CN113900413A - 一种数控系统平顺速度控制方法 - Google Patents

一种数控系统平顺速度控制方法 Download PDF

Info

Publication number
CN113900413A
CN113900413A CN202111407171.2A CN202111407171A CN113900413A CN 113900413 A CN113900413 A CN 113900413A CN 202111407171 A CN202111407171 A CN 202111407171A CN 113900413 A CN113900413 A CN 113900413A
Authority
CN
China
Prior art keywords
model
path
speed
establishing
smooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111407171.2A
Other languages
English (en)
Other versions
CN113900413B (zh
Inventor
张燚华
张东卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Dafeng Cnc Technology Co ltd
Original Assignee
Nanjing Dafeng Cnc Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Dafeng Cnc Technology Co ltd filed Critical Nanjing Dafeng Cnc Technology Co ltd
Priority to CN202111407171.2A priority Critical patent/CN113900413B/zh
Publication of CN113900413A publication Critical patent/CN113900413A/zh
Application granted granted Critical
Publication of CN113900413B publication Critical patent/CN113900413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36521Select by combination of detected force, acceleration, speed, work rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

本发明涉及一种数控系统平顺速度控制方法,首先识别出不平顺加工路径的段数,建立平顺的加工路径模型;然后根据原始路径的长度和速度确立模型的适用时间;接着确立模型的边界条件,进一步确立模型需要经过的控制点,保证模型路径的形状和原始路径的形状总体走向趋势一致;最后根据条件求解模型中的待定系数,从而求解出平顺速度控制模型。本发明是一种数控系统从多段不平顺的加工路径中识别出总体形状平顺的加工路径进行速度控制的方法,本发明基于用户的编程轨迹,从包含预读的多个程序段中识别出轨迹的总体形状,即便在加速度变大的尖端拐角部分,也照样可以达到平顺速度控制的效果,从而提高了系统的总体加工效率。

