CN113913168A - 一种低温耐高盐深部调驱交联体系及其制备方法和应用 - Google Patents

一种低温耐高盐深部调驱交联体系及其制备方法和应用 Download PDF

Info

Publication number
CN113913168A
CN113913168A CN202010654516.3A CN202010654516A CN113913168A CN 113913168 A CN113913168 A CN 113913168A CN 202010654516 A CN202010654516 A CN 202010654516A CN 113913168 A CN113913168 A CN 113913168A
Authority
CN
China
Prior art keywords
profile control
polymeric flocculant
salt
low
crosslinking system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010654516.3A
Other languages
English (en)
Other versions
CN113913168B (zh
Inventor
何青水
佟颖
李燕
何汉平
杨顺辉
肖超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Research Institute of Petroleum Engineering
Original Assignee
China Petroleum and Chemical Corp
Sinopec Research Institute of Petroleum Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Research Institute of Petroleum Engineering filed Critical China Petroleum and Chemical Corp
Priority to CN202010654516.3A priority Critical patent/CN113913168B/zh
Publication of CN113913168A publication Critical patent/CN113913168A/zh
Application granted granted Critical
Publication of CN113913168B publication Critical patent/CN113913168B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/5083Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/882Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/887Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及到一种低温耐高盐深部调驱交联体系及其制备方法,低温耐高盐调驱交联体系包括以下组分,以质量百分比计为:0.1~0.7%高分子絮凝剂、0.1~0.8%六亚甲基四胺、0.01~0.2%间苯二酚、0.05~1.0%小分子有机酸,余量为水。该调驱交联体系可适用于低温(20~40℃)高盐(矿化度>6.0×105mg/L)油藏的深部调驱,成胶时间36~96h可控,成冻强度E~H级别可调,制备方法简单实用,在低温下即可形成不流动的高强度冻胶,且高盐条件下稳定性好,封堵强度高,可对高渗透率地层或优势通道形成有效封堵,提高采收率效果显著。

Description

一种低温耐高盐深部调驱交联体系及其制备方法和应用
技术领域
本发明属于油田应用的化学制品技术领域,具体涉及一种适用于低温高盐深部调驱交联体系及其制备方法和应用。
背景技术
随着我国陆上油田相继进入高含水期,油层深部逐渐形成大孔道或水流优势通道,常规堵调技术无法满足油藏深部问题需要,深部调驱技术应运而生。该技术是结合了调剖和聚合物驱的特点,可改善地层深部液流方向、扩大水驱波及体积,提高原油采收率,已在我国高含水油田控水增产措施中占据重要地位。在众多深部调驱技术中,冻胶调驱交联体系由于成本较低、配制简单、封堵深度及强度可控而得到最为广泛的研究与应用。但现有的冻胶调驱的交联体系无法同时满足低温和耐高盐的需求。
在众多深部调驱技术中,冻胶调驱交联体系由于成本较低、配制简单、封堵深度及强度可控而得到最为广泛的研究与应用。例如公开号为CN103980872A 的中国发明专利提供了一种适用于低温油藏的环境友好型堵剂,该堵剂是由两性聚丙烯酰胺0.20~0.60%、有机锆交联剂0.50~2.0%和余量水组成,能在25~35℃低温下形成不流动的高强度冻胶体系,但高盐条件下稳定性大幅下降,不适用于高盐油藏的深部调驱。公开号为CN102304354A的中国发明专利提供了一种低温深部凝胶调剖堵水剂及其制备方法,该堵剂是由高分子絮凝剂0.08~0.2%、双氰胺改性脲醛类树脂延迟交联剂0.18~0.25%、工业纯碱0.05~0.20%、间氨基苯酚0.01~0.02%和余量水组成,20~50℃低温下形成不流动的高强度冻胶体系,但高盐条件下同样稳定性大幅下降,也不适用于高盐油藏的深部调驱。公开号为CN106916249A的中国发明专利提供了一种适用于低温高盐油藏堵水调剖用的堵剂,该堵剂是由丙烯酰胺5.00~7.00%、N,N-亚甲基双丙烯酰胺0.50~0.70%、过硫酸铵0.40~0.60%、铁氰化钠0.06~0.10%和余量水组成,在低温(30~60℃) 高盐(>2.0×105mg/L)条件下可形成高强度冻胶,可对高渗透地层或优势通道形成有效封堵,但在低于30℃条件下无法成胶。公开号为CN106749899A的中国发明专利提供了一种抗高温高盐调剖堵水用聚合物成胶剂的制备方法,该成胶剂中是由多种耐温抗盐水解功能单体、改性主剂聚合而得到的,溶解性与热稳定性好,适用于温度≥110℃、矿化度≥10万ppm的高温高盐油藏,但在低温条件下无法成胶。
国内外有大量低温(20~40℃)高盐(矿化度>6.0×105mg/L)油藏,现有调剖体系无法满足其深部调驱的需求,因此,研发低温耐高盐调剖体系,填补国内外空白,意义重大。
发明内容
为解决现有调剖体系在低温高盐油藏无法成胶或成胶后稳定性差的问题,本发明提供了一种可适用于低温(20~40℃)高盐(矿化度>6×105mg/L)油藏的深部调驱、成胶时间36~96h可控、成冻强度E~H级别可调、且制备方法简单实用的调剖体系,实现低温高盐油藏、有效封堵优势渗流通道、提高油藏采收率的目的。
本发明的目的在于提供一种低温耐高盐深部调驱交联体系,包含高分子絮凝剂、六亚甲基四胺、间苯二酚、小分子有机酸、水。以质量百分比来计,所述的调驱交联体系中含有0.1~1.0%高分子絮凝剂、0.1~1.0%六亚甲基四胺、 0.01~0.2%间苯二酚、0.05~1.0%小分子有机酸、及余量的水,优选含有0.3~0.6%高分子絮凝剂、0.3~0.6%六亚甲基四胺、0.01~0.1%间苯二酚、0.1~0.5%小分子有机酸、及余量的水。
其中,上述的高分子絮凝剂分子量为1000~2000万,优选为1000~1200万;高分子絮凝剂选自阴离子型高分子絮凝剂、非离子型高分子絮凝剂中的至少一种,优选选自阴离子型聚丙烯酰胺或其共聚物、非离子型聚丙烯酰胺或其共聚物中的至少一种;上述的小分子有机酸选自碳原子数为1~18的饱和或不饱和的、直链或带有支链的脂肪酸,优选选自乙酸、丁酸、丙烯酸、油酸、乳酸、月桂酸、琥珀酸、硬脂酸、卤代乙酸的至少一种。
本发明的另一目的在于提供一种上述低温耐高盐深部调驱交联体系的制备方法,包含将包含有所述的高分子絮凝剂、六亚甲基四胺、间苯二酚、小分子有机酸、水在内的组分混和均匀后,即得所述的低温耐高盐深部调驱交联体系。具体包含以下步骤:
步骤(1)将高分子絮凝剂加入到水中,搅拌至完全溶解,得到高分子絮凝剂溶液;
步骤(2)向步骤(1)得到的高分子絮凝剂溶液中加入六亚甲基四胺、间苯二酚和小分子有机酸,搅拌后静置后即得低温耐高盐深部调驱交联体系。
上述制备过程中,步骤(1)中搅拌温度为20~40℃,搅拌时间为2~3h;步骤(2)中依次加入六亚甲基四胺、间苯二酚和小分子有机酸;所述步骤(2) 中搅拌温度为20~40℃,搅拌时间为0.5~1h。
以上步骤(2)得到的调驱交联体系可以通过老化处理成胶,老化温度为 20~40℃,老化时间为36~96h,至完全成胶。步骤(2)得到的调驱交联体系需要在储层中完成交联,此过程是动态老化过程。上述调驱交联体系的老化处理为模拟其在地层的成胶过程,完成交联的调驱交联体系才可能实现目标调驱效果。
本发明中将高分子絮凝剂、六亚甲基四胺、间苯二酚、小分子有机酸在水中混合均匀后,得到调驱交联体系溶液,该溶液可在低温条件下自发交联。溶液中的高分子絮凝剂具有增稠和交联双重作用;六亚甲基四胺和间苯二酚可形成复合交联剂,参与交联反应,并且具有屏蔽盐离子的作用;小分子有机酸具有促交联和增强抗盐的双重作用。在老化过程中,小分子脂肪酸提供酸性环境,可以促使六亚甲基四胺和间苯二酚发生化学反应,得到的产物可与高分子絮凝剂发生交联反应,从而形成冻胶强度高、稳定性好的调驱交联体系;此外,六亚甲基四胺、间苯二酚和小分子有机酸具有屏蔽盐离子的作用,能够显著降低盐离子对交联体系的影响,同时增强体系的抗盐性能。
本发明的再一目的在于提供一种上述调驱交联体系或者根据上述制备方法得到的调驱交联体系的应用,该调驱交联体系可以用于低温高盐油藏的深部调驱施工,具体地,上述调驱交联体系可适用于低温温度为20~40℃,高盐的矿化度为6.0×105~10.0×105mg/L条件下的油藏调驱施工。
本发明提供了一种适用于低温高盐油藏的深部调驱交联体系,可适用于低温高盐油藏的深部调驱,成胶时间36~96h可控,成冻强度E~H级别可调。
与现有技术相比,本发明的优点在于:
1.本发明提供的调驱交联体系可满足低温条件(温度20~40℃)成胶效果好、高盐条件下(矿化度高于6×105mg/L)稳定性好的要求,本发明所提供的调驱交联体系性能优异,低温条件下冻胶强度高,高盐条件下稳定性好,稳定180天后不破胶,而且封堵强度高,可对高渗透率地层或优势通道形成有效封堵,提高采收率效果显著;
2.本发明提供的调驱交联体系可对低温高盐油藏高含水地层形成有效封堵,封堵率高,提高波及强度,进而提高采收率,而且成冻时间可控,成冻强度可调,可满足低温高盐油藏的调驱施工的要求;
3.本发明提供的调驱交联体系的制备方法,工艺简单、易行,且成本低廉,在油藏调驱方面具有广阔的应用前景。
具体实施方式
下面结合具体实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明的进一步说明,不能理解为对本发明保护范围的限制,本领域技术人员根据本发明内容对本发明做出的一些非本质的改进和调整仍属本发明的保护范围。
实施例中所采用的原料及来源如下:
实施例中的高分子絮凝剂为聚丙烯酰胺,六亚甲基四胺和间苯二酚都为市售工业级产品,小分子脂肪酸为草酸;实施例和对比例中所用到的化学品均来源于中国石油大学(华东)。
以下实施例中,所用水为高矿化度水:总矿化度7.0×105mg/L,Ca2+、Mg2+离子浓度3000mg/L。
实施例中所采用的测试方法如下:
以下实施例中参考Sydansk等人提出的GSC(Gel Strength Codes)目测代码评价方法来测定液体交联体系的成胶时间及成胶强度。具体操作为:取15mL 成胶液置于试样瓶内,以强度级别连续不发生变化的时间作为液体胶塞的成胶时间,根据目测结果,按照冻胶强度等级划分表来判断调驱交联体系的成胶时间及成胶强度。
冻胶强度等级划分见表1。
表1.冻胶强度等级划分表
Figure RE-GDA0002712962600000051
Figure RE-GDA0002712962600000061
实施例1
一种适用于低温高盐油藏深部调驱交联体系,质量百分比组成为:0.30%高分子絮凝剂、0.40%六亚甲基四胺、0.01%间苯二酚、0.10%小分子有机酸、水 99.19%。各组分质量为:高分子絮凝剂0.30g;六亚甲基四胺0.40g;间苯二酚 0.01g;小分子有机酸0.10g;水99.19g。
其制备方法如下:
(1)取99.19g水边搅拌边向水中加入高分子絮凝剂0.30g,持续搅拌2~3h,得到高分子絮凝剂溶液;
(2)然后边搅拌边缓慢加入六亚甲基四胺0.40g、间苯二酚0.01g、小分子有机酸0.10g,持续搅拌0.5h,得到调驱交联体系的成胶液;
(3)将成胶液置于多个安瓶中,用酒精灯烧结密封后,分别置于20℃、30℃、 40℃烘箱中老化,并间隔一定时间观察其成胶情况,成胶时间见表2。
考察本实施例的调驱交联体系在低温高盐温度(温度20~40℃,总矿化度 7.0×105mg/L,Ca2+、Mg2+离子浓度3000mg/L)条件下的成胶性能,结果见表2。
表2.实施例1的冻胶堵剂在低温高盐条件下的成胶性能
温度 20℃ 30℃ 40℃
成胶时间 97h 69h 51h
成胶强度 E级别 F级别 G级别
结果表明,实施例1制备的调驱交联体系在低温高盐条件下具有较好的成胶效果,成胶时间51~97小时,成胶强度E~G级别。
实施例2
一种适用于低温高盐油藏深部调驱交联体系,质量百分比组成为:0.40%高分子絮凝剂、0.50%六亚甲基四胺、0.04%间苯二酚、0.15%小分子有机酸、水 98.91%。各组分质量为:高分子絮凝剂0.40g;六亚甲基四胺0.50g;间苯二酚 0.04g;小分子有机酸0.15g;水98.91g。
其制备方法如下:
(1)取98.91g水边搅拌边向水中加入高分子絮凝剂0.40g,持续搅拌2~3h,得到高分子絮凝剂溶液;
(2)然后边搅拌边缓慢加入六亚甲基四胺0.50g、间苯二酚0.04g、小分子有机酸0.15g,持续搅拌0.5h,得到调驱交联体系的成胶液;
(3)将成胶液置于多个安瓶中,用酒精灯烧结密封后,分别置于20℃、30℃、 40℃烘箱中老化,并间隔一定时间观察其成胶情况,成胶时间见表3。
考察本实施例的调驱交联体系在低温高盐温度(温度20~40℃,总矿化度 7.0×105mg/L,Ca2+、Mg2+离子浓度3000mg/L)条件下的成胶性能,结果见表3。
表3.实施例2的冻胶堵剂在低温高盐条件下的成胶性能
温度 20℃ 30℃ 40℃
成胶时间 89h 57h 45h
成胶强度 F级别 G级别 G级别
结果表明,实施例2制备的调驱交联体系在低温高盐条件下具有较好的成胶效果,成胶时间45~89小时,成胶强度F~G级别。
实施例3
一种适用于低温高盐油藏深部调驱交联体系,质量百分比组成为:0.50%高分子絮凝剂、0.60%六亚甲基四胺、0.05%间苯二酚、0.20%小分子有机酸、水 98.65%。各组分质量为:高分子絮凝剂0.50g;六亚甲基四胺0.60g;间苯二酚 0.05g;小分子有机酸0.20g;水98.65g。
其制备方法如下:
(1)取98.65g水边搅拌边向水中加入高分子絮凝剂0.50g,持续搅拌2~3h,得到高分子絮凝剂溶液;
(2)然后边搅拌边缓慢加入六亚甲基四胺0.60g、间苯二酚0.05g、小分子有机酸0.20g,持续搅拌0.5h,得到调驱交联体系的成胶液;
(3)将成胶液置于多个安瓶中,用酒精灯烧结密封后,分别置于20℃、30℃、40℃烘箱中老化,并间隔一定时间观察其成胶情况,成胶时间见表4。
考察本实施例的调驱交联体系在低温高盐温度(温度20~40℃,总矿化度 7.0×105mg/L,Ca2+、Mg2+离子浓度3000mg/L)条件下的成胶性能,结果见表4。
表4.实施例3的冻胶堵剂在低温高盐条件下的成胶性能
温度 20℃ 30℃ 40℃
成胶时间 81h 52h 40h
成胶强度 F级别 G级别 H级别
结果表明,本实施例3制备的调驱交联体系在低温高盐条件下具有较好的成胶效果,成胶时间40~81小时,成胶强度F~H级别。
实施例4
考察本发明调驱交联体系在高盐条件下的稳定性
一种适用于低温高盐油藏深部调驱交联体系,质量百分比组成为:0.50%高分子絮凝剂、0.60%六亚甲基四胺、0.05%间苯二酚、0.20%小分子有机酸、水 98.65%。各组分质量为:高分子絮凝剂0.50g;六亚甲基四胺0.60g;间苯二酚0.05g;小分子有机酸0.20g;水98.65g。
其制备方法如下:
(1)取98.65g水边搅拌边向水中加入高分子絮凝剂0.50g,持续搅拌2~3h,得到高分子絮凝剂溶液;
(2)然后边搅拌边缓慢加入六亚甲基四胺0.60g、间苯二酚0.05g、小分子有机酸0.20g,持续搅拌0.5h,得到调驱交联体系的成胶液;
(3)将成胶液置于安瓶中,用酒精灯烧结密封后,置于30℃烘箱中;将冻胶置于30℃烘箱中长时间老化,定期考察调驱交联体系的强度变化及脱水量。实验结果见表5。
表5.实施例4调驱交联体系在高盐条件下的稳定性结果
考察时间 10天 30天 60天 90天 180天
强度 G级别 G级别 G级别 G级别 G级别
脱水量 无脱水 无脱水 无脱水 无脱水 无脱水
由结果可知,使用高矿化度、高硬度水配制的调驱交联体系,长时间老化后,强度不变,几乎无脱水,说明本发明的调驱交联体系在高盐条件下具有良好的稳定性。
实施例5
考察本发明调驱交联体系的封堵能力(参考标准SY/T 5590-2004调剖剂性能评价方法进行测试)
一种适用于低温高盐油藏深部调驱交联体系,质量百分比组成为:0.50%高分子絮凝剂、0.60%六亚甲基四胺、0.05%间苯二酚、0.20%小分子有机酸、水 98.65%。各组分质量为高分子絮凝剂0.50g;六亚甲基四胺0.60g;间苯二酚0.05g;小分子有机酸0.20g;水98.65g。
其制备方法如下:
(1)取98.65g水边搅拌边向水中加入高分子絮凝剂0.50g,持续搅拌2~3h,得到高分子絮凝剂溶液;
(2)然后边搅拌边缓慢加入六亚甲基四胺0.60g、间苯二酚0.05g、小分子有机酸0.20g,持续搅拌0.5h,得到调驱交联体系的成胶液;
使用上述制备的成胶液,考察调驱交联体系的封堵能力,实验步骤如下:
(1)将长20cm,内径5cm的高渗透管填砂管填充砂砾(60~80目),模拟油藏高渗透层,并且将填砂管抽真空,饱和盐水;
(2)用盐水水驱至压力稳定,测得填砂管的初始渗透率(记为K1);
(3)将制备的成胶液反向注入填砂管,注入量为0.3PV(填砂管孔隙体积),随后用0.1PV盐水进行顶替,然后将填砂管置于40℃烘箱中老化96h后凝成胶;
(4)进行后续水驱至压力稳定,测定填砂管堵后渗透率(记为K2),按照公式E=(K1/K2)/K1,计算得到封堵率。结果见表6。
表6实施例5调驱交联体系的封堵能力
封堵前渗透率K<sub>1</sub>/μm<sup>2</sup> 封堵后渗透率K<sub>1</sub>/μm<sup>2</sup> 封堵率E/%
2.70 0.07 98.3
结果表明,本发明实施例5提供的调驱交联体系在低温高盐条件下具有很强的封堵能力,在低温高盐油藏施工中能够对高渗透层或大孔道进行有效封堵。
实施例6
考察本发明调驱交联体系的提高采收率能力(参考标准SY/T 6424-2014复合驱油体系性能测试方法进行测试)
一种适用于低温高盐油藏深部调驱交联体系,质量百分比组成为:0.50%高分子絮凝剂、0.60%六亚甲基四胺、0.05%间苯二酚、0.20%小分子有机酸、水 98.65%。各组分质量为高分子絮凝剂0.50g;六亚甲基四胺0.60g;间苯二酚0.05g;小分子有机酸0.20g;水98.65g。
其制备方法如下:
(1)取98.65g水边搅拌边向水中加入高分子絮凝剂0.50g,持续搅拌2~3h,得到高分子絮凝剂溶液;
(2)然后边搅拌边缓慢加入六亚甲基四胺0.60g、间苯二酚0.05g、小分子有机酸0.20g,持续搅拌0.5h,得到调驱交联体系的成胶液;
使用上述制备的成胶液,考察调驱交联体系的提高采收率能力,实验步骤如下:
(1)填砂管长20cm,内径5cm,分别用低目数(60~80目)和高目数(100~120 目)砂砾填充高渗透填砂管和低渗透填砂管,分别模拟油藏高渗透地层和低渗透地层,并且将填砂管抽真空,饱和盐水;
(2)用盐水驱替填砂管至稳定压力,测定高、低渗填砂管渗透率;
(3)饱和原油:将填砂管饱和原油,直至出口端产出液全为原油(注入速度由0.05mL/逐次升至1mL/min),记录饱和原油体积,计算含油饱和度,将饱和原油的填砂管置于40℃烘箱中老化96h;
(4)水驱:1mL/min速度水驱并联的高、低渗填砂管,记录产出液体积、产出原油体积及产出水体积,直至产出液含水率为98%,计算水驱原油采收率;
(5)反向注入冻胶堵剂成胶液,注入总体积为0.3PV(高渗透率填砂管孔隙体积),然后用盐水顶替,将并联的高、低渗填砂管置40℃烘箱中老化96h,候凝成胶;
(6)后续水驱:以1mL/min速度水驱并联的高、低渗填砂管,记录产出液体积、产出原油体积及产出水体积,直至产出液含水率再次达到98%,计算后续水驱原油采收率增值。结果见表7所示。
表7.本发明实施例6调驱交联体系的提高采收率能力
高渗管采收率/% 低渗管采收率/% 总采收率/%
注调驱交联体系前 62.34 5.32 33.10
注调驱交联体系后 71.01 63.43 68.97
实验结果见表7,结果表明注入调驱交联体系后,低渗填砂管采收率明显增加,剩余油被采出,总采收率增值达52.00%,说明本发明的调驱交联体系能够有效地封堵高渗透出水优势通道,进而有效提高采收率,提高波及程度。
对比例1
以有机铬交联的调驱交联体系(参考文献:王斌,王栋,李补鱼.一种深部调剖用聚合物/有机铬冻胶体系[J].油田化学,1999,16(1),24-26)
各组分的质量百分比组成为:0.70%聚丙烯酰胺、0.15%有机铬交联剂(中国石油大学(华东))、0.06%硫代硫酸钠(分析纯,中国石油大学(华东))、0.03%交联延缓剂(碳酸氢钠,分析纯,中国石油大学(华东))、水99.06%。各组分质量为:聚丙烯酰胺0.70g;有机铬交联剂0.15g;硫代硫酸钠0.06g;延缓剂0.03g;水99.06g。
其制备方法如下:
(1)取99.06g水边搅拌边向水中加入高分子絮凝剂0.70g,持续搅拌2~3h,得到高分子絮凝剂溶液;
(2)然后边搅拌边缓慢加入有机铬交联剂0.15g,持续搅拌0.5h,得到调驱交联体系的成胶液;
(3)将成胶液置于多个安瓶中,用酒精灯烧结密封后,分别置于20℃、30℃、 40℃烘箱中老化,并间隔一定时间观察其成胶情况,成胶时间见表8。
考察本实施例的调驱交联体系在低温高盐温度(温度20~40℃,总矿化度 7.0×105mg/L,Ca2+、Mg2+离子浓度3000mg/L)条件下的成胶性能,结果见表8。
表8.有机铬交联的调驱交联体系在低温高盐条件下的成胶性能
温度 20℃ 30℃ 40℃
成胶时间 未成胶 未成胶 未成胶
成胶强度 未成胶 未成胶 未成胶
结果表明,对比例1制备的有机铬交联的调驱交联体系在低温高盐条件下无法成胶。
对比例2
酚醛树脂交联的调驱交联体系(参考文献:张艳辉,戴彩丽,纪文娟,等.南堡陆地高含水油藏弱冻胶深部调驱实验研究[J].油田化学,2013,30(1),33-36)
各组分质量百分比组成为:0.30%聚丙烯酰胺、0.50%酚醛树脂交联剂、 99.20%水。各组分质量为:聚丙烯酰胺0.30g;酚醛树脂0.50g;水99.20g。
其制备方法如下:
(1)取99.20g水边搅拌边向水中加入高分子絮凝剂0.30g,持续搅拌2~3h,得到高分子絮凝剂溶液;
(2)然后边搅拌边缓慢加入酚醛树脂0.50g,持续搅拌0.5h,得到调驱交联体系的成胶液;
(3)将成胶液置于多个安瓶中,用酒精灯烧结密封后,分别置于20℃、30℃、 40℃烘箱中老化,并间隔一定时间观察其成胶情况,成胶时间见表9。
考察本实施例的调驱交联体系在低温高盐温度(温度20~40℃,总矿化度 7.0×105mg/L,Ca2+、Mg2+离子浓度3000mg/L)条件下的成胶性能,结果见表9。
表9.酚醛树脂交联的调驱交联体系在低温高盐条件下的成胶性能
温度 20℃ 30℃ 40℃
成胶时间 未成胶 未成胶 未成胶
成胶强度 未成胶 未成胶 未成胶
结果表明,对比例2制备的酚醛树脂交联的调驱交联体系在低温高盐条件下无法成胶。
由上述实验结果可以看出,现有技术中常用的以有机铬或酚醛树脂为交联剂的调驱交联体系在低温(20℃~40℃)高盐(6.0×105mg/L~10.0×105mg/L)条件下无法成胶,而本发明提供的调驱交联体系在低温(20℃~40℃)高盐 (6.0×105mg/L~10.0×105mg/L)条件下具有很强的封堵能力,在低温高盐油藏施工中能够对高渗透层或大孔道进行有效封堵,而且提高采收率效果显著,波及程度高。

Claims (13)

1.一种低温耐高盐深部调驱交联体系,包含高分子絮凝剂、六亚甲基四胺、间苯二酚、小分子有机酸和水。
2.根据权利要求1所述的调驱交联体系,其特征在于,以质量百分比来计,所述的调驱交联体系中含有0.1~1.0%高分子絮凝剂、0.1~1.0%六亚甲基四胺、0.01~0.2%间苯二酚、0.05~1.0%小分子有机酸、及余量的水。
3.根据权利要求2所述的调驱交联体系,其特征在于,以质量百分比来计,所述的调驱交联体系中含有0.3~0.6%高分子絮凝剂、0.3~0.6%六亚甲基四胺、0.01~0.1%间苯二酚、0.1~0.5%小分子有机酸、及余量的水。
4.根据权利要求1所述的调驱交联体系,其特征在于,
所述的高分子絮凝剂分子量为1000~2000万;和/或,
所述的高分子絮凝剂选自阴离子型高分子絮凝剂、非离子型高分子絮凝剂中的至少一种。
5.根据权利要求4所述的调驱交联体系,其特征在于,
所述的高分子絮凝剂分子量为1000~1200万;和/或,
所述的高分子絮凝剂选自阴离子型聚丙烯酰胺和/或其共聚物、非离子型聚丙烯酰胺和/或其共聚物中的至少一种。
6.根据权利要求1所述的调驱交联体系,其特征在于,所述的小分子有机酸选自碳原子数为1~18的饱和或不饱和的、直链和/或带有支链的脂肪酸。
7.根据权利要求6所述的调驱交联体系,其特征在于,所述的小分子有机酸选自乙酸、丁酸、丙烯酸、油酸、乳酸、月桂酸、琥珀酸、硬脂酸、卤代乙酸的至少一种。
8.根据权利要求1~7任一项所述的低温耐高盐深部调驱交联体系的制备方法,包含将包含有所述的高分子絮凝剂、六亚甲基四胺、间苯二酚、小分子有机酸、水在内的组分混和均匀后,即得所述的低温耐高盐深部调驱交联体系。
9.根据权利要求8所述的制备方法,其特征在于,具体包含以下步骤:
步骤(1)将高分子絮凝剂加入到水中,搅拌至完全溶解,得到高分子絮凝剂溶液;
步骤(2)向步骤(1)得到的高分子絮凝剂溶液中加入六亚甲基四胺、间苯二酚和小分子有机酸,搅拌后静置得到所述的低温耐高盐深部调驱交联体系。
10.根据权利要求9所述的制备方法,其特征在于,
所述步骤(1)中搅拌温度为20~40℃,搅拌时间为2~3h。
11.根据权利要求9所述的制备方法,其特征在于,
所述步骤(2)中依次加入六亚甲基四胺、间苯二酚和小分子有机酸;和/或,
所述步骤(2)中搅拌温度为20~40℃,搅拌时间为0.5~1h。
12.权利要求1~7任一项所述的调驱交联体系或者根据权利要求8~11任一项所述的制备方法得到的调驱交联体系的应用,该调驱交联体系用于低温高盐油藏的深部堵水施工。
13.根据权利要求12所述的调驱交联体系的应用,其特征在于,
所述的低温温度为20~40℃;和/或,
所述的高盐的矿化度为6.0×105~10.0×105mg/L。
CN202010654516.3A 2020-07-09 2020-07-09 一种低温耐高盐深部调驱交联体系及其制备方法和应用 Active CN113913168B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010654516.3A CN113913168B (zh) 2020-07-09 2020-07-09 一种低温耐高盐深部调驱交联体系及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010654516.3A CN113913168B (zh) 2020-07-09 2020-07-09 一种低温耐高盐深部调驱交联体系及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113913168A true CN113913168A (zh) 2022-01-11
CN113913168B CN113913168B (zh) 2023-08-08

Family

ID=79231844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010654516.3A Active CN113913168B (zh) 2020-07-09 2020-07-09 一种低温耐高盐深部调驱交联体系及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113913168B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304354A (zh) * 2011-09-29 2012-01-04 盘锦市庆联油田工程技术服务有限公司 一种低温深部凝胶调剖堵水剂及其制备方法
CN102766449A (zh) * 2012-07-12 2012-11-07 中国石油天然气股份有限公司 聚丙烯酰胺与水溶性酚醛树脂的低温促交剂
CN103980872A (zh) * 2014-05-15 2014-08-13 中国地质大学(北京) 一种适用于低温油藏的环境友好型冻胶堵剂及应用
CN104342100A (zh) * 2013-08-02 2015-02-11 中国石油天然气股份有限公司 一种弱凝胶调剖剂及其制备和应用
CN104877653A (zh) * 2015-05-08 2015-09-02 西南石油大学 一种用于低温油藏快速成胶的酚醛弱凝胶调驱剂
CN105860946A (zh) * 2015-01-23 2016-08-17 中国石油天然气股份有限公司 低温成胶可控的调剖堵水体系、其制备方法及调剖堵水方法
CN106047324A (zh) * 2016-06-30 2016-10-26 中国石油大学(华东) 适用于低渗透高温高盐油藏的强化冻胶分散体深部调驱剂
CN106916249A (zh) * 2017-03-08 2017-07-04 中国石油大学(华东) 一种适用于低温高盐油藏堵水调剖用的堵剂
CN107365573A (zh) * 2017-06-13 2017-11-21 中国石油天然气集团公司 一种中低温环保交联剂的制备方法及应用
CN107794014A (zh) * 2017-10-25 2018-03-13 中国石油化工股份有限公司 中低温凝胶调堵体系及其制备方法
CN110885670A (zh) * 2018-09-11 2020-03-17 任丘市油联化工有限公司 一种延缓低温交联配方

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304354A (zh) * 2011-09-29 2012-01-04 盘锦市庆联油田工程技术服务有限公司 一种低温深部凝胶调剖堵水剂及其制备方法
CN102766449A (zh) * 2012-07-12 2012-11-07 中国石油天然气股份有限公司 聚丙烯酰胺与水溶性酚醛树脂的低温促交剂
CN104342100A (zh) * 2013-08-02 2015-02-11 中国石油天然气股份有限公司 一种弱凝胶调剖剂及其制备和应用
CN103980872A (zh) * 2014-05-15 2014-08-13 中国地质大学(北京) 一种适用于低温油藏的环境友好型冻胶堵剂及应用
CN105860946A (zh) * 2015-01-23 2016-08-17 中国石油天然气股份有限公司 低温成胶可控的调剖堵水体系、其制备方法及调剖堵水方法
CN104877653A (zh) * 2015-05-08 2015-09-02 西南石油大学 一种用于低温油藏快速成胶的酚醛弱凝胶调驱剂
CN106047324A (zh) * 2016-06-30 2016-10-26 中国石油大学(华东) 适用于低渗透高温高盐油藏的强化冻胶分散体深部调驱剂
CN106916249A (zh) * 2017-03-08 2017-07-04 中国石油大学(华东) 一种适用于低温高盐油藏堵水调剖用的堵剂
CN107365573A (zh) * 2017-06-13 2017-11-21 中国石油天然气集团公司 一种中低温环保交联剂的制备方法及应用
CN107794014A (zh) * 2017-10-25 2018-03-13 中国石油化工股份有限公司 中低温凝胶调堵体系及其制备方法
CN110885670A (zh) * 2018-09-11 2020-03-17 任丘市油联化工有限公司 一种延缓低温交联配方

Also Published As

Publication number Publication date
CN113913168B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN104017135B (zh) 微生物多糖改性共聚物凝胶堵剂的制备方法
CN106947450B (zh) 一种具有低初始粘度的深部调驱剂及其制备方法
CN109369848B (zh) 一种功能型耐温抗盐调堵剂及其制备方法
CN110129013B (zh) 有机-无机复合凝胶堵漏剂及其制备方法与应用
CA2790100C (en) Lewis acid as gelation retarder for crosslinkable polymer compositions
CN109735315B (zh) 一种环保型采油用延迟交联调剖剂及制备方法和用途
CN102533240B (zh) 一种高温油藏复合调驱剂,其制备方法及其应用
CN111234791B (zh) 一种用于深部地层封堵的二次交联互穿网络凝胶
CN104371682A (zh) 一种aa-am-amps-dac聚合物凝胶堵水剂及其合成方法
CN101235182B (zh) 一种分子内Cr3+交联聚合物凝胶及其制法
CN103923629A (zh) 一种堵水剂
CN105368423A (zh) 一种采油用无铬复合树脂凝胶类调剖剂及制备方法与用途
CN111499797A (zh) 一种耐高温高强度地下交联冻胶调剖剂及其制备方法与应用
CN104479652A (zh) 一种水玻璃调剖剂及其制备方法
CN104987857A (zh) 耐高盐自增粘疏水缔合聚合物凝胶调堵剂及其制备方法
CN103937474A (zh) 一种环保型高强度调剖堵水剂及其制备方法
CN106634906A (zh) 一种耐高温冻胶
CN107556996B (zh) 一种co2响应就地凝胶封窜剂及其制备方法与应用
CN113234425A (zh) 一种中低渗油藏深部调剖用复合铝凝胶堵剂及其制备方法与应用
CN113136185A (zh) 一种低温高矿化度油藏用有机堵水冻胶
CN113913168A (zh) 一种低温耐高盐深部调驱交联体系及其制备方法和应用
CN111350474B (zh) 一种能实现深部调驱的二次交联互穿网络凝胶的封堵方法
CN106916249A (zh) 一种适用于低温高盐油藏堵水调剖用的堵剂
CN103497748B (zh) 一种利用地层残余聚合物的封窜剂及其封窜方法
CN106478943A (zh) 一种用于裂缝性中低温低渗透油藏的自适应调驱剂及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant