CN113929469A - 一种抗摔陶瓷材料及其制备方法 - Google Patents

一种抗摔陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113929469A
CN113929469A CN202111345558.XA CN202111345558A CN113929469A CN 113929469 A CN113929469 A CN 113929469A CN 202111345558 A CN202111345558 A CN 202111345558A CN 113929469 A CN113929469 A CN 113929469A
Authority
CN
China
Prior art keywords
ceramic
ceramic material
powder
mixed powder
falling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111345558.XA
Other languages
English (en)
Other versions
CN113929469B (zh
Inventor
刘强
叶枫
周玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang Porcelain Innovation Materials Co.,Ltd.
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202111345558.XA priority Critical patent/CN113929469B/zh
Publication of CN113929469A publication Critical patent/CN113929469A/zh
Application granted granted Critical
Publication of CN113929469B publication Critical patent/CN113929469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了一种抗摔陶瓷材料及其制备方法,涉及陶瓷材料技术领域,所述抗摔陶瓷材料的制备方法包括:将30‑80体积分数的陶瓷粉体、5‑50体积分数的陶瓷前驱体与1‑20体积分数的烧结助剂混合,形成第一混合粉体;将第一混合粉体置于惰性气氛或第一还原气氛中进行热处理,得到第二混合粉体;将第二混合粉体与醇类试剂混合,得到陶瓷浆料;将氮化硼先驱体溶于去离子水中得到饱和溶液,并将所述饱和溶液加入到所述陶瓷浆料中,搅拌至混合后的陶瓷浆料中所述去离子水与所述醇类试剂的质量比为1:40‑1:20,经干燥后,得到第三混合粉体;将第三混合粉体于第二还原气氛中进行热处理、成型、烧结后得到抗摔陶瓷材料。本发明抗摔陶瓷材料抗摔能力强,使用可靠性高。

Description

一种抗摔陶瓷材料及其制备方法
技术领域
本发明涉及陶瓷材料技术领域,具体而言,涉及一种抗摔陶瓷材料及其制备方法。
背景技术
陶瓷材料具有许多十分优异的性能,如耐高温、耐腐蚀、高强度以及抗菌等,但其十分易碎,使得陶瓷制品在使用过程中往往由于碰撞和摔落产生损伤甚至破坏,使用可靠性不足,限制了其广泛的使用,因此,提高陶瓷材料的抗摔能力和使用可靠性一直是陶瓷材料研究及陶瓷产品生产中的重点关注问题,也是一个难题。
目前,仅有纤维增韧的陶瓷这一类陶瓷材料才具有良好的抗摔能力,由于陶瓷纤维高温性能稳定性不足,为避免纤维经高温处理时受到损伤,该类材料限于采用前驱体浸渍裂解或者,化学气相沉积等工艺,然而受前驱体原材料及陶瓷纤维种类少等限制,能生产的品类少;而且对制备工艺要求高,制备成本高、周期长,不适宜于大规模生产,也难以得到广泛的应用。因此,现有技术中除了纤维增韧的陶瓷材料之外,还未实现商品化的抗摔陶瓷及其器件的制备。
与纤维增韧陶瓷材料制备工艺不同,目前大批量产业化的陶瓷制品常采用陶瓷粉体为原料,经过粉末成型后再烧结的工艺,该工艺流程相对成熟,制备成本较低、周期短,适宜于大规模生产。然而,目前的可低成本制备的陶瓷产品抗摔能力差,难以保证从2米以上的高度跌落在大理石、陶瓷等硬度较高的地板上不损伤。
发明内容
本发明解决的问题是现有技术中可低成本制备的陶瓷产品抗摔能力差。
为解决上述问题,本发明提供一种抗摔陶瓷材料的制备方法,包括如下步骤:
步骤S1,将30-80体积分数的陶瓷粉体、5-50体积分数的陶瓷前驱体与1-20体积分数的烧结助剂混合,形成第一混合粉体;
步骤S2,将步骤S1所述的第一混合粉体置于惰性气氛或第一还原气氛中进行热处理,得到第二混合粉体;
步骤S3,将所述第二混合粉体与醇类试剂混合,得到陶瓷浆料;
步骤S4,将氮化硼先驱体溶于去离子水中得到饱和溶液,并将所述饱和溶液加入到所述陶瓷浆料中,搅拌至混合后的陶瓷浆料中所述去离子水与所述醇类试剂的质量比为1:40-1:20,经干燥后,得到第三混合粉体;
步骤S5,将所述第三混合粉体于第二还原气氛中进行热处理,得到改性陶瓷粉体;
步骤S6,将所述改性陶瓷粉体成型后进行烧结处理,得到抗摔陶瓷材料。
较佳地,步骤S1中所述陶瓷粉体包括氧化铝、氮化硅、碳化硅和氮化硼中的一种或几种。
较佳地,步骤S1中所述陶瓷前驱体包括铝溶胶、聚硅氮烷、聚硅氧烷和聚硅碳烷中的一种或几种。
较佳地,步骤S1中所述烧结助剂包括纳米稀土氧化物粉体、纳米氧化铝、纳米氧化硅以及含镁、钙、锶及钡元素的无机盐或氧化物中的一种或几种。
较佳地,步骤S2中,所述惰性气氛包括氩气或氮气,所述第一还原气氛包括氩气,或者,所述第一还原气氛包括氮气与10vol%氢气的混合气体。
较佳地,步骤S2中,所述热处理的过程包括:在650-1400℃的温度下热处理30min以上。
较佳地,步骤S4中所述氮化硼先驱体包括含硼化合物,所述含硼化合物包括硼酸、四硼酸铵或五硼酸铵中的一种。
较佳地,步骤S5中,所述热处理的过程包括:在800-1200℃的温度下热处理2-10h。
较佳地,步骤S6中,所述烧结处理的过程包括:在1500-2000℃的温度下常压烧结或气压烧结1-4h。