Description

一种数控系统平顺速度控制方法
技术领域
本发明涉及数控系统技术领域,尤其涉及一种数控系统从多段不平顺的加工路径中识别出总体形状平顺的加工路径进行速度控制的方法。
背景技术
数控系统平顺速度控制是这样一种功能,该功能在基于加速度进行的速度控制中,从包含预读的前后多个程序段中识别总体形状,确定平顺的速度。
在以连续的微小直线指定的曲线形状时,加工程序被最小设定单位取整并指定,加工形状近似于折线。利用通常的加速度决定速度时,会对程序的指定形状如实地自动计算出最佳速度,因此,在某些情况下会因指令而导致加速度变大并进行减速处理。在这种情况下,通常使用平顺速度控制,即可进行识别总体形状的速度控制,从而控制局部的减速并进行平顺的速度控制,由此加快速度。
中国专利申请号201410080445.5公开了一种具有加工路径修补功能的数值控制器及其加工路径修补方法,在不修改原加工程序文件的情况下,自动产生一渐变且能逼近原设计原型的加工路径的另一加工路径,并依使用者所设定可接受误差,替代原加工程序文件产生的加工路径,而生成一较为平顺的加工路径,达成加工路径较为平顺以及提升加工稳定度之目的。而在较平顺的加工路径下速度规划时,也不会出现频繁且剧烈的速度变化,机台抖动也会减少。
传统的数控系统控制方法是根据用户编程的加工路径来控制,控制的目标路径与编程路径近似或完全一致,这样会导致在某些高曲率尖锐的拐角处进行减速处理防止加速度过大,这样使得总体的路径平顺性比较差,加工效率较低。
现有技术的方法在一定程度上能改善传统数控系统控制方法的平顺性,但是这种方法只能处理连续两段加工路径或者连续三段加工路径,对于连续三段以上的加工路径,这种方法将不再适用,需要探索新的方法。
发明内容
本发明的目的在于提供一种数控系统平顺速度控制方法,以解决上述背景技术中遇到的问题。
为实现上述目的,本发明的技术方案如下:
一种数控系统平顺速度控制方法,包括以下步骤:
第一步:建立平顺加工路径模型
根据用户的编程加工路径,计算出连续两段加工路径之间的曲率,进而求出对应的容许加速度,如果容许加速度和路径长度都低于一定的容许值,则视该两段加工路径为不平顺加工段,按照此法找出所有的连续不平顺段,设总的不平顺加工路径的段数为n,则建立x方向和z方向的平顺加工路径模型为:
Figure BDA0003372683880000021
Figure BDA0003372683880000022
式1中axi为模型的待定系数,一共有n+4个,t为加工时间。
式2中azi为模型的待定系数,一共有n+4个,t为加工时间。
第二步:确立模型适用时间
设各段加工路径的长度为Li(i=1,2,...,n),则总长度L有:
Figure BDA0003372683880000023
设第一段加工路径的初速度为Vs,最后一段加工路径的末速度为Ve,整个加工过程的最大速度为Vm,则模型的适用时间T有:
Figure BDA0003372683880000024
第三步:确立模型位置边界条件
新建立的模型加工路径必须和原始加工路径的衔接处实现无缝对接,也就是模型路径初始位置和原始路径初始位置重合,模型路径终止位置和原始路径终止位置重合,保证位置连续的边界条件,即:
fx(0)=x0 式5
fz(0)=z0 式6
fx(T)=xn 式7
fz(T)=zn 式8
式5中x0为第一段加工路径的初始点x方向位置坐标,式6中z0为第一段加工路径的初始点z方向位置坐标,式7中xn为最后一段加工路径的终止点x方向位置坐标,式8中zn为最后一段加工路径的终止点z方向位置坐标。
第四步:确立模型速度边界条件
对式1和式2进行微分处理,可以得到:
Figure BDA0003372683880000031
Figure BDA0003372683880000032
新建立的模型轨迹和原始加工路径的衔接速度不能突变,否则会出现卡顿,使数控机床发生抖动,这就要求模型路径初始速度和原始路径初始速度相等,模型路径终止速度和原始路径终止速度相等,保证速度连续的边界条件,即:
Figure BDA0003372683880000033
Figure BDA0003372683880000034
Figure BDA0003372683880000035
Figure BDA0003372683880000036
式11和式12中δx1为第一段加工路径x方向的距离,δz1为第一段加工路径z方向的距离,式13和式14中δxn为最后一段加工路径x方向的距离,δzn为最后一段加工路径z方向的距离。
第五步:确立模型加速度边界条件
对式9和式10进行微分处理,可以得到:
Figure BDA0003372683880000037
Figure BDA0003372683880000038
为保证数控加工过程中平滑性,新建立的模型轨迹和原始加工路径的衔接加速度也不能突变,否则会使数控机床发生柔性冲击,这就要求模型路径初始加速度和原始路径初始加速度相等,模型路径终止加速度和原始路径终止加速度相等,保证加速度连续的边界条件,即:
fx”(0)=0 式17
fz”(0)=0 式18
fx”(T)=0 式19
fz”(T)=0 式20
第六步:确立模型控制点条件
为保证模型的总体形状和原始加工路径基本一致,需要增加控制点,控制点可以选择为原始各段加工路径(除了第一段和最后一段之外的其它加工路径,一共n-2段)的中点,即:
Figure BDA0003372683880000041
Figure BDA0003372683880000042
式21和式22中xi为第i段加工路径的终止点x方向位置坐标,zi为第i段加工路径的终止点z方向位置坐标。
式21和式22都包含n-2个方程,对应n-2个控制点。
第七步:求解模型
式1中模型的待定系数axi(i=0,1,...,n+3)一共有n+4个,联立式5、式7、式11、式13、式17、式19、式21(包含n-2个方程),一共n+4个方程,可解出axi(i=0,1,...,n+3)。
式2中模型的待定系数azi(i=0,1,...,n+3)一共有n+4个,联立式6、式8、式12、式14、式18、式20、式22(包含n-2个方程),一共n+4个方程,可解出azi(i=0,1,...,n+3)。
与现有技术相比,本发明的有益效果是:本发明是一种数控系统从多段不平顺的加工路径中识别出总体形状平顺的加工路径进行速度控制的方法,本发明基于用户的编程轨迹,从包含预读的多个程序段中识别出轨迹的总体形状,即便在加速度变大的尖端拐角部分,也照样可以达到平顺速度控制的效果,从而提高了系统的总体加工效率。
附图说明
参照附图来说明本发明的公开内容。应当了解,附图仅仅用于说明目的,而并非意在对本发明的保护范围构成限制。在附图中,相同的附图标记用于指代相同的部件。其中:
图1为本发明的流程示意图;
图2为本发明在实施时的平顺速度控制效果对比图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示本发明有关的构成。
根据本发明的技术方案,在不变更本发明实质精神下,本领域的一般技术人员可以提出可相互替换的多种结构方式以及实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。
下面结合附图和实施例对本发明的技术方案做进一步的详细说明。
假设数控系统G代码:
...
G1 X0 Z0 F100
X20
X40 Z-5
X60 Z5
X80 Z0
X100
...
如图1和图2所示,一种数控系统平顺速度控制方法,包括以下步骤:
第一步:建立平顺加工路径模型
一共有5段,根据式1、式2,可建立模型为
Figure BDA0003372683880000051
第二步:确认模型适用时间
L1=20mm L2=20.6155mm L3=22.3607mm L4=20.6155mm L5=20mm
Vs=Ve=Vm=100mm/s
根据式3,可得
L=L1+L2+L3+L4+L5=103.5917mm
根据式4,可得
T=1.036s
第三步:确立模型位置边界条件
根据式5、式6、式7、式8,可得
fx(0)=0 式23
fz(0)=0 式24
fx(1.036)=100 式25
fz(1.036)=0 式26
第四步:确立模型速度边界条件
根据式9、式10,可得
Figure BDA0003372683880000061
根据式11、式12、式13、式14,可得
fx'(0)=100 式27
fz'(0)=0 式28
fx'(1.036)=100 式29
fz'(1.036)=0 式30
第五步:确立模型加速度边界条件
根据式15、式16,可得
Figure BDA0003372683880000062
根据式17、式18、式19、式20,可得
fx”(0)=0 式31
fz”(0)=0 式32
fx”(1.036)=0 式33
fz”(1.036)=0 式34
第六步:确立模型控制点条件
根据式21、式22,可得
fx(0.304)=30 式35
fz(0.304)=-2.5 式36
fx(0.52)=50 式37
fz(0.52)=0 式38
fx(0.736)=70 式39
fz(0.736)=2.5 式40
第七步:求解模型
联立式23、式25、式27、式29、式31、式33、式35、式37、式39,可得
Figure BDA0003372683880000071
联立式24、式26、式28、式30、式32、式34、式36、式38、式40,可得
Figure BDA0003372683880000072
最终得出的模型轨迹控制效果如图2中的本发明部分,为了便于对比,将现有技术的轨迹控制结果也列在了图2中。图中的横坐标为X轴坐标,单位为mm,纵坐标为Z轴坐标,单位为mm,从图2中可以看到,与现有技术相比,本发明的控制轨迹效果没有折线,速度和加速度连续可导,达到了平顺速度控制的效果。
本发明基于用户的编程轨迹,从包含预读的多个程序段中识别出轨迹的总体形状,即便在加速度变大的尖端拐角部分,也照样可以达到平顺速度控制的效果,从而提高了系统的总体加工效率。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式,并不用于限定本发明保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应含在本发明的保护范围之内。

Claims (5)

1.一种数控系统平顺速度控制方法,其特征在于,包括以下步骤:
第一步:首先识别出不平顺加工路径的段数,建立平顺的加工路径模型;
第二步:然后根据原始路径的长度和速度确立模型的适用时间;
第三步:接着确立模型的边界条件,进一步确立模型需要经过的控制点,保证模型路径的形状和原始路径的形状总体走向趋势一致;
第四步:最后根据