CN113913333A - 一种肺癌诊断标志物及用途 - Google Patents
一种肺癌诊断标志物及用途 Download PDFInfo
- Publication number
- CN113913333A CN113913333A CN202111222066.1A CN202111222066A CN113913333A CN 113913333 A CN113913333 A CN 113913333A CN 202111222066 A CN202111222066 A CN 202111222066A CN 113913333 A CN113913333 A CN 113913333A
- Authority
- CN
- China
- Prior art keywords
- lung cancer
- reads
- sequencing
- sample
- machine learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
- G16B30/10—Sequence alignment; Homology search
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B50/00—ICT programming tools or database systems specially adapted for bioinformatics
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Evolutionary Biology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Analytical Chemistry (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Evolutionary Computation (AREA)
- Biochemistry (AREA)
- Artificial Intelligence (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Bioethics (AREA)
- Primary Health Care (AREA)
- Physiology (AREA)
- Oncology (AREA)
Abstract
本发明涉及一种肺癌早期筛查和诊断标志物及用途,属于分子生物医学技术领域。本研究首次通过血浆cfDNA来研究肺癌和健康人的菌群差异,并筛选出具有明显差异的菌群,然后通过随机森林的方法,建立肺癌风险预测模型,适用于肺癌的筛查与诊断,用于筛查肺癌人群。
Description
技术领域
本发明涉及一种肺癌早筛诊断标志物及用途,属于分子生物医学技术领域。
背景技术
肺癌作为全球最高致死原因的癌症。尽管手术、化疗、靶向及免疫治疗的综合应用显著提高了肺癌的生存率,但是与其他癌症相比,肺癌患者的预后仍然相对较差。主要原因为大部分肺癌是在晚期被诊断出来的,这与缺乏普及的肺癌早期筛查有关。据报道,晚期转移性肺癌的5年生存率为6%,局部尚未扩散肺癌的5年生存率为59%。所以提高肺癌生存率最有效的方法是早期筛查,以尽快采取治疗方案。
现在,肺癌的早筛方法主要是依靠影像学(X线胸片和胸部CT),X线胸片等,它们虽然具有穿透力高、使用方便、辐射剂量小的特点,但分辨率低,很难发现直径<5~6mm的病变,且存在死角,临床不建议用于肺癌的筛查。胸部低剂量CT(LDCT)筛查目前是国际公认的检测肺结节和早期诊断肺癌的最有效方法,然而,由于其高灵敏度,也检测到许多非肿瘤性肺结节,假阳性结节的大量检出是LDCT筛查亟需解决的重要问题,需要其他筛查手段加以补充。
发明内容
本发明的目的是:提供了一种对血浆样本cfDNA进行WGS测序,通过对高通量测序结果进行肺癌健康人差异菌群分析、构建模型,实现了对肺癌无创精准诊断的目的。
一种肺癌诊断标志物,包括以下的菌:芽孢杆菌(Bacillus)、不动杆菌(Acinetobacter)、 Sphingopyxis、代尔夫特菌(Delftia)。
上述的诊断标志物的检测试剂在应用于制备肺癌诊断试剂盒中的用途。
还包括如下步骤:
S1:获取待测样本以及正常样本的血浆,提取cfDNA,采用高通量测序方法进行测序,获得测序读段;
S2;将测序读段比对至人类参考基因组,去除掉人源的DNA序列读段;
S3:将S2步骤中剩下的读段比对至微生物基因组数据库,获得能够比对至所述的诊断标志物的微生物序列的读段,统计读段数目;
S4:对于每种细菌,将读段数目对所述的细菌的基因全长做归一化处理,得到相对丰度;
S5:采用细菌的相对丰度作为输入值,通过机器学习分类算法判断待测样本与正常样本进行分类。
机器学习过程采用患病的概率作为输出值。
机器学习分类算法是随机森林算法。
高通量测序方法的测序深度为1-10乘。
诊断标志物用于提高诊断特异性和敏感性。
用于肺癌诊断的细菌种类的筛选方法,包括如下步骤:
S1,获取病人样本和正常样本的血浆,提取cfDNA,采用高通量测序方法进行测序,获得测序读段;
S2,将测序读段比对至人类参考基因组,去除掉人源的DNA序列读段;
S3,确定出候选细菌种类;
S4,将剩下的读段比对至微生物基因组数据库,获得能够比对至所述的候选细菌的序列的读段,统计读段数目;
S5,对于每种细菌,将数目对所述的细菌的基因全长做归一化处理,得到相对丰度;
S6,从病人样本和正常健康人样本中选取一部分作为训练集,另一部分作为验证集,采用机器学习方法进行分类模型构建,以采用每种细菌的相对丰度作为输入值,对病人样本和正常健康人样本进行分类,通过验证集进行模型的验证,找到具有显著性差异的菌种。
采用是否为肺癌的概率作为输出值。
机器学习采用随机森林算法。
有益效果
本发明基于液态活检探究了一种新的检测媒介,血浆cfDNA菌群的检测,旨在通过无创的方法评估微生物组作为肺癌的诊断能力,提高早期肺癌无创诊断的精确性。本发明首次基于血浆cfDNA高通量测序提供了菌群与肺癌关系的诊断模型,该模型能够诊断早期肺癌,具有无创检测、通量高、检测特异性和敏感性高的优点。
本研究首次通过血浆cfDNA来研究肺癌和健康人的菌群差异,并筛选出4个具有明显差异的肺癌相关菌群,然后通过随机森林的方法,建立肺癌风险预测模型,适用于肺癌的筛查与诊断,用于鉴定早期肺癌。
附图说明
图1:最佳建模差异菌群组合差异柱状图。
图2:训练集一ROC曲线图
图3:训练集二ROC曲线图
图4:验证集ROC曲线图
具体实施方式
本发明探究了一种新的检测媒介,血浆cfDNA用来进行菌群的检测。旨在通过无创的方法评估肺癌微生物组作为肺癌的诊断能力,提高早期肺癌无创诊断的精确性。
本发明中的涉及到的人群样本的情况如表一所示。
从2018.8-2018.12收集了38例II期和III期肺癌和83例健康人,所有入组的患者签署知情同意书。肺癌患者均为活体组织经病理学确认结果,健康人为常规体检正常。将入组人员分为训练组一(肺癌n=28,健康人n=54)和验证组(肺癌n=10,健康人n=54),同时为了避免人群地域菌群的差异,从已发表文献中下载cfDNA WGS肺癌和健康人测序数据,为训练集二(肺癌n=24,健康人n=60)。所有数据信息如下:
表一:建模样本信息
本发明中的血浆cfDNA样本的提取
采用紫色血液收集管(EDTA抗凝管)收集患者8ml全血样本,及时离心分离血浆(2小时内),转运至实验室后,血浆样本采用QIAGEN血浆DNA提取试剂盒按照说明书进行ctDNA提取。
本发明中所采用的测序方法:
本发明中对采集到的cfDNA样本进行WGS~1乘测序。在获得了下机数据之后,首先将数据比对至人类参考基因组上,去除掉能够比对至人类基因组参考序列的读段;再将剩下的读段通过kraken软件比对至微生物基因组数据库中(https://ftp.ncbi.nih.gov/genbank/),本发明中的菌种信息可以在上述的数据库中查找得到;根据比对到该菌种上的读段数目来计算箘的丰度。将菌的长度与测序的读段进行均一化,使得菌群的丰度不受菌群基因大小的影响,计为菌的相对丰度(relative abundance)。
模型的构建:
将训练组一和训练组二中的肺癌和健康人进行差异菌群的筛选,使用多变量相关线性模型 (Multivariate association with linear models,Maaslin)来计算两组之间菌群丰度差异的概率。确立一个严格的显著阈值,P-Value<0.05,定义菌群的特异性。筛选训练集一和训练集二有相同差异趋势且任意一组有显著差异的菌种,共7个,如表二所示。
表二:训练集一和训练集二相同差异趋势菌列表
将P-Value<0.05的7个species使用特征递归消除筛选(recursive featureelimination)算法做1-7个菌种筛选,选择性能最好的菌种组合,其中在4个菌组合时ROC值在训练组一 (自身数据)中表现最优,同时在训练集一和训练集二总ROC值中表现优异,如表三所示。
表三:训练组模型计算结果
使用4个菌种组合(Bacillus,Acinetobacter,Sphingopyxis,Delftia)在训练组中用随机森林方法建模,模型的输入值为4个菌的相对丰度(relative abundance),并通过随机森林的模型输出样本在两个分类(肺癌和健康人)中的概率。计算模型通过ROC值和敏感性特异性评估模型的优异。在训练组一中,模型的AUC 为0.845,如图2所示,其敏感性和特异性分别为82.1%和88.9%,如表四所示。同时将训练组二的数据代入模型中,AUC值为0.701,如图3所示。
表四:训练组一在模型中的预测结果
模型的验证:
在验证组中该模型区分肺癌和健康人具有优异性能:将验证组10例肺癌和29例健康人输入肺癌风险预测模型,计算模型通过AUC值和敏感性特异性评估模型的优异。在验证组中,模型的AUC为0.886,如图4所示。模型的敏感性和特异性分别为80.0%和96.5%,如表五所示。
表五:验证组在模型中的表现结果
Claims (10)
1.一种肺癌诊断标志物,其特征在于,包括以下的菌种:芽孢杆菌(Bacillus)、不动杆菌(Acinetobacter)、Sphingopyxis、代尔夫特菌(Delftia)。
2.权利要求1所述的诊断标志物的检测试剂在应用于制备肺癌的诊断试剂中的应用。
3.根据权利要求2所述的应用,其特征在于,在一个实施方式中,还包括如下步骤:
S1:获取待测样本以及正常样本的血浆,提取cfDNA,采用高通量测序方法进行测序,获得测序读段;
S2;将测序读段比对至人类参考基因组,去除掉人源的DNA序列读段;
S3:将S2步骤中剩下的读段比对至微生物基因组数据库,获得能够比对至所述的诊断标志物的微生物序列的读段,统计读段数目;
S4:对于每种细菌,将读段数目对所述的细菌的基因全长做归一化处理,得到相对丰度;
S5:采用细菌的相对丰度作为输入值,通过机器学习分类算法判断待测样本与正常样本进行分类。