本发明所述的抗摔陶瓷材料的制备方法相对于现有技术的优势在于:本发明通过将陶瓷前驱体与陶瓷粉体作为原料,在制备过程中原料间产生前驱体裂解、系列相变及与主晶相陶瓷粉体发生化学反应等系列化学变化,获得纳米级陶瓷粉体与微米级陶瓷粉体多相均匀混合的陶瓷抗摔材料,且陶瓷抗摔材料具有高长径比的微米级棒晶与高径厚比的纳米级片晶显微结构,且使得材料抗摔性能得到了显著提升,所制备的陶瓷抗摔材料和产品具有优异的“抗摔能力”,使用可靠性高。因此,本发明可以低成本、高效率、批量化制备出抗摔能力接近纤维增韧的陶瓷材料,替代常用的易碎陶瓷,将大大提高陶瓷产品的使用可靠性,可为航空航天领域、冶金工业领域及生活领域中的使用的陶瓷材料提高使用可靠性,具有十分巨大的应用价值和社会、经济效益。
为解决上述技术问题,本发明还提供一种抗摔陶瓷材料,基于所述的抗摔陶瓷材料的制备方法制备。
本发明所述的抗摔陶瓷材料与所述抗摔陶瓷材料的制备方法相对于现有技术的优势相同,在此不再赘述。
附图说明
图1为本发明实施例中抗摔陶瓷材料的制备方法流程图;
图2为本发明实施例中抗摔陶瓷材料的显微结构示意图;
图3为本发明对比例中抗摔陶瓷材料的显微结构示意图。
具体实施方式
需要说明的是,在本申请实施例的描述中,术语“一些具体的实施例”的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
如图1所示,本发明实施例提供抗摔陶瓷材料的制备方法,包括如下步骤:
步骤S1,将30-80体积分数的陶瓷粉体、5-50体积分数的陶瓷前驱体与1-20体积分数的烧结助剂混合,形成第一混合粉体;
步骤S2,将步骤S1所述的第一混合粉体置于惰性气氛或第一还原气氛中进行热处理,得到第二混合粉体;
步骤S3,将所述第二混合粉体与醇类试剂混合,得到陶瓷浆料;
步骤S4,将氮化硼先驱体溶于去离子水中得到饱和溶液,并将所述饱和溶液加入到所述陶瓷浆料中,搅拌至混合后的陶瓷浆料中所述去离子水与所述醇类试剂的质量比为1:40-1:20,经干燥后,得到第三混合粉体;
步骤S5,将所述第三混合粉体于第二还原气氛中进行热处理,得到改性陶瓷粉体;
步骤S6,将所述改性陶瓷粉体成型后进行烧结处理,得到抗摔陶瓷材料。
由此,本实施例中的抗摔陶瓷材料的制备方法通过将陶瓷前驱体与陶瓷粉体作为原料,获得纳米级陶瓷粉体与微米级陶瓷粉体多相均匀混合的陶瓷抗摔材料,使得所制备的陶瓷材料和产品具有优异的“抗摔能力”,使用可靠性高。
需要说明的是,本实施例中在制备过程中原料间产生前驱体裂解、系列相变及与主晶相陶瓷粉体发生化学反应等系列化学变化,其中陶瓷前驱体裂解后生成纳米尺度的氧化硼、氧化硅、氧化铝等;系列相变包括氧化硼与氮气反应生成六方氮化硼,氧化硅与氮气反应生成氮化硅等;与主晶相陶瓷粉体发生化学反应包括稀土氧化物与前驱体裂解产物发生反应生成熔融相,促进主晶相陶瓷的传质与烧结。且本实施例中,由于纳米粉体表面能高,加速了原料之间的化学反应以及提高了烧结活性,最终原位生成包含高长径比的微米级棒晶与高径厚比的纳米级片晶显微结构的新型陶瓷材料,所制成的陶瓷板(100mm×50mm×2mm)、陶瓷管(外径20mm,壁厚2.5mm,长200mm)及复杂薄壁构件(高度60mm,壁厚4mm的猫头鹰造型构件)从2米以上的高度跌落在大理石上不会破坏(持续20次以上)。
在一些实施例中,步骤S1中所述陶瓷粉体包括氧化铝、氮化硅、碳化硅和氮化硼中的一种或几种,材料易得,成本低。
在一些优选的实施例中,陶瓷粉体的粒径范围包括0.25-2.5μm。
在一些实施例中,步骤S1中所述陶瓷前驱体包括铝溶胶、聚硅氮烷、聚硅氧烷和聚硅碳烷中的一种或几种,材料易得,成本低。
在一些实施例中,步骤S1中所述烧结助剂包括纳米稀土氧化物粉体、纳米氧化铝、纳米氧化硅以及含镁、钙、锶及钡元素的无机盐或氧化物中的一种或几种。由此,有助于陶瓷粉体与陶瓷前驱体的混合。
在一些实施例中,步骤S2中,所述惰性气氛包括氩气或氮气,所述第一还原气氛包括氩气,或者,所述第一还原气氛包括氮气与10vol%氢气的混合气体。由此,避免空气中氧气和水蒸气的引入,影响材料的混合。
在一些实施例中,步骤S2中,所述热处理的过程包括:在650-1400℃的温度下热处理30min以上。热处理效果好。
在一些实施例中,步骤S3中,醇类试剂包括甲醇、无水乙醇等一般小分子醇类物质,使得浆料混合效果更好。
在一些实施例中,步骤S4中所述氮化硼先驱体包括含硼化合物,所述含硼化合物包括硼酸、四硼酸铵或五硼酸铵中的一种。材料易得。
在一些优选的实施例中,将氮化硼先驱体溶于去离子水中得到饱和溶液,并将所述饱和溶液逐滴加入到所述陶瓷浆料中,使得从饱和溶液中析出物粒度更细。并不断机械搅拌至混合后的陶瓷浆料中所述去离子水与所述醇类试剂的质量比为1:40-1:20,由此,保证充分析出及分散,同时减少成本。
在一些实施例中,步骤S4中使用旋转蒸发干燥至陶瓷浆料中的溶剂蒸发,使得干燥更加充分,得到第三混合粉体,且第三混合粉体为陶瓷粉体与氮化硼先驱体的混合粉体。
在一些实施例中,步骤S5中第二还原气氛包括氨气、氩气,或者,第二还原气氛包括氮气与10vol%氢气的混合气体。
在一些实施例中,步骤S5中,所述热处理的过程包括:在800-1200℃的温度下热处理2-10h。热处理效果好。
在一些实施例中,步骤S6中,所述烧结处理的过程包括:在1500-2000℃的温度下常压烧结或气压烧结1-4h。烧结效果好。
本实施例所述的抗摔陶瓷材料的制备方法相对于现有技术的优势在于:本发明通过将陶瓷前驱体与陶瓷粉体作为原料,在制备过程中原料间产生前驱体裂解、系列相变及与主晶相陶瓷粉体发生化学反应等系列化学变化,获得纳米级陶瓷粉体与微米级陶瓷粉体多相均匀混合的陶瓷抗摔材料,且陶瓷抗摔材料具有高长径比的微米级棒晶与高径厚比的纳米级片晶显微结构,且使得材料抗摔性能得到了显著提升,所制备的陶瓷抗摔材料和产品具有优异的“抗摔能力”,使用可靠性高。因此,本实施例可以低成本、高效率、批量化制备出抗摔能力接近纤维增韧的陶瓷材料,替代常用的易碎陶瓷,将大大提高陶瓷产品的使用可靠性,可为航空航天领域、冶金工业领域及生活领域中的使用的陶瓷材料提高使用可靠性,具有十分巨大的应用价值和社会、经济效益。
本发明的另一个实施例还提供一种抗摔陶瓷材料,基于所述的抗摔陶瓷材料的制备方法制备。
本实施例所述的抗摔陶瓷材料与所述抗摔陶瓷材料的制备方法相对于现有技术的优势相同,在此不再赘述。
实施例1
本实施例提供一种抗摔陶瓷材料的制备方法,包括如下步骤:
步骤1,将30体积分数的陶瓷粉体、50体积分数的陶瓷前驱体与20体积分数的烧结助剂混合,形成第一混合粉体;其中,陶瓷粉体是氮化硅,粒径为0.25μm,陶瓷前驱体是聚硅氮烷,烧结助剂是纳米稀土氧化钇粉体和纳米氧化铝粉体的组合,且纳米氧化钇粉体与纳米氧化铝粉体的摩尔比为3:5。
步骤2,将步骤1所述的第一混合粉体置于氮气中进行热处理,得到第二混合粉体;其中,热处理的温度为1000℃,热处理时间120min。
步骤3,将30体积分数的第二混合粉体与70体积分数无水乙醇混合,得到陶瓷浆料;
步骤4,将五硼酸铵溶于去离子水中得到饱和溶液,并将所述饱和溶液逐滴加入到所述陶瓷浆料中,同时不停地采用机械搅拌至混合后的陶瓷浆料中所述去离子水与无水乙醇的质量比为1:40,经旋转蒸发干燥后,得到第三混合粉体;
步骤5,将所述第三混合粉体放置于坩埚中,并通入流动的还原气氛高温炉中,升温到1200℃,保温4小时,得到改性陶瓷粉体;
步骤S6,将所述改性陶瓷粉体进行注浆成型,干燥后进行气压烧结,烧结温度为1800℃,保温时间为1小时,氮气压力6MPa,得到抗摔的氮化物基复相陶瓷材料。
如图2所示,本实施例获得的陶瓷抗摔材料具有高长径比的微米级棒晶与高径厚比的纳米级片晶显微结构,且本实施例获得的陶瓷抗摔材料所制成的陶瓷板(100mm×50mm×2mm)、陶瓷管(外径20mm,壁厚2.5mm,长200mm)及复杂薄壁构件(高度60mm,壁厚4mm的猫头鹰造型构件)从2米以上的高度跌落在大理石上持续20次不会破坏。
对比例
本实施例与实施例1的区别之处仅在于采用传统的陶瓷制备工艺,具体在于采用以与实施例1中最终得到的氮化物基复相陶瓷材料中的物相为原料,包含氮化硅粉体、六方氮化硼粉体、纳米氧化钇及氧化铝粉体,混合均匀后形成第一混合粉体,并采用等静压成型,然后采用与实施例1相同的烧结处理工艺,所制备的陶瓷材料的显微结构如图3所示,且经验证,其抗摔能力与普通的陶瓷材料相当,十分易碎,并无明显的提高。
实施例2
本实施例提供一种抗摔陶瓷材料的制备方法,包括如下步骤:
步骤1,将50体积分数的陶瓷粉体、30体积分数的陶瓷前驱体与10体积分数的烧结助剂混合,形成第一混合粉体;其中,陶瓷粉体是碳化硅和氮化硅,粒径分别为0.5μm和0.25μm,陶瓷前驱体是聚硅氮烷,烧结助剂是纳米稀土氧化钇粉体和纳米氧化铝粉体的组合,且纳米氧化钇粉体与纳米氧化铝粉体的摩尔比为3:5。
步骤2,将步骤1所述的第一混合粉体置于氩气中进行热处理,得到第二混合粉体;其中,热处理的温度为1200℃,热处理时间100min。
步骤3,将30体积分数的第二混合粉体与70体积分数无水乙醇混合,得到陶瓷浆料;
步骤4,将五硼酸铵溶于去离子水中得到饱和溶液,并将所述饱和溶液逐滴加入到所述陶瓷浆料中,同时不停地采用机械搅拌至混合后的陶瓷浆料中所述去离子水与无水乙醇的质量比为1:30,经旋转蒸发干燥后,得到第三混合粉体;
步骤5,将所述第三混合粉体放置于坩埚中,并通入流动的氨气高温炉中,升温到800℃,保温10小时,得到改性陶瓷粉体;
步骤6,将所述改性陶瓷粉体进行注浆成型,干燥后进行气压烧结,烧结温度为1600℃,保温时间为3小时,氮气压力1MPa,得到抗摔的氮化物基复相陶瓷材料。
实施例3
本实施例提供一种抗摔陶瓷材料的制备方法,包括如下步骤:
步骤1,将30体积分数的陶瓷粉体、5体积分数的陶瓷前驱体与1体积分数的烧结助剂混合,形成第一混合粉体;其中,陶瓷粉体是氧化铝,粒径分别为0.5μm,陶瓷前驱体是铝溶胶,烧结助剂是纳米稀土氧化钇粉体和纳米氧化铝粉体的组合,且纳米氧化钇粉体与纳米氧化铝粉体的摩尔比为3:5。
步骤2,将步骤1所述的第一混合粉体置于氩气中进行热处理,得到第二混合粉体;其中,热处理的温度为1400℃,热处理时间80min。
步骤3,将30体积分数的第二混合粉体与70体积分数无水乙醇混合,得到陶瓷浆料;
步骤4,将四硼酸铵溶于去离子水中得到饱和溶液,并将所述饱和溶液逐滴加入到所述陶瓷浆料中,同时不停地采用机械搅拌至混合后的陶瓷浆料中所述去离子水与无水乙醇的质量比为1:20,经旋转蒸发干燥后,得到第三混合粉体;
步骤5,将所述第三混合粉体放置于坩埚中,并通入流动的氨气高温炉中,升温到1200℃,保温2小时,得到改性陶瓷粉体;
步骤6,将所述改性陶瓷粉体进行注浆成型,干燥后进行气压烧结,烧结温度为1600℃,保温时间为4小时,氮气压力1MPa,得到抗摔的氮化物基复相陶瓷材料。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (10)

1.一种抗摔陶瓷材料的制备方法,其特征在于,包括如下步骤:
步骤S1,将30-80体积分数的陶瓷粉体、5-50体积分数的陶瓷前驱体与1-20体积分数的烧结助剂混合,形成第一混合粉体;
步骤S2,将步骤S1所述的第一混合粉体置于惰性气氛或第一还原气氛中进行热处理,得到第二混合粉体;
步骤S3,将所述第二混合粉体与醇类试剂混合,得到陶瓷浆料;
步骤S4,将氮化硼先驱体溶于去离子水中得到饱和溶液,并将所述饱和溶液加入到所述陶瓷浆料中,搅拌至混合后的陶瓷浆料中所述去离子水与所述醇类试剂的质量比为1:40-1:20,经干燥后,得到第三混合粉体;
步骤S5,将所述第三混合粉体于第二还原气氛中进行热处理,得到改性陶瓷粉体;
步骤S6,将所述改性陶瓷粉体成型后进行烧结处理,得到抗摔陶瓷材料。
2.根据权利要求1所述的抗摔陶瓷材料的制备方法,其特征在于,步骤S1中所述陶瓷粉体包括氧化铝、氮化硅、碳化硅和氮化硼中的一种或几种。
3.根据权利要求1所述的抗摔陶瓷材料的制备方法,其特征在于,步骤S1中所述陶瓷前驱体包括铝溶胶、聚硅氮烷、聚硅氧烷和聚硅碳烷中的一种或几种。
4.根据权利要求1所述的抗摔陶瓷材料的制备方法,其特征在于,步骤S1中所述烧结助剂包括纳米稀土氧化物粉体、纳米氧化铝、纳米氧化硅以及含镁、钙、锶及钡元素的无机盐或氧化物中的一种或几种。
5.根据权利要求1所述的抗摔陶瓷材料的制备方法,其特征在于,步骤S2中,所述惰性气氛包括氩气或氮气,所述第一还原气氛包括氩气,或
者,所述第一还原气氛包括氮气与10vol%氢气的混合气体。
6.根据权利要求1所述的抗摔陶瓷材料的制备方法,其特征在于,步骤S2中,所述热处理的过程包括:在650-1400℃的温度下热处理30min以上。
7.根据权利要求1所述的抗摔陶瓷材料的制备方法,其特征在于,步骤S4中所述氮化硼先驱体包括含硼化合物,所述含硼化合物包括硼酸、四硼酸铵或五硼酸铵中的一种。
8.根据权利要求1所述的抗摔陶瓷材料的制备方法,其特征在于,步骤S5中,所述热处理的过程包括:在800-1200℃的温度下热处理2-10h。
9.根据权利要求1所述的抗摔陶瓷材料的制备方法,其特征在于,步骤S6中,所述烧结处理的过程包括:在1500-2000℃的温度下常压烧结或气压烧结1-4h。
10.一种抗摔陶瓷材料,其特征在于,基于如权利要求1-9任一项所述的抗摔陶瓷材料的制备方法制备。
CN202111345558.XA 2021-11-15 2021-11-15 一种抗摔陶瓷材料及其制备方法 Active CN113929469B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111345558.XA CN113929469B (zh) 2021-11-15 2021-11-15 一种抗摔陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111345558.XA CN113929469B (zh) 2021-11-15 2021-11-15 一种抗摔陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113929469A true CN113929469A (zh) 2022-01-14
CN113929469B CN113929469B (zh) 2022-10-21

Family

ID=79286708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111345558.XA Active CN113929469B (zh) 2021-11-15 2021-11-15 一种抗摔陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113929469B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321641A (ja) * 1993-05-11 1994-11-22 Hitachi Metals Ltd 複合セラミックス
TW589356B (en) * 1995-07-13 2004-06-01 Clariant Int Ltd Composition for forming ceramic material and process for producing ceramic material
JP2012162417A (ja) * 2011-02-04 2012-08-30 Nagoya City 快削性セラミックス及びその製造方法
CN106588028A (zh) * 2016-12-14 2017-04-26 苏晓玲 一种陶瓷基体立方氮化硼复合材料制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321641A (ja) * 1993-05-11 1994-11-22 Hitachi Metals Ltd 複合セラミックス
TW589356B (en) * 1995-07-13 2004-06-01 Clariant Int Ltd Composition for forming ceramic material and process for producing ceramic material
JP2012162417A (ja) * 2011-02-04 2012-08-30 Nagoya City 快削性セラミックス及びその製造方法
CN106588028A (zh) * 2016-12-14 2017-04-26 苏晓玲 一种陶瓷基体立方氮化硼复合材料制备方法

Also Published As

Publication number Publication date
CN113929469B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
CN100358832C (zh) 莫来石晶须-莫来石复合涂层及其制备方法
Bartsch et al. Novel low‐temperature processing route of dense mullite ceramics by reaction sintering of amorphous SiO2‐coated γ‐Al2O3 particle nanocomposites
CN106699227B (zh) 一种纳米线自增强多孔氮化硅陶瓷及其制备方法
CN107176604B (zh) 一种碳素材料表面原位生成纳米碳化物涂层的方法
US20120276365A1 (en) Refractory Porous Ceramics
Sun et al. Low-temperature synthesis and sintering of γ-Y 2 Si 2 O 7
WO2022222778A1 (zh) 一种通过陶瓷前驱体骨架成型的精细陶瓷材料及其制备方法和应用
CN110304932B (zh) 一种具有HfB2界面的Cf/SiC复合材料的制备方法
CN114516657B (zh) 一种高熵氧化物陶瓷纳米晶及其制备方法和应用
CN1785893A (zh) 一种莫来石晶须的制备方法
CN106167413B (zh) 一种原位合成莫来石晶须增韧90氧化铝陶瓷及制备方法
WO1994027929A1 (en) Porous ceramic and process for producing the same
CN105272269A (zh) 一种氮化硅/六方氮化硼纳米复相陶瓷的制备方法
CN103614808A (zh) 带有绒毛状晶须的莫来石纤维及制备方法
CN105859272A (zh) 低温烧结制备纳米负膨胀陶瓷LiAlSiO4的方法
CN112341207B (zh) 一种氮化硅-氧氮化硅柱孔复相陶瓷材料及其制备方法
WO2012165291A1 (ja) 炭化ケイ素-炭素複合材の製造方法
Greil Processing of silicon nitride ceramics
CN113929469B (zh) 一种抗摔陶瓷材料及其制备方法
CN105254307A (zh) 一种制备Si3N4-O’-Sialon-TiN陶瓷球材料的方法
CN1125211A (zh) 大块体致密纳米陶瓷材料及其制备方法
CN112299871A (zh) 一种含碳化硅膜的多孔陶瓷的制备方法
Wu et al. Study of the hexagonal to monoclinic celsian phase transition induced by magnetic phase nucleation in barium aluminosilicate glass-ceramics
CN1730427A (zh) 一种硼酸铝复合多孔陶瓷及其制备方法
KR20170109515A (ko) 다공성 질화규소 소결체 및 이의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230625

Address after: Building C3, No. 2, Yikuang Street, Nangang District, Harbin, Heilongjiang 150080

Patentee after: Liu Qiang

Patentee after: Harbin Institute of Technology Asset Management Co.,Ltd.

Address before: 150000 No. 92, West Da Zhi street, Nangang District, Harbin, Heilongjiang.

Patentee before: HARBIN INSTITUTE OF TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230719

Address after: 150023 Room 207-10, Building 16, No. 1616, Chuangxin Road, Songbei District, Harbin, Heilongjiang Province

Patentee after: Heilongjiang Porcelain Innovation Materials Co.,Ltd.

Address before: Building C3, No. 2, Yikuang Street, Nangang District, Harbin, Heilongjiang 150080

Patentee before: Liu Qiang

Patentee before: Harbin Institute of Technology Asset Management Co.,Ltd.