CN113912392A - 一种高介电高击穿储能陶瓷及其制备方法 - Google Patents

一种高介电高击穿储能陶瓷及其制备方法 Download PDF

Info

Publication number
CN113912392A
CN113912392A CN202111324522.3A CN202111324522A CN113912392A CN 113912392 A CN113912392 A CN 113912392A CN 202111324522 A CN202111324522 A CN 202111324522A CN 113912392 A CN113912392 A CN 113912392A
Authority
CN
China
Prior art keywords
energy storage
mixed powder
powder
storage ceramic
znnb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111324522.3A
Other languages
English (en)
Inventor
高景晖
刘泳斌
徐靖喆
钟力生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202111324522.3A priority Critical patent/CN113912392A/zh
Publication of CN113912392A publication Critical patent/CN113912392A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本公开揭示了一种高介电高击穿储能陶瓷,储能陶瓷的组分及摩尔百分比含量为:(1‑x)Bal‑ySryTi0.895Sn0.105O3‑xBi1.5ZnNb1.5O7,其中,0.10≤x≤0.20,O.10≤y≤0.20。通过在BaTiO3中加入Sr‑锶、Sn‑锡元素构建三弛豫状态,并通过在预烧前加入Bi1.5Zn‑锌Nb‑铌1.5O7与Sr、Sn进行前掺复配,使得原子具有双倍晶格周期的反平行电畴结构,从而诱发储能陶瓷在部分局域内具有三弛豫纳米电畴结构的同时产生反铁电相。

Description

一种高介电高击穿储能陶瓷及其制备方法
技术领域
本公开属于电子陶瓷材料领域,具体涉及一种高介电高击穿储能陶瓷及其制备方法。
背景技术
电介质储能材料可以通过外电场作用储存电荷并进行释放,因此在电容器中具有重要的应用价值,电容器作为电力和电子设备不可或缺的元器件,如何提升其电储能性能这一需求变得十分迫切。储能性能由材料的极化与击穿场强积分得到,而电介质储能材料的极化状态与击穿场强具有制约关系,具有高极化状态会导致电介质储能材料在较低电场下被击穿,其中介电常数往往反映了材料的极化状态,故目前对于电介质储能材料研究的一个重点问题就是如何协同提升材料的介电常数与击穿场强。
最新研究发现,构建三临界-弛豫状态交汇区可以使材料的介电常数得到显著提升2-3倍,同时拥有着极高的储能效率。这是由于三弛豫材料处于三临界状态,具有纳米电畴结构,极化状态在外加电场作用下易于翻转,诱发出材料的超高极化状态,同时材料的弛豫特性使其处于低滞回状态。
发明内容
针对现有技术中的不足,本公开的目的在于提供一种高介电高击穿储能陶瓷及其制备方法,通过在BaTiO3中加入Sr、Sn元素构建三弛豫状态,进一步调控Bil.5ZnNbl.5O7组分的加入使材料处于反铁电相与三弛豫区共存的状态。
为实现上述目的,本公开提供以下技术方案:
一种高介电高击穿储能陶瓷,其特征在于,所述储能陶瓷的组分及摩尔百分比含量为:(1-x)Ba1-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7,其中,0.10≤x≤0.20,0.10≤y≤0.20。
本公开还提供一种制备高介电高击穿储能陶瓷的方法,包括如下步骤:
S100:按照化学计量式,分别称取BaCO3粉料、TiO2粉料、SrCO3粉料、SnO2粉料、Bi2O3粉料、ZnO粉料及Nb2O5粉料混合后球磨,获得混合粉料;
S200:将混合粉料烘干、研磨、过筛;
S300:将过筛后的混合粉料在1200-1250℃预烧,将预烧后的混合粉料保温后自然冷却;
S400:将自然冷却后的混合粉料进行二次研磨和二次球磨,将二次球磨后的混合粉料二次烘干;
S500:将二次烘干后的混合粉料进行三次研磨,获得化学组成通式为(1-x)Ba1-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7的粉料;
S600:在步骤S500所述粉料中加入聚乙烯醇PVA混合,二次过筛后获得粒料,对粒料进行压片、排胶,获得(1-x)Ba1-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7生坯;
S700:将(1-x)Ba1-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7生坯在1200~1350℃下烧结,制得高介电高击穿储能陶瓷。
优选的,步骤S100和步骤S400中,球磨时长为6-8个小时。
优选的,步骤S200和步骤S500中,选用60目筛网对混合粉料进行过筛操作。
优选的,步骤S300中,将预烧后的混合粉料保温4-6h。
优选的,步骤S400中,将二次球磨后的混合粉料在120-140℃中进行二次烘干。
优选的,步骤S600中,对粒料在30MPa压力下进行压片。
优选的,步骤S700中,在对
(1-x)Ba1-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7生坯烧结的过程中,需要加入如步骤S100所述的混合粉料作为埋料。
优选的,在制得高介电高击穿储能陶瓷后,还需要在其表面进行烧电极操作,具体操作步骤如下:将烧制好的高介电高击穿储能陶瓷打磨光滑后在其上表面和下表面涂抹银浆,在800℃保温20分钟后自然冷却至室温。
优选的,涂抹在高介电高击穿储能陶瓷上表面和下表面的银浆的厚度为100-200nm。
与现有技术相比,本公开带来的有益效果为:本公开通过在BaTiO3中加入Sr、Sn元素构建三弛豫状态,并通过在预烧前加入Bil.5ZnNb1.5O7与Sr、Sn进行前掺复配,使得原子具有双倍晶格周期的反平行电畴结构,诱发储能陶瓷在部分局域内具有三弛豫纳米电畴结构的同时产生反铁电相,可以构建多重极化机制,缓释极化饱和状态,将介电常数与击穿场强协同提升。
附图说明
图1是本公开一个实施例提供的一种制备高介电高击穿储能陶瓷的方法流程图;
图2是本公开另一个实施例提供的储能陶瓷在部分局域内具有三弛豫纳米电畴结构的同时产生反铁电相的电镜图;
图3是本公开另一个实施例提供的储能陶瓷的反铁电峰峰强示意图;
图4是本公开另一个实施例提供的储能陶瓷样品的介电常数随温度变化关系图;
图5是本公开另一个实施例提供的储能陶瓷样品的电滞回线示意图。
具体实施方式
下面将参照附图图1至图5详细地描述本公开的具体实施例。虽然附图中显示了本公开的具体实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名词的差异作为区分组件的方式,而是以组件在功能上的差异作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本公开的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非用以限定本公开的范围。本公开的保护范围当视所附权利要求所界定者为准。
为便于对本公开实施例的理解,下面将结合附图以具体实施例为例做进一步的解释说明,且各个附图并不构成对本公开实施例的限定。
一个实施例中,本公开提供一种高介电高击穿储能陶瓷,其特征在于,所述储能陶瓷的组分及摩尔百分比含量为:(1-x)Ba1-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7,其中,0.10≤x≤0.20,0.10≤y≤0.20。
本实施例中,在钛酸钡基陶瓷中掺杂Sr、Sn的同时与Bi1.5ZnNb1.5O7进行前掺复配得到锡钛酸锶钡-铋锌铌,掺杂Bi1.5ZnNb1.5O7后能够产生氧八面体倾转,在晶格内使原子反平行排列诱发反铁电相的同时保留三驰豫纳米电畴(如图2所示),从而得到同时具有高储能密度和高介电击穿的储能陶瓷。
另外,就上述实施例而言,本公开通过同步辐射X射线衍射方法对上述组分及摩尔百分比含量的储能陶瓷的反铁电峰峰强进行了测试,测试结果如图3所示,图3中,当x的取值范围被限定在0.1至0.2之间时,储能陶瓷具有较高的反铁电相含量,进而能够使饱和极化缓释以及令储能陶瓷可以承受更高的场强,达到提升击穿场强的效果。
另一个实施例中,如图1所示,本公开提供一种制备高介电高击穿储能陶瓷的方法,包括如下步骤:
S100:按照化学计量式,分别称取BaCO3粉料、TiO2粉料、SrCO3粉料、SnO2粉料、Bi2O3粉料、ZnO粉料及Nb2O5粉料混合后球磨,获得混合粉料;
S200:将混合粉料烘干、研磨、过筛;
S300:将过筛后的混合粉料在1200-1250℃预烧,将预烧后的混合粉料保温后自然冷却;
S400:将自然冷却后的混合粉料进行二次研磨和二次球磨,将二次球磨后的混合粉料二次烘干;
S500:将二次烘干后的混合粉料进行三次研磨,获得化学组成通式为(1-x)Bal-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7的粉料;
S600:在步骤S500所述粉料中加入聚乙烯醇PVA混合,二次过筛后获得粒料,对粒料进行压片、排胶,获得(1-x)Ba1-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7生坯;
S700:将(1-x)Ba1-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7生坯在1200~1350℃下烧结,制得高介电高击穿储能陶瓷。
在一个具体实施例中,本公开提供一种制备化学组分为0.80Ba1-0.20Sr0.20Ti0.895Sn0.105O3-0.20Bi1.5ZnNb1.5O7的储能陶瓷的方法,包括如下步骤:
1、按照化学计量式,称取0.566g BaCO3粉料、0.227g TiO2粉料、0.047g SrCO3粉料、0.050g SnO2粉料、0.137g Bi2O3粉料、0.032g ZnO粉料及0.078g Nb2O5粉料混合,并放入球磨罐中,加入球磨溶剂无水乙醇和玛瑙球球磨6个小时,球磨转速为320r/min,获得1.122g混合粉料;
2、将混合粉料放入烘箱在120℃烘干4小时,再放入研钵中研磨,研磨完成后用60目筛网进行过筛操作;
3、将过筛后的混合粉料放入坩埚中压实、加盖,在1200℃的马弗炉中预烧,将预烧后的混合粉料保温4个小时后后自然冷却至室温;
4、将自然冷却后的混合粉料在研钵中二次研磨成细粉,然后装入球磨罐中,加入球磨溶剂无水乙醇二次球磨6个小时,球磨转速为320r/min,将二次球磨后的混合粉料放入120℃的烘箱中烘干;
5、将二次烘干后的混合粉料在研钵中进行三次研磨,获得化学组成通式为0.80Ba1-0.20Sr0.20Ti0.895Sn0.105O3-0.20Bi1.5ZnNb1.5O7的粉料;
6、在步骤5的粉料中加入质量分数为8%的聚乙烯醇PVA混合,然后选用60目筛网对混合粉料进行过筛操作,获得粒料,将所获得的粒料倒入不锈钢模具中,在30MPa压力下保压90秒,获得圆柱形0.80Ba1-0.20Sr0.20Ti0.895Sn0.105O3-0.20Bi1.5ZnNb1.5O7生坯;
7、将0.80Ba1-0.20Sr0.20Ti0.895Sn0.105O3-0.20Bi1.5ZnNb1.5O7生坯放入550℃马弗炉中保温2小时,排出PVA胶;将排胶后的0.80Ba1-0.20Sr0.20Ti0.895Sn0.105O3-0.20Bi1.5ZnNb1.5O7生坯放入坩埚中烧结,同时加入相同组分的材料做埋料在1200℃温度下烧进行埋烧,保温2小时后即可制得高介电高击穿储能陶瓷。
在另一个具体实施例中,本公开提供一种制备化学组分为0.85Ba1-0.15Sr0.15Ti0.895Sn0.105O3-0.15Bi1.5ZnNb1.5O7的储能陶瓷的方法,包括如下步骤:
1、按照化学计量式,称取0.566g BaCO3粉料、0.227g TiO2粉料、0.047g SrCO3粉料、0.050g SnO2粉料、0.137g Bi2O3粉料、0.032g ZnO粉料及0.078g Nb2O5粉料混合,并放入球磨罐中,加入球磨溶剂无水乙醇和玛瑙球球磨6个小时,球磨转速为320r/min,获得1.122g混合粉料;
2、将混合粉料放入烘箱在120℃烘干5小时,载放入研钵中研磨,研磨完成后用60目筛网进行过筛操作;
3、将过筛后的混合粉料放入坩埚中压实、加盖,在1225℃的马弗炉中预烧,将预烧后的混合粉料保温5个小时后后自然冷却至室温;
4、将自然冷却后的混合粉料在研钵中二次研磨成细粉,然后装入球磨罐中,加入球磨溶剂无水乙醇二次球磨8个小时,球磨转速为320r/min,将二次球磨后的混合粉料放入130℃的烘箱中烘干;
5、将二次烘干后的混合粉料在研钵中进行三次研磨,获得化学组成通式为0.85Ba1-0.15Sr0.15Ti0.895Sn0.105O3-0.15Bi1.5ZnNb1.5O7的粉料;
6、在步骤5的粉料中加入质量分数为8%的聚乙烯醇PVA混合,然后选用60目筛网对混合粉料进行过筛操作,获得粒料,将所获得的粒料倒入不锈钢模具中,在30MPa压力下保压90秒,获得圆柱形0.85Ba1-0.15Sr0.15Ti0.895Sn0.105O3-0.15Bi1.5ZnNb1.5O7生坯;
7、将0.85Ba1-0.15Sr0.15Ti0.895Sn0.105O3-0.15Bi1.5ZnNb1.5O7生坯放入550℃马弗炉中保温4小时,排出PVA胶;将排胶后的0.85Ba1-0.15Sr0.15Ti0.895Sn0.105O3-0.15Bi1.5ZnNb1.5O7生坯放入坩埚中烧结,同时加入相同组分的材料做埋料在1275℃温度下烧进行埋烧,保温3小时后即可制得高介电高击穿储能陶瓷。
在另一个具体实施例中,本公开提供一种制备化学组分为0.90Ba1-0.10Sr0.10Ti0.895Sn0.105O3-0.10Bi1.5ZnNb1.5O7的储能陶瓷的方法,包括如下步骤:
1、按照化学计量式,称取0.566g BaCO3粉料、0.227g TiO2粉料、0.047g SrCO3粉料、0.050g SnO2粉料、0.137g Bi2O3粉料、0.032g ZnO粉料及0.078g Nb2O5粉料混合,并放入球磨罐中,加入球磨溶剂无水乙醇和玛瑙球球磨6个小时,球磨转速为320r/min,获得1.122g混合粉料;
2、将混合粉料放入烘箱在120℃烘干6小时,载放入研钵中研磨,研磨完成后用60目筛网进行过筛操作;
3、将过筛后的混合粉料放入坩埚中压实、加盖,在1250℃的马弗炉中预烧,将预烧后的混合粉料保温6个小时后后自然冷却至室温;
4、将自然冷却后的混合粉料在研钵中二次研磨成细粉,然后装入球磨罐中,加入球磨溶剂无水乙醇二次球磨8个小时,球磨转速为320r/min,将二次球磨后的混合粉料放入140℃的烘箱中烘干;
5、将二次烘干后的混合粉料在研钵中进行三次研磨,获得化学组成通式为0.90Ba1-0.10Sr0.10Ti0.895Sn0.105O3-0.10Bi1.5ZnNb1.5O7的粉料;
6、在步骤5的粉料中加入质量分数为8%的聚乙烯醇PVA混合,然后选用60目筛网对混合粉料进行过筛操作,获得粒料,将所获得的粒料倒入不锈钢模具中,在30MPa压力下保压90秒,获得圆柱形0.90Ba1-0.10Sr0.10Ti0.895Sn0.105O3-0.10Bi1.5ZnNb1.5O7生坯;
7、将0.90Ba1-0.10Sr0.10Ti0.895Sn0.105O3-0.10Bi1.5ZnNb1.5O7生坯放入550℃马弗炉中保温4小时,排出PVA胶;将排胶后的0.85Ba1-0.15Sr0.15Ti0.895Sn0.105O3-0.15Bi1.5ZnNb1.5O7生坯放入坩埚中烧结,同时加入相同组分的材料做埋料在1350℃温度下烧进行埋烧,保温4小时后即可制得高介电高击穿储能陶瓷。
另一个实施例中,在制得高介电高击穿储能陶瓷后,还需要在其表面进行烧电极操作,具体操作步骤如下:将烧制好的高介电高击穿储能陶瓷打磨光滑后在其上表面和下表面涂抹厚度为100-200nm的银浆,在800℃保温20分钟后自然冷却至室温。
对上述具体实施例制备的储能陶瓷样品进行不同温度下介电常数测试,如图4所示,可知储能陶瓷样品的介电常数最高可达2300。而通过采用与本公开同样的制备方法,并对最后所得物进行同等条件的测试,可得:在未加入Sr、Sn元素以及未在预烧前加入Bi1.5ZnNb1.5O7与Sr、Sn进行前掺复配的情况下的制得的储能陶瓷的介电常数为1750。
图5给出了由上述具体实施例制备的储能陶瓷的电滞回线,由图5可知,储能陶瓷的击穿场强达到500kV/cm,计算得到储能密度为3.8J/cm3。而通过采用与本公开同样的制备方法,并对最后所得物进行同等条件的测试,可得:在未加入Sr、Sn元素以及未在预烧前加入Bi1.5ZnNb1.5O7与Sr、Sn进行前掺复配的情况下制得的储能陶瓷的储能密度为0.79J/cm3
通过上述比对可知,在加入Sr、Sn元素以及未在预烧前加入Bi1.5ZnNb1.5O7与Sr、Sn进行前掺复配的情况下所制得的储能陶瓷,无论是介电常数还是储能密度均取得大幅度提高。
以上应用了具体实施例对本公开进行了阐述,只是用于帮助理解本公开,并不用于限制本公开。任何熟悉该技术的技术人员在本公开所揭示的技术范围内的局部修改或替换,都应涵盖在本公开的范围之内。

Claims (10)

1.一种高介电高击穿储能陶瓷,其特征在于,所述储能陶瓷的组分及摩尔百分比含量为:(1-x)Ba1-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7,其中,0.10≤x≤0.20,0.10≤y≤0.20。
2.一种制备如权利要求1所述高介电高击穿储能陶瓷的方法,优选的,包括如下步骤:
S100:按照化学计量式,分别称取BaCO3粉料、TiO2粉料、SrCO3粉料、SnO2粉料、Bi2O3粉料、ZnO粉料及Nb2O5粉料混合后球磨,获得混合粉料;
S200:将混合粉料烘干、研磨、过筛;
S300:将过筛后的混合粉料在1200-1250℃预烧,将预烧后的混合粉料保温后自然冷却;
S400:将自然冷却后的混合粉料进行二次研磨和二次球磨,将二次球磨后的混合粉料二次烘干;
S500:将二次烘干后的混合粉料进行三次研磨,获得化学组成通式为(1-x)Ba1-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7的粉料;
S600:在步骤S500所述粉料中加入聚乙烯醇PVA混合,二次过筛后获得粒料,对粒料进行压片、排胶,获得(1-x)Bal-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7生坯;
S700:将(1-x)Bal-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7生坯在1200~1350℃下烧结,制得高介电高击穿储能陶瓷。
3.根据权利要求2所述的方法,其中,步骤S100和步骤S400中,球磨时长为6-8个小时。
4.根据权利要求2所述的方法,其中,步骤S200和步骤S500中,选用60目筛网对混合粉料进行过筛操作。
5.根据权利要求2所述的方法,其中,步骤S300中,将预烧后的混合粉料保温4-6h。
6.根据权利要求2所述的方法,其中,步骤S400中,将二次球磨后的混合粉料在120-140℃中进行二次烘干。
7.根据权利要求2所述的方法,其中,步骤S600中,对粒料在30MPa压力下进行压片。
8.根据权利要求2所述的方法,其中,步骤S700中,在对(1-x)Ba1-ySryTi0.895Sn0.105O3-xBi1.5ZnNb1.5O7生坯烧结的过程中,需要加入如步骤S100所述的混合粉料作为埋料。
9.根据权利要求2所述的方法,其中,在制得高介电高击穿储能陶瓷后,还需要在其表面进行烧电极操作,具体操作步骤如下:将烧制好的高介电高击穿储能陶瓷打磨光滑后在其上表面和下表面涂抹银浆,在800℃保温20分钟后自然冷却至室温。
10.根据权利要求9所述的方法,其中,涂抹在高介电高击穿储能陶瓷上表面和下表面的银浆的厚度为100-200nm。
CN202111324522.3A 2021-11-10 2021-11-10 一种高介电高击穿储能陶瓷及其制备方法 Pending CN113912392A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111324522.3A CN113912392A (zh) 2021-11-10 2021-11-10 一种高介电高击穿储能陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111324522.3A CN113912392A (zh) 2021-11-10 2021-11-10 一种高介电高击穿储能陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN113912392A true CN113912392A (zh) 2022-01-11

Family

ID=79245928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111324522.3A Pending CN113912392A (zh) 2021-11-10 2021-11-10 一种高介电高击穿储能陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113912392A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874009A (zh) * 2022-06-09 2022-08-09 郑州轻工业大学 一种近室温弛豫铁电材料Ba4SrBiTi3Nb7O30及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312567A (zh) * 2000-02-03 2001-09-12 太阳诱电株式会社 电介质陶瓷粉末、陶瓷生片和层压陶瓷电容器及其制造方法
JP2006124734A (ja) * 2004-10-26 2006-05-18 Mitsubishi Heavy Ind Ltd 皮膜材料
CN101016643A (zh) * 2006-12-29 2007-08-15 大连海事大学 介电薄膜BaTiO3掺杂金属离子的制备方法及装置
CN103922734A (zh) * 2014-04-04 2014-07-16 武汉理工大学 一种宽温稳定储能介质陶瓷及其制备方法
CN109734440A (zh) * 2019-03-11 2019-05-10 西南科技大学 具有异质层状结构的SrTiO3基储能介质陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312567A (zh) * 2000-02-03 2001-09-12 太阳诱电株式会社 电介质陶瓷粉末、陶瓷生片和层压陶瓷电容器及其制造方法
JP2006124734A (ja) * 2004-10-26 2006-05-18 Mitsubishi Heavy Ind Ltd 皮膜材料
CN101016643A (zh) * 2006-12-29 2007-08-15 大连海事大学 介电薄膜BaTiO3掺杂金属离子的制备方法及装置
CN103922734A (zh) * 2014-04-04 2014-07-16 武汉理工大学 一种宽温稳定储能介质陶瓷及其制备方法
CN109734440A (zh) * 2019-03-11 2019-05-10 西南科技大学 具有异质层状结构的SrTiO3基储能介质陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张磊: "钛酸锶钡储能材料的制备与性能研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *
金莉莉: "Ba1-xSrxTi1-ySnyO3系统介质瓷的制备与性能研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874009A (zh) * 2022-06-09 2022-08-09 郑州轻工业大学 一种近室温弛豫铁电材料Ba4SrBiTi3Nb7O30及其制备方法和应用
CN114874009B (zh) * 2022-06-09 2022-12-13 郑州轻工业大学 一种近室温弛豫铁电材料Ba4SrBiTi3Nb7O30及其制备方法和应用

Similar Documents

Publication Publication Date Title
Wang et al. Dielectric and ferroelectric properties of SrTiO3-Bi0. 54Na0. 46TiO3-BaTiO3 lead-free ceramics for high energy storage applications
Zhang et al. Enhanced energy storage performance in (Pb0. 858Ba0. 1La0. 02Y0. 008)(Zr0. 65Sn0. 3Ti0. 05) O3–(Pb0. 97La0. 02)(Zr0. 9Sn0. 05Ti0. 05) O3 anti-ferroelectric composite ceramics by Spark Plasma Sintering
Wang et al. Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x≤ 0.4) paraelectric ceramics
Sakabe et al. Dielectric properties of fine-grained BaTiO3 ceramics doped with CaO
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN109574656A (zh) 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法
WO2018177019A1 (zh) 用于高密度储能的铁酸铋基电介质薄膜及其制备方法和应用
CN106631005B (zh) 中温烧结的无铅高压电容器介质瓷料及制备方法
Chandrasekhar et al. Synthesis and characterizations of NaNbO3 modified BNT–BT–BKT ceramics for energy storage applications
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
Zhou et al. Solubility of bismuth oxide in barium titanate
Yan et al. Enhanced energy storage property and dielectric breakdown strength in Li+ doped BaTiO3 ceramics
Ai et al. Novel transparent Eu and Hf co-doped AgNbO3 antiferroelectric ceramic with high-quality energy-storage performance
CN111763084A (zh) 一种高电卡效应的掺锰钛酸锶钡陶瓷及其制备方法和应用
CN110526707A (zh) 一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用
CN113912392A (zh) 一种高介电高击穿储能陶瓷及其制备方法
CN114262223A (zh) 一种In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用
KR20210122225A (ko) 도핑된 페로브스카이트 바륨 스타네이트 재료 및 이의 제조 방법과 응용
US11958781B2 (en) Potassium sodium bismuth niobate tantalate zirconate ferrite ceramics with non-stoichiometric Nb5+ and preparation method therefor
Das et al. Impedance spectroscopy analysis of (Pb0. 93Gd0. 07)(Sn0. 45Ti0. 55) 0.9825O3 ferroelectrics
CN112142466B (zh) 一种铌镱酸铅基反铁电陶瓷材料及其制备方法
CN115376825B (zh) 一种兼具高储能密度和储能效率的nn基储能陶瓷块体材料及其制备方法
Yu et al. Strong Photoluminescence and Improved Electrical Properties in Eu-Modified SrBi 4 Ti 4 O 15 Multifunctional Ceramics
CN108358626B (zh) 一种bnt基无铅热释电陶瓷材料及其制备方法
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220111