4.根据权利要求3所述的应用,在一个实施方式中,机器学习过程采用患病的概率作为输出值。
5.根据权利要求3所述的应用,其特征在于,机器学习分类算法是随机森林算法。
6.根据权利要求3所述的应用,其特征在于,高通量测序方法的测序深度为1-10乘。
7.根据权利要求3所述的应用,其特征在于,诊断标志物用于提高诊断特异性和敏感性。
8.一种用于肺癌诊断的细菌种类的筛选方法,其特征在于,包括如下步骤:
S1,获取病人样本和正常样本的血浆,提取cfDNA,采用高通量测序方法进行测序,获得测序读段;
S2,将测序读段比对至人类参考基因组,去除掉人源的DNA序列读段;
S3,确定出候选细菌种类;
S4,将剩下的读段比对至微生物基因组数据库,获得能够比对至所述的候选细菌的序列的读段,统计读段数目;
S5,对于每种细菌,将数目对所述的细菌的基因全长做归一化处理,得到相对丰度;
S6,从病人样本和正常健康人样本中选取一部分作为训练集,另一部分作为验证集,采用机器学习方法进行分类模型构建,以采用每种细菌的相对丰度作为输入值,对病人样本和正常健康人样本进行分类,通过验证集进行模型的验证,找到具有显著性差异的菌种。
9.根据权利要求8所述的用于肺癌诊断的细菌种类的筛选方法,其特征在于,采用是否为肺癌的概率作为输出值。
10.根据权利要求8所述的用于肺癌诊断的细菌种类的筛选方法,其特征在于,机器学习采用随机森林算法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111222066.1A CN113913333B (zh) | 2021-10-20 | 2021-10-20 | 一种肺癌诊断标志物及用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111222066.1A CN113913333B (zh) | 2021-10-20 | 2021-10-20 | 一种肺癌诊断标志物及用途 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113913333A true CN113913333A (zh) | 2022-01-11 |
CN113913333B CN113913333B (zh) | 2022-09-02 |
Family
ID=79241463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111222066.1A Active CN113913333B (zh) | 2021-10-20 | 2021-10-20 | 一种肺癌诊断标志物及用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113913333B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117004744A (zh) * | 2022-04-27 | 2023-11-07 | 数字碱基(南京)科技有限公司 | 一种基于血浆微生物dna特征的肺癌预后评估方法及模型 |
CN117352064A (zh) * | 2023-12-05 | 2024-01-05 | 成都泰莱生物科技有限公司 | 一种肺癌代谢标志物组合及其筛选方法和应用 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101351559A (zh) * | 2005-11-09 | 2009-01-21 | 普里梅拉生物系统有限公司 | 病原体的多元定量检测 |
WO2014014497A1 (en) * | 2012-07-20 | 2014-01-23 | Verinata Health, Inc. | Detecting and classifying copy number variation in a cancer genome |
CN103923902A (zh) * | 2013-01-11 | 2014-07-16 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种肺癌诊断生物试剂、制备方法及应用 |
CN108070656A (zh) * | 2017-11-13 | 2018-05-25 | 深圳华大基因股份有限公司 | 肺癌标志物及其应用 |
CN108239670A (zh) * | 2016-12-26 | 2018-07-03 | Md保健株式会社 | 通过宏基因组分析来诊断copd患者的肺癌的试剂盒和方法 |
US20180282417A1 (en) * | 2017-03-31 | 2018-10-04 | Medimmune, Llc | Tumor burden as measured by cell free dna |
EP3409791A1 (en) * | 2013-03-15 | 2018-12-05 | Verinata Health, Inc | Generating cell-free dna libraries directly from blood |
CN109852714A (zh) * | 2019-03-07 | 2019-06-07 | 南京世和基因生物技术有限公司 | 一种肠癌早期诊断和腺瘤诊断标志物及用途 |
US20190376128A1 (en) * | 2016-11-30 | 2019-12-12 | Exosome Diagnostics, Inc. | Methods and compositions to detect mutations in plasma using exosomal rna and cell free dna from non-small cell lung cancer patients |
CN111916154A (zh) * | 2020-07-22 | 2020-11-10 | 中国医学科学院肿瘤医院 | 一种预测肠癌肝转移的诊断标志物及用途 |
CN112538545A (zh) * | 2020-12-15 | 2021-03-23 | 上海交通大学医学院 | 真菌微生物组作为标志物在制备治疗筛查和肺癌诊断中的应用 |
CN113355421A (zh) * | 2021-07-03 | 2021-09-07 | 南京世和基因生物技术股份有限公司 | 肺癌早筛标志物、模型构建方法、检测装置以及计算机可读取介质 |
-
2021
- 2021-10-20 CN CN202111222066.1A patent/CN113913333B/zh active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101351559A (zh) * | 2005-11-09 | 2009-01-21 | 普里梅拉生物系统有限公司 | 病原体的多元定量检测 |
WO2014014497A1 (en) * | 2012-07-20 | 2014-01-23 | Verinata Health, Inc. | Detecting and classifying copy number variation in a cancer genome |
CN103923902A (zh) * | 2013-01-11 | 2014-07-16 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种肺癌诊断生物试剂、制备方法及应用 |
EP3409791A1 (en) * | 2013-03-15 | 2018-12-05 | Verinata Health, Inc | Generating cell-free dna libraries directly from blood |
US20190376128A1 (en) * | 2016-11-30 | 2019-12-12 | Exosome Diagnostics, Inc. | Methods and compositions to detect mutations in plasma using exosomal rna and cell free dna from non-small cell lung cancer patients |
CN108239670A (zh) * | 2016-12-26 | 2018-07-03 | Md保健株式会社 | 通过宏基因组分析来诊断copd患者的肺癌的试剂盒和方法 |
CN110382715A (zh) * | 2016-12-26 | 2019-10-25 | Md保健株式会社 | 通过细菌宏基因组分析来诊断肺癌的方法 |
US20180282417A1 (en) * | 2017-03-31 | 2018-10-04 | Medimmune, Llc | Tumor burden as measured by cell free dna |
CN108070656A (zh) * | 2017-11-13 | 2018-05-25 | 深圳华大基因股份有限公司 | 肺癌标志物及其应用 |
CN109852714A (zh) * | 2019-03-07 | 2019-06-07 | 南京世和基因生物技术有限公司 | 一种肠癌早期诊断和腺瘤诊断标志物及用途 |
CN111916154A (zh) * | 2020-07-22 | 2020-11-10 | 中国医学科学院肿瘤医院 | 一种预测肠癌肝转移的诊断标志物及用途 |
CN112538545A (zh) * | 2020-12-15 | 2021-03-23 | 上海交通大学医学院 | 真菌微生物组作为标志物在制备治疗筛查和肺癌诊断中的应用 |
CN113355421A (zh) * | 2021-07-03 | 2021-09-07 | 南京世和基因生物技术股份有限公司 | 肺癌早筛标志物、模型构建方法、检测装置以及计算机可读取介质 |
Non-Patent Citations (8)
Title |
---|
GREGORY D POORE等: "Microbiome analyses of blood and tissues suggest cancer diagnostic approach", 《NATURE》 * |
JA-LOK KU等: "Establishment and characterization of six human lung cancer cell lines:EGFR,p53 gene mutations and expressions of drug sensitivity genes", 《CELL ONCOL(DORDR)》 * |
尹坚等: "烟草黑胫病拮抗细菌菌群的筛选", 《湖南农业大学学报(自然科学版)》 * |
彭群新等: "肺癌外周血EGFR突变检测及其临床意义", 《中国肿瘤临床》 * |
