纳米管的质量比为45∶8。
本发明的方案中,步骤二中,所述聚乙烯醇溶液浓度为20-25wt%,银纳米颗粒修饰碳管的浓度为0.05-0.10g/ml。
本发明的方案中,步骤三中,硼砂的浓度为8-16wt%,甘油、硼砂和水的体积比为4∶1∶4。
本发明还提供了上述可拉伸、耐低温的抗失水导电水凝胶在制备柔性可穿戴传感气动装置的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明在形成的三维互穿网络结构的物理化学交联的水凝胶中引入银纳米颗粒修饰的碳纳米管以及甘油,获得了低温下依旧可以拉伸导电的水凝胶。本水凝胶体系中,聚乙烯醇/硼砂/甘油/碳纳米管作为水凝胶的骨架结构,银纳米颗粒修饰的碳纳米管作为导电物质加入到水凝胶体系中,来提高水凝胶的导电能力,甘油作为一种耐低温抗失水物质添加在水凝胶中,来克服了聚乙烯醇/硼砂水凝胶本身易失水的特性,根据加入甘油后的水凝胶测试结果,保水率是未加入甘油的三倍左右。至此,我们得到了一种可拉伸、耐低温的抗失水导电水凝胶。
2.本发明所制备的可拉伸、耐低温的抗失水导电水凝胶可以对形变产生快速灵敏的电学响应,包括低温下也可以做出快速响应,在室温下最大可以拉伸250%,在-20℃最大可以拉伸90%,并且,通过向水凝胶中加入银纳米颗粒修饰的碳纳米管,使得水凝胶的电阻由0.5-1MΩ/cm降到20-30kΩ/cm,并且水凝胶的电阻随着温度的变化产生灵敏的变化,电阻随着温度的降低而升高。
【附图说明】
以下,结合附图来进行详细说明本发明中的实施方案,其中:
图1示意了本发明制备的聚乙烯醇/硼砂/甘油/碳纳米管水凝胶冻干后的扫描电镜图,可以看到制备出的水凝胶是具有三维孔状网络结构的。
图2示意了实施例1所制备得到的聚乙烯醇/硼砂/甘油/碳纳米管水凝胶在常温下进行拉伸测试得到的结果,在常温下随着拉伸倍数的增加,相对电阻变化也在增加,可以看到在室温下,水凝胶最大拉伸倍数为250%。
图3示意了实施例1所制备得到的聚乙烯醇/硼砂/甘油/碳纳米管水凝胶在-20℃下进行拉伸测试得到的结果,在-20℃下随着拉伸倍数的增加,相对电阻变化也在增加,可以看到在-20℃下,水凝胶最大拉伸倍数降低到90%,且电阻增加到0.3-0.5MΩ/cm。
图4左图示意了实施例2中不同溶度的硼砂溶液所制备的水凝胶的应力应变曲线图,可以看到随着硼砂溶液浓度的增大,最大形变量呈现一个先增加后减小的趋势,其中优选0.08g/ml为实施例1用量;
图4右图示意了实施例3中不同含量的银纳米颗粒修饰的碳纳米管所制备的水凝胶的应力应变曲线图,可以看到随着银纳米颗粒修饰的碳纳米管含量的增加,水凝胶的最大形变量呈现一个增加的趋势,其中优选0.025g/ml为实施例1用量。
图5左图示意了实施例4中冻融一次的聚乙烯醇/硼砂/甘油/碳纳米管水凝胶在常温下进行拉伸测试得到的结果,在常温下随着拉伸倍数的增加,相对电阻变化也在增加,但是可以看到在室温下,冻融一次的水凝胶的最大拉伸倍数只有120%,相比于实施例1中的水凝胶最大拉伸倍数明显降低;
图5右图示意了实施例4中冻融三次的聚乙烯醇/硼砂/甘油/碳纳米管水凝胶在常温下进行拉伸测试得到的结果,在常温下随着拉伸倍数的增加,相对电阻变化也在增加,但是可以看到在室温下,冻融三次的水凝胶的最大拉伸倍数只有130%,相比于实施例1中的水凝胶最大拉伸倍数明显降低;
图6为本发明中制备的聚乙烯醇/硼砂/甘油/碳纳米管水凝胶的相对电阻变化随着温度变化的循环曲线,可以看出本发明制备的水凝胶的电阻可以实时随着温度的变化进行变化,对于温度的传感比较灵敏,可以作为一种温度的传感材料。
图7为实施例1中聚乙烯醇/硼砂/甘油/碳纳米管水凝胶和文献中制备的聚乙烯醇/硼砂体系水凝胶以及实施例1水凝胶干燥后重新吸水的水凝胶三者对比静置在室温下的失水状况,可以看到,加入甘油后的水凝胶的保水性能要比之前水凝胶的保水性能提高三倍左右。
图8为实施例1中所得聚乙烯醇/硼砂/甘油/碳纳米管水凝胶制成的一个气动装置进行测试该水凝胶的传感性能,从图中可以看出此发明所得水凝胶可以与Ecoflex弹性材料构成气动装置,通入气体后产生形变,并对该形变具有良好的传感性能,灵敏度很高,可以作为一种监测气体通入量的传感材料。
【具体实施方式】
下面结合附图和实施例,对本发明进行具体描述。
实施例1:
配置0.025g/ml的银纳米颗粒修饰后的碳纳米管溶液,超声30min,继续向其中加入22.5wt%的聚乙烯醇溶液(M=89000-98000),在90℃下磁力加热搅拌2h,静置消泡,向其中加入甘油2ml以及16wt%的硼砂溶液0.5ml,搅拌均匀,将所得混合溶液倒入模具,随后放入冰箱冷冻,冷冻温度为-20℃,冷冻时间为24h,在室温下解冻30min,后再冷冻2h,循环次数为2。其拉伸性能以及传感性能如图2,水凝胶最大拉伸倍数为250%,随着拉伸倍数的增加,相对电阻变化也在增加,且呈现稳定的重复率;在低温下的拉伸传感性能如图3,水凝胶最大拉伸倍数降低到90%,且电阻增加到0.3-0.5M数降低到,且呈现稳定的重复率;以及相对电阻变化随温度的变化如图6,本发明所得水凝胶的电阻可以对温度产生灵敏的响应,随着温度的降低,电阻增大并且TCR达到2.925%/℃,说明该水凝胶对于热响应的灵敏度很高;以及其保水性能如图7,聚乙烯醇/硼砂/甘油/碳纳米管水凝胶较简单的聚乙烯醇/硼砂/碳纳米管体系水凝胶以及实施例1水凝胶干燥后重新吸水的水凝胶三者对比静置在室温下的失水状况,可以看到,加入甘油后的水凝胶的耐失水性能要比之前的水凝胶提高三倍左右;其气动传感应用如图8,图中可以看出此发明所得水凝胶可以与Ecoflex弹性材料构成气动装置,产生形变后具有良好的传感性能和高灵敏度。
实施例2:
配置0.025g/ml的银纳米颗粒修饰后的碳纳米管溶液,超声30min,继续向其中加入22.5wt%的聚乙烯醇溶液(M=89000-98000),在90℃下磁力加热搅拌2h,静置消泡,向其中加入甘油2ml以及分别加入0.5ml的硼砂溶液(0.02g/ml、0.04g/ml、0.06g/ml、0.08g/ml、0.10g/ml、0.12g/ml、0.14g/ml),搅拌均匀,将所得混合溶液倒入模具,随后放入冰箱冷冻,冷冻温度为-20℃,冷冻时间为24h,在室温下解冻30min,后再冷冻2h,循环次数为2。制备所得到的水凝胶应力应变图如图4左所示,根据硼砂溶液的浓度不同,最大拉伸形变量呈现一个先增加后降低的趋势,其中当硼砂溶液的浓度为0.08g/ml时,拉伸形变量最大,所以优选为实施例1。
实施例3:
配置0.000g/ml、0.005g/ml、0.015g/ml的银纳米颗粒修饰后的碳纳米管溶液,超声30min,继续向其中加入22.5wt%的聚乙烯醇溶液(M=89000-98000),在90℃下磁力加热搅拌2h,静置消泡,向其中加入甘油2ml以及16wt%的硼砂溶液0.5ml,搅拌均匀,将所得混合溶液倒入模具,随后放入冰箱冷冻,冷冻温度为-20℃,冷冻时间为24h,在室温下解冻30min,后再冷冻2h,循环次数为2。制备所得到的水凝胶应力应变图如图4右所示,根据银纳米颗粒修饰后的碳纳米管的浓度不同,最大拉伸形变量呈现一个增长的趋势,其中实施例1为最大拉伸形变,超过0.025g/ml不能形成水凝胶,因此优选为实施例1。
实施例4:
配置0.025g/ml的银纳米颗粒修饰后的碳纳米管溶液,超声30min,继续向其中加入22.5wt%的聚乙烯醇溶液(M=89000-98000),在90℃下磁力加热搅拌2h,静置消泡,向其中加入甘油2ml以及16wt%的硼砂溶液0.5ml,搅拌均匀,将所得混合溶液倒入模具,随后放入冰箱冷冻,冷冻温度为-20℃,冷冻时间为24h,在室温下解冻30min,后再冷冻2h,分别循环次数为1和3。其中循环次数为1的拉伸性能以及传感性能如图5左图,循环次数为3的拉伸性能以及传感性能如图5右图,最大拉伸倍数只能分别达到120%和130%,明显低于实施例1,且二者相对电阻变化也明显不如实施例1。
显然,上述仅为本发明的优选实施例,并不用于限制本发明。只要在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (5)
1.一种聚乙烯醇/硼砂/甘油/碳纳米管水凝胶,其由化学交联和物理交联两种交联方式构成,以聚乙烯醇和硼砂形成动态硼酸酯键作为化学交联,以聚乙烯醇加入甘油后经过冷冻-解冻反复冻融处理作为物理交联。该水凝胶具有耐低温、抗失水、导电的特性,且其电阻对拉伸变形具有良好的响应,能够用于应变传感。
2.根据权利1要求所述的聚乙烯醇/硼砂/甘油/碳纳米管耐低温导电水凝胶,其制备工艺是将制备好的银纳米颗粒修饰的碳纳米管通过超声均匀分散在去离子水中,加入一定量聚乙烯醇后,加热搅拌,再依次加入甘油以及硼砂溶液,放入模具中后进行反复冻融,得到权利1要求所述水凝胶。其特征在于,所述导电水凝胶的导电物质,为银纳米颗粒修饰的碳纳米管;
优选的,所述碳纳米管的直径为30-80nm,长度为0.5-2μm,分散在去离子水中浓度为0.05-0.10g/ml;
优选的,将0.05-0.10g碳纳米管分散在5-10ml银氨溶液(8%-10wt%)中,用紫外灯(波长为254nm)照射分散液6-8小时,还原产生的银纳米颗粒化学吸附在碳纳米管表面,银纳米颗粒粒径为10-30nm;
优选的,所述聚乙烯醇的数均分子量为89000-98000,聚乙烯醇的水溶液浓度为20-25wt%;
优选的,所述加入甘油、硼砂溶液(8-16wt%)以及水的体积比为4∶1∶4。
3.根据权利1要求所述的聚乙烯醇/硼砂/甘油/碳纳米管导电水凝胶,其特征在于,所述冷冻-解冻处理包括在-20℃到-25℃的范围内进行冷冻24h后解冻30-60min,循环两次。
4.根据权利1要求所述的聚乙烯醇/硼砂/甘油/碳纳米管导电水凝胶,其特征在于,常温未拉伸状态下电阻为20-30kΩ/cm,-20℃未拉伸状态下为0.3-0.5MΩ/cm。
5.一种应变传感器,其结构中包含权利要求1至4中任一项所述的聚乙烯醇/硼砂/甘油/碳纳米管耐低温导电水凝胶或以权利要求1至4中任一项所述的聚乙烯醇/硼砂/甘油/碳纳米管耐低温导电水凝胶为基质或导电材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111157399.0A CN113943427A (zh) | 2021-09-30 | 2021-09-30 | 一种耐低温、抗失水导电水凝胶的制备方法及其应变传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111157399.0A CN113943427A (zh) | 2021-09-30 | 2021-09-30 | 一种耐低温、抗失水导电水凝胶的制备方法及其应变传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113943427A true CN113943427A (zh) | 2022-01-18 |
Family
ID=79329062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111157399.0A Pending CN113943427A (zh) | 2021-09-30 | 2021-09-30 | 一种耐低温、抗失水导电水凝胶的制备方法及其应变传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113943427A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114736477A (zh) * | 2022-05-18 | 2022-07-12 | 浙江大学 | 一种抗冻水凝胶、其制备方法及适用于极低温响应的柔性温度传感器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101683978A (zh) * | 2008-06-09 | 2010-03-31 | 香港科技大学 | 一种制备银纳米颗粒修饰的碳纳米管的方法 |
CN106823019A (zh) * | 2016-12-21 | 2017-06-13 | 南京大学 | 一种自修复超声穿刺用聚乙烯醇水凝胶仿生材料及其制备方法和应用 |
CN109294133A (zh) * | 2018-09-25 | 2019-02-01 | 南京工业大学 | 可拉伸自愈合水凝胶柔性应变传感器及其制备方法 |
CN109294134A (zh) * | 2018-09-29 | 2019-02-01 | 福建农林大学 | 一种自修复超灵敏导电电子皮肤传感器材料及其制备方法 |
CN112210114A (zh) * | 2020-10-27 | 2021-01-12 | 福州大学 | 一种超高强度多功能聚乙烯醇基油凝胶弹性体的制备方法 |
-
2021
- 2021-09-30 CN CN202111157399.0A patent/CN113943427A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101683978A (zh) * | 2008-06-09 | 2010-03-31 | 香港科技大学 | 一种制备银纳米颗粒修饰的碳纳米管的方法 |
CN106823019A (zh) * | 2016-12-21 | 2017-06-13 | 南京大学 | 一种自修复超声穿刺用聚乙烯醇水凝胶仿生材料及其制备方法和应用 |
CN109294133A (zh) * | 2018-09-25 | 2019-02-01 | 南京工业大学 | 可拉伸自愈合水凝胶柔性应变传感器及其制备方法 |
CN109294134A (zh) * | 2018-09-29 | 2019-02-01 | 福建农林大学 | 一种自修复超灵敏导电电子皮肤传感器材料及其制备方法 |
CN112210114A (zh) * | 2020-10-27 | 2021-01-12 | 福州大学 | 一种超高强度多功能聚乙烯醇基油凝胶弹性体的制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114736477A (zh) * | 2022-05-18 | 2022-07-12 | 浙江大学 | 一种抗冻水凝胶、其制备方法及适用于极低温响应的柔性温度传感器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | High‐performance and breathable polypyrrole coated air‐laid paper for flexible all‐solid‐state supercapacitors | |
Lin et al. | One-pot synthesis of a double-network hydrogel electrolyte with extraordinarily excellent mechanical properties for a highly compressible and bendable flexible supercapacitor | |
Li et al. | Facile preparation of stretchable and self-healable conductive hydrogels based on sodium alginate/polypyrrole nanofibers for use in flexible supercapacitor and strain sensors | |
Yu et al. | Highly sensitive, weatherability strain and temperature sensors based on AgNPs@ CNT composite polyvinyl hydrogel | |
Zhan et al. | Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability | |
WO2021114321A1 (zh) | 一种柔性导电纤维膜材料及其制备方法 | |
Fan et al. | Highly aligned graphene/biomass composite aerogels with anisotropic properties for strain sensing | |
Muthuraj et al. | Vapor and pressure sensors based on cellulose nanofibers and carbon nanotubes aerogel with thermoelectric properties | |
CN106422995A (zh) | 一种石墨烯气凝胶和其杂化复合材料及其制备方法与应用 | |
CN111944167B (zh) | 一种导电水凝胶及其制备方法和应用 | |
Zhang et al. | The preparation of high performance Multi-functional porous sponge through a biomimic coating strategy based on polyurethane dendritic colloids | |
Hu et al. | Research progress of smart response composite hydrogels based on nanocellulose | |
Fu et al. | Multifunctional biomass composite aerogel co-modified by MXene and Ag nanowires for health monitoring and synergistic antibacterial applications | |
Zhao et al. | A fast self-healable and stretchable conductor based on hierarchical wrinkled structure for flexible electronics | |
Li et al. | A composite of polyelectrolyte-grafted multi-walled carbon nanotubes and in situ polymerized polyaniline for the detection of low concentration triethylamine vapor | |
CN110726754B (zh) | 一种器件表面原位组装石墨烯气凝胶的制备方法及气敏应用 | |
CN113943427A (zh) | 一种耐低温、抗失水导电水凝胶的制备方法及其应变传感器 | |
Moreno et al. | Silver nanowires/polycarbonate composites for conductive films | |
Yang et al. | PANI/Ti3C2Tx composite nanofiber-based flexible conductometric sensor for the detection of NH3 at room temperature | |
Lee et al. | A conducting composite microfiber containing graphene/silver nanowires in an agarose matrix with fast humidity sensing ability | |
Yi et al. | An MXene-doped PVA/PVP hydrogel-based strain sensor applicable in liquid environment | |
Madhanagopal et al. | Enhanced wide‐range monotonic piezoresistivity, reliability of Ketjenblack/deproteinized natural rubber nanocomposite, and its biomedical application | |
Zhao et al. | CNT-Br/PEDOT: PSS/PAAS three-network composite conductive hydrogel for human motion monitoring | |
Rastegardoost et al. | Highly durable triboelectric nanogenerators based on fibrous fluoropolymer composite mats with enhanced mechanical and dielectric properties | |
CN110863345B (zh) | 导电复合纤维束及其制备方法和有机电化学晶体管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220118 |
|
WD01 | Invention patent application deemed withdrawn after publication |