CN111583994A - 肿瘤标志物截断值联合模型及其应用 - Google Patents

肿瘤标志物截断值联合模型及其应用 Download PDF

Info

Publication number
CN111583994A
CN111583994A CN202010399268.2A CN202010399268A CN111583994A CN 111583994 A CN111583994 A CN 111583994A CN 202010399268 A CN202010399268 A CN 202010399268A CN 111583994 A CN111583994 A CN 111583994A
Authority
CN
China
Prior art keywords
cut
tumor
tumor marker
value
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010399268.2A
Other languages
English (en)
Inventor
曾凡新
王家驷
李洁
李诗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dazhou Central Hospital
Original Assignee
Dazhou Central Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dazhou Central Hospital filed Critical Dazhou Central Hospital
Priority to CN202010399268.2A priority Critical patent/CN111583994A/zh
Publication of CN111583994A publication Critical patent/CN111583994A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • G16B5/20Probabilistic models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57488Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Physiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开肿瘤标志物截断值联合模型,采用回归计算获得肿瘤标志物的截断(Cut‑off)值;肿瘤标志物包括CEA,CYFRA,NSE,CA125,CA153,CA199以及CA724;肿瘤标志物截断值联合模型建立方法包括以下步骤:(1)对患者各肿瘤标志物进行含量的测定;(2)Logistic回归分析获得肿瘤标志物的截断(Cut‑off)值;(3)筛选与肿瘤转移相关的高危因素;(4)比较单一生物标志物参考上限值与截断值在评估肿瘤转移中的性能;(5)建立截断值(comb‑cut‑off)联合模型。一种上述肿瘤标志物截断值联合模型的应用,用作新诊断肺癌患者肿瘤转移诊断的工具。本发明通过检测肺癌患者血清多种肿瘤标志物含量,比较分析建立肿瘤标志物截断值联合模型,用作诊断肺癌肿瘤转移诊断的工具,准确性高。

Description

肿瘤标志物截断值联合模型及其应用
技术领域
本发明涉及生物技术领域,具体为肿瘤标志物截断值联合模型及其应用。
背景技术
肺癌是全世界所有癌症中最常见的死亡原因。肺癌的两种主要类型是小细胞肺癌(SCLC)和非小细胞肺癌(NSCLC)。总体生存率取决于肺癌的分期,晚期肺癌患者一般预后较差。有证据表明,肿瘤转移反映了肺癌的相对晚期,超过70%的患者死亡是由肿瘤转移引起的。
据报道,复发和转移显著增加肺癌患者的死亡风险。非小细胞肺癌IB期患者的5年总生存率为68%,而IVA-IVB期患者的5年总生存率低于10%。广泛期小细胞肺癌患者的中位生存期为10~12个月。以前的一项研究报告显示,在不超过5个转移灶的非小细胞患者中,适当的治疗可使13%的患者在3年内无进展,即使是IV期患者也可从根治性治疗中获益。因此,转移灶的识别对新诊断肺癌患者临床治疗方案的选择及预后具有重要的指导价值。
在临床上,当有完整的病理证据可用于肺癌的诊断时,通过临床症状和影像学证据(计算机断层扫描(CT)、胸部X射线(CXR)、正电子发射断层扫描(PET-CT)和磁共振成像(MRI)等)相结合的方法来确定转移。然而,高昂的检查费用等因素可能会给患者带来很大的经济负担,阻碍临床监测和肺癌转移的早期发现。此外,患者可在某些区域发生转移,临床症状不明显,容易被患者和医生忽视。因此,临床上急需既经济又简单的诊断技术来判断是否发生了肿瘤转移,这有助于提示医生判断疑似转移症状的肺癌患者是否需要进行更详细的检查。以血液为基础的生物标记物可以方便、快速、经济地获取,因此它们有可能极大地提高评估的效率。临床辅助肺癌肿瘤诊断的传统而常用的肿瘤标志物包括癌胚抗原(CEA)、细胞角蛋白抗原19片段(CYFRA)、神经元特异性烯醇酶(NSE)、糖类抗原(CA)系列,如CA125、CA153、CA199、CA724等。
但是直接利用现在临床上设置的肿瘤标志物的参考上限(URL)值不能准确地判断肿瘤患者的转移情况。
发明内容
为解决以上现有问题,本发明提供肿瘤标志物截断值模型及其应用。本发明通过以下技术方案实现。
肿瘤标志物截断值联合模型,采用logistic回归计算获得肿瘤标志物的截断(Cut-off)值;
所述肿瘤标志物包括CEA,CYFRA,NSE,CA125,CA153,CA199以及CA724;
所述肿瘤标志物截断值模型建立的方法包括以下步骤:
(1)对患者血清中的各肿瘤标志物进行含量的测定;
(2)Logistic回归分析获得每一种肿瘤标志物的截断(Cut-off)值;
(3)筛选与肿瘤转移相关的高危因素;
(4)比较单一肿瘤标志物参考上限(URL)值与截断(Cut-off)值在评估肿瘤转移中的性能;
(5)建立基于多肿标的截断值(comb-cut-off)联合模型。
一种上述肿瘤标志物截断值联合模型的应用,用作新诊断为肺癌的患者肿瘤转移诊断的工具。
本发明的有益效果:
本发明肿瘤标志物截断值联合模型及其应用
本发明通过对血清中肿瘤标志物的定量分析,通过罗氏公司的试剂盒及RocheE601系统对患者血清中7种肿瘤标志物(CEA,CA125,CA153,CA199,CA724,CYFRA和NSE)进行含量的测定。这7种肿瘤标志物对非小细胞肺癌(NSCLC)和小细胞肺癌(SCLC)的发生有显著的诊断作用,相对于现有技术,本发明通过检测肺癌患者血清的多种肿瘤标志物的含量,经过比较分析建立肿瘤标志物截断值(comb-cut-off)联合模型,可用作肺癌肿瘤转移诊断的工具,准确性高。
附图说明
图1为肺癌患者中转移组和非转移组的肿瘤标志物水平分布;横向的虚线为每一种肿瘤标志物的参考上限值;
图2为年龄、性别和按Cut-off值分组的生物标记物的比值比(OR)示意图;
图3为基于肿瘤标志物测量值(Level)(A)、参考上限值(URL)(B)和截断(Cut-off)值(C)的logistic回归模型的比较;其中(D)比较comb-cut-off模型和不考虑性别及年龄因素调整的单一肿瘤标志物的logistic回归模型;(E)比较comb-cut-off模型和经过性别及年龄因素调整的单一肿瘤标志物的logistic回归模型;
图4为回归模型预测肿瘤转移的Nomogram图及实例应用展示;
图5为决策树模型的性能。(A)决策树模型的规则,基于单一肿瘤标志物的测量值和logistic回归模型与实际相比的性能;(B)决策树模型的性能。
具体实施方式
下面结合附图对本发明的技术方案作更为详细、完整的说明。
具体实施例
一、患者选择
标准:(1)是病理上确诊的患者(所有患者都是通过对支气管镜检,活组织切片检查或手术得到的材料进行显微镜检查而确认的);(2)患者没有其他的肿瘤病史。
病人分组:转移组包括在首次住院期间(不超过一个月)发现转移的肺癌患者;非转移组包括在首次住院期间未发现淋巴结、肺内或其他转移。现有的诊断肿瘤转移的金标准:结合病理诊断和/或影像学证据和/或肿瘤标志物的特异性表达和/或患者的临床特征。CT、MRI和氟脱氧葡萄糖(FDG)PET-CT扫描是评估转移的影像学方法。
二、血液采样
患者初次被诊断为肺癌患者时采集的血液样本。本发明确立了7种候选血清肿瘤标志物(CEA,CA125,CA153,CA199,CA724,CYFRA和NSE),收集了253例转移性肺癌患者和288例非转移性肺癌患者的血清。
三、样本处理
样本为室温下的血清样本。所有血清样本均采用来自罗氏公司的试剂盒及RocheE601系统进行检测,获得7种血清肿瘤标志物的浓度。实验操作按照试剂盒操作规程及操作系统说明进行。
四、现有的相关肿瘤标志物临床参考范围:CEA(标准参考范围:0-5ng/mL),CA125(标准参考范围:0-35U/mL),CA153(标准参考范围:0-25U/mL),CA199(标准参考范围:0-27U/mL),CA724(标准参考范围:0-6.9U/mL),CYFRA(标准参考范围:0-3.3ng/mL),NES(标准参考范围:0-16.3ng/mL)。
五、数据结果及处理
1.转移组肺癌患者血清中肿瘤标志物的表达量高于无转移组
肺癌转移患者的性别比例(p=0.003)和年龄(p=0.002)与未转移患者有显著性差异。与非转移组相比,在转移患者组中,6种标志物(CEA、CYFRA、NSE、CA125、CA153和CA199)有显著地升高,CA724也有升高趋势但不显著。(具体数据见表1)
表1.患者的临床特征及肿瘤标志物的表达情况
Figure BDA0002488776610000031
如表2所示,所有患者按病理亚型分层。
在非小细胞肺癌患者中,转移患者组的CA125、CA153、CA199、CEA、CYFRA和NSE明显高于非转移组。
在小细胞肺癌中,转移组患者组CA199、CEA含量与非转移患者组之间存在显著差异。
表2.按病理亚型分层的肿瘤标志物值(转移与非转移)
Figure BDA0002488776610000041
表中数据为中位数(IQR)的形式。*,p<0.05,非转移vs转移。
2.Logistic回归分析获得每一种肿瘤标志物的截断(Cut-off)值。
经过初步分析发现,单一肿瘤标志物的参考上限(URL)值难以清晰地将转移组患者和非转移组患者分开。如图1所示。
通过logistic回归计算获得各肿瘤标志物的截断(Cut-off)值,如表3所示。
表3.单一肿瘤标志物的参考上限(URL)值及截断(Cut-off)值
Figure BDA0002488776610000042
3.筛选与肿瘤转移相关的高危因素
经过回归分析获得的森林图中显示,年龄(小于63岁)、性别和以Cut-off值分组的肿瘤标志物(CA724除外)均为肿瘤转移的独立高危因素(p<0.05,图2)。
4.比较单一肿瘤标志物参考上限(URL)值与截断(Cut-off)值在评估肿瘤转移中的性能
经过比较单一肿瘤标志物的参考上限值与截断值的ROC曲线,结果显示,与参考上限值的AUC相比,所有肿瘤标志物的Cut-off值的AUC都有一定程度增加。并且CA125的Cut-off值比URL值的ROC曲线有显著性差异(p<0.01,表4)。
表4.单一肿瘤标志物的表现(按参考上限值分组与截断值分组进行logistic回归分析)
Figure BDA0002488776610000051
5.预测评估模型建立及选择
基于CEA、CYFRA、NSE、CA125、CA153、CA199和CA724测量值的组合(crude-level),基于单一肿瘤标志物的URL范围二值化的组合(crude-URL)和基于单一肿瘤标志物Cut-off值二值化的组合(crude-cut-off),分别建立了逻辑回归模型来评估转移。
在上述三种模型的基础上,建立了加入性别和年龄因素的logistic回归模型,分别命名为comb-level模型、comb-URL模型和comb-cut-off模型。
以患者的7种肿瘤标志物测量值、参考上限值和截断值为基础建立逐步回归模型(分别命名为step-level、step-URL和step-cut模型)。
以上所有模型的ROC曲线如图3,结果表明,comb-cut-off模型的AUC最高(0.792),特异性最高(0.871,图3A-C)。无论联合或不联合性别、年龄因素,比较按cut-off值分为两组的单一标记物时,comb-cut-off模型优于单一肿瘤标志物的logistic回归模型(图3D-E)。
综上,7种肿瘤标志物截断值(comb-cut-off)联合模型评估新诊断肺癌患者的肿瘤转移的性能最优,AUC达到最高0.792,特异性0.871最高。
6.临床预测模型的开发与应用
评估了comb-cut-off模型的零偏差和残余偏差之间的差异,并确定了评估模型中每种肿瘤标志物的参数(图4A)。CEA、CA125和CA153对整个模型的影响较大,而NSE和CA724对整个模型的影响较小。利用comb-cut-off模型可识别总共79%的非转移患者和63%的转移患者(图4B)。为了方便模型的使用,利用logistic回归模型的Nomogram图对comb-cut-off模型进行可视化处理。
图4C-F展示了四个实例,图4G展示了四名患者的各项值,用logistic回归模型(包括性别、年龄和7个肿瘤标志物测量值)的Nomogram图来评估肺癌患者转移,具体步骤将年龄因素、性别因素、每一项肿瘤标志物因素的所有得分相加,计算总分,再将总分对应到机率线上获得转移机率得分(Odds),当机率得分<1,提示患者肿瘤无转移(图4C-D),若机率得分>1,则提示患者肿瘤转移(图4E-F),并且机率得分越高,转移的概率越大。本模型准确地评估了这4名患者的肿瘤转移情况。
由于comb-cut-off模型可识别总共79%的非转移患者和63%的转移患者,这些是模型识别出的能与真实结果匹配的数据。为了进一步提高模型的准确度,我们建立了决策树模型(图5A),在运用上述comb-cut-off模型之前,先根据决策树的条件对患者是否适用comb-cut-off模型进行评判,最后如果是患者符合“Matched”条件,则可运用comb-cut-off模型,并且运用comb-cut-off模型预测患者转移或者非转移的匹配度可达到95%(图5B)。但是如果根据决策树模型患者符合“Not matched”条件,则应考虑加入临床上更多其他检测方法对患者进行检测。这些结果表明,结合comb-cut-off模型和决策树模型可明显提高预测的准确性。
本发明肿瘤标志物截断值模型采用检测肺癌患者血清中多种肿瘤标志物的含量,通过多种肿瘤标志物的截断值联合建立模型,可用于新诊断肺癌患者肿瘤转移的诊断工具。
显然,所描述的实施例仅是本发明的个别实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施,都属于本发明的保护范围。

Claims (2)

1.肿瘤标志物截断值联合模型,其特征在于:采用logistic回归计算获得肿瘤标志物的截断(Cut-off)值;
所述肿瘤标志物包括CEA,CYFRA,NSE,CA125,CA153,CA199以及CA724;
所述肿瘤标志物截断值模型建立的方法包括以下步骤:
(1)对患者血清中的各肿瘤标志物进行含量的测定;
(2)逻辑回归分析获得每一种肿瘤标志物的截断(Cut-off)值;
(3)筛选与肿瘤转移相关的高危因素;
(4)比较单一生物标志物参考上限(URL)值与截断(Cut-off)值在评估肿瘤转移中的性能;
(5)建立肿瘤标志物截断值(comb-cut-off)联合模型。
2.一种权利要求1所述的肿瘤标志物截断值联合模型的应用,其特征在于:用作新诊断肺癌患者肿瘤转移诊断的工具。
CN202010399268.2A 2020-05-12 2020-05-12 肿瘤标志物截断值联合模型及其应用 Pending CN111583994A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010399268.2A CN111583994A (zh) 2020-05-12 2020-05-12 肿瘤标志物截断值联合模型及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010399268.2A CN111583994A (zh) 2020-05-12 2020-05-12 肿瘤标志物截断值联合模型及其应用

Publications (1)

Publication Number Publication Date
CN111583994A true CN111583994A (zh) 2020-08-25

Family

ID=72112221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010399268.2A Pending CN111583994A (zh) 2020-05-12 2020-05-12 肿瘤标志物截断值联合模型及其应用

Country Status (1)

Country Link
CN (1) CN111583994A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946273A (zh) * 2021-02-03 2021-06-11 云南省肿瘤医院(昆明医科大学第三附属医院) 一种新的肺癌转移标志物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104380A2 (en) * 2007-02-27 2008-09-04 Sentoclone Ab Multiplex detection of tumour cells using a panel of agents binding to extracellular markers
US20120064078A1 (en) * 2010-09-13 2012-03-15 Protgen Ltd. Novel Tumor Biomarket
CN106680511A (zh) * 2017-01-17 2017-05-17 南京弘泰德生物科技有限公司 血清分子标志物组合作为肺癌诊断和疗效监测标志物的应用
CN109061164A (zh) * 2018-08-21 2018-12-21 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 用于非小细胞肺癌诊断的组合标志物及其应用
CN109136373A (zh) * 2018-08-27 2019-01-04 中山大学 一种用于早期诊断肺癌转移的lncRNA检测试剂盒及其应用
CN110376378A (zh) * 2019-07-05 2019-10-25 中国医学科学院肿瘤医院 可用于肺癌诊断的标志物联合检测模型

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104380A2 (en) * 2007-02-27 2008-09-04 Sentoclone Ab Multiplex detection of tumour cells using a panel of agents binding to extracellular markers
US20120064078A1 (en) * 2010-09-13 2012-03-15 Protgen Ltd. Novel Tumor Biomarket
CN106680511A (zh) * 2017-01-17 2017-05-17 南京弘泰德生物科技有限公司 血清分子标志物组合作为肺癌诊断和疗效监测标志物的应用
CN109061164A (zh) * 2018-08-21 2018-12-21 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 用于非小细胞肺癌诊断的组合标志物及其应用
CN109136373A (zh) * 2018-08-27 2019-01-04 中山大学 一种用于早期诊断肺癌转移的lncRNA检测试剂盒及其应用
CN110376378A (zh) * 2019-07-05 2019-10-25 中国医学科学院肿瘤医院 可用于肺癌诊断的标志物联合检测模型

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ZHONGQING CHEN等: "Assessment of Seven Clinical Tumor Markers in Diagnosis of Non-Small-Cell Lung Cancer", 《DISEASE MARKERS》 *
余顺章等: "《流行病学与计算机应用》", 30 April 2011, 复旦大学出版社 *
卢兴兵等: "血清肿瘤志物在诊断转移性肺癌中的临床价值", 《检验医学与临床》 *
孙云刚等: "临床I期非小细胞肺癌淋巴结转移风险的相关因素分析", 《中国临床研究》 *
孙艺媛等: "非小细胞肺癌脑转移风险预测的诺模图评分模型应用探究", 《临床肿瘤学杂志》 *
张秀明等: "《现代临床生化检验学》", 31 January 2001, 人民军医出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946273A (zh) * 2021-02-03 2021-06-11 云南省肿瘤医院(昆明医科大学第三附属医院) 一种新的肺癌转移标志物

Similar Documents

Publication Publication Date Title
Okada et al. Prognostic significance of perioperative serum carcinoembryonic antigen in non-small cell lung cancer: analysis of 1,000 consecutive resections for clinical stage I disease
Zheng et al. A novel prognostic scoring system based on preoperative sarcopenia predicts the long-term outcome for patients after R0 resection for gastric cancer: experiences of a high-volume center
Sit et al. Mean platelet volume: an overlooked herald of malignant thyroid nodules
Ihata et al. Amino acid profile index for early detection of endometrial cancer: verification as a novel diagnostic marker
Jiao et al. Establishment and prospective validation of an SUVmax cutoff value to discriminate clinically significant prostate cancer from benign prostate diseases in patients with suspected prostate cancer by 68Ga-PSMA PET/CT: a real-world study
JP6692422B2 (ja) 尿中代謝物による疾病診断法
Hashimoto et al. Positive correlation between postoperative tumor recurrence and changes in circulating tumor cell counts in pulmonary venous blood (pvCTC) during surgical manipulation in non-small cell lung cancer
US20230228755A1 (en) Methods of diagnosing and treating lung cancer
Huo et al. Prognostic value of ALDH1 expression in lung cancer: a meta-analysis
Allen et al. Pancreatic cyst fluid protein expression profiling for discriminating between serous cystadenoma and intraductal papillary mucinous neoplasm
Suh et al. Stepwise flowchart for decision making on sublobar resection through the estimation of spread through air space in early stage lung cancer1
Gómez‐Gómez et al. Plasma ghrelin O‐acyltransferase (GOAT) enzyme levels: A novel non‐invasive diagnosis tool for patients with significant prostate cancer
Moore et al. Combining clinical assessment and the Risk of Ovarian Malignancy Algorithm for the prediction of ovarian cancer
Shan et al. Application of Prognostic Models Based on Psoas Muscle Index, Stage, Pathological Grade, and Preoperative Carcinoembryonic Antigen Level in Stage II‐III Colorectal Cancer Patients Undergoing Adjuvant Chemotherapy
CN111583994A (zh) 肿瘤标志物截断值联合模型及其应用
Sazonova et al. Development and validation of diffuse idiopathic pulmonary neuroendocrine hyperplasia diagnostic criteria
JP2016523366A (ja) 腫瘍バイオマーカー
Ding et al. Thoracic CT radiomics analysis for predicting synchronous brain metastasis in patients with lung cancer.
Sottile et al. A pilot study evaluating serum pro-prostate-specific antigen in patients with rising PSA following radical prostatectomy
CN111430030A (zh) 生物标志物在卵巢癌评估中的应用方法及系统
Zhao et al. Modified HE4, CA125, and ROMA cut-off values and predicted probability of ovarian tumor in Chinese patients
Wang et al. A semiautomated radiomics model based on multimodal dual-layer spectral CT for preoperative discrimination of the invasiveness of pulmonary ground-glass nodules
Sokoll et al. A prospective, multicenter, NCI EDRN study of [-2] proPSA: improving prostate cancer detection and correlating with cancer aggressiveness
Zeng et al. Prognostic value of the ratio of pretreatment carcinoembryonic antigen to tumor volume in rectal cancer
Miyashita et al. Prognostic impact of tumor volume in patients with complete resection of thymoma

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825

RJ01 Rejection of invention patent application after publication