杨元辉: "江汉油田总医院近5年肺癌患者医院感染调查分析", 《华夏医学》 * |
汪雨来等: "血浆循环DNA在肺癌诊断上的应用", 《武警医学》 * |
胡洪涛等: "不同处理对高山凤头姜姜瘟病的防效及土壤细菌群落结构和功能的影响", 《微生物学通报》 * |
芦燕等: "典型草原区不同生境反硝化菌群的空间特征", 《微生物学通报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117004744A (zh) * | 2022-04-27 | 2023-11-07 | 数字碱基(南京)科技有限公司 | 一种基于血浆微生物dna特征的肺癌预后评估方法及模型 |
CN117004744B (zh) * | 2022-04-27 | 2024-05-24 | 数字碱基(南京)科技有限公司 | 一种基于血浆微生物dna特征的肺癌预后评估方法及模型 |
CN117352064A (zh) * | 2023-12-05 | 2024-01-05 | 成都泰莱生物科技有限公司 | 一种肺癌代谢标志物组合及其筛选方法和应用 |
CN117352064B (zh) * | 2023-12-05 | 2024-02-09 | 成都泰莱生物科技有限公司 | 一种肺癌代谢标志物组合及其筛选方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN113913333B (zh) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109852714B (zh) | 一种肠癌早期诊断和腺瘤诊断标志物及用途 | |
CN113913333B (zh) | 一种肺癌诊断标志物及用途 | |
Fremond et al. | Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts | |
CN111172279B (zh) | 外周血甲基化基因及idh1联合检测诊断肺癌模型 | |
CN105525033A (zh) | 检测血液中微生物的方法及装置 | |
CN107435062B (zh) | 甄别肺部微小结节良恶性的外周血基因标志物及其用途 | |
CN114277143B (zh) | 外泌体arpc5、cda等在肺癌诊断中的应用 | |
CN111584064A (zh) | 一种结、直肠癌转移预测系统及其使用方法 | |
CN111965240A (zh) | 用于甲状腺癌相关筛查及评估的产品、应用及方法 | |
CN114045337A (zh) | 基于肠道微生物的胆管癌非侵入性标志物筛选、分析方法及应用 | |
CN113611404A (zh) | 一种基于集成学习的血浆样本癌症早筛方法 | |
US11585816B2 (en) | Automated method for assessing cancer risk using tissue samples, and system therefor | |
CN110930401B (zh) | 一种能谱ct增强碘水图影像组学术前预测肾透明细胞癌who/isup分级方法 | |
CN108624692B (zh) | 用于肺部微小结节良恶性甄别的基因标志物及其用途 | |
Sun et al. | Development of colorectal cancer detection and prediction based on gut microbiome big-data | |
CN111583994A (zh) | 肿瘤标志物截断值联合模型及其应用 | |
CN111965241A (zh) | 用于卵巢癌相关筛查及评估的产品、应用及方法 | |
CN115678999B (zh) | 标志物在肺癌复发预测中的应用和预测模型构建方法 | |
CN113393901B (zh) | 一种基于单核细胞采集肿瘤核酸的胶质瘤分检装置 | |
US11807908B2 (en) | Genetic markers used for identifying benign and malignant pulmonary micro-nodules and the application thereof | |
WO2023063049A1 (ja) | がん検出のためのバイオマーカーセットの作製方法 | |
CN109182520B (zh) | 一种宫颈癌及其癌前病变检测试剂盒及其应用 | |
Frantzi et al. | Validation of a urine-based proteomics test to predict clinically significant prostate cancer: complementing MRI pathway | |
Sing et al. | Diagnostic Potential of Shallow Depth Gut Metagenomics Sequencing for Atherosclerotic Cardiovascular Disease Risk Stratification | |
CN118308490A (zh) | 不明原发灶肿瘤组织溯源检测标志物的用途及检测系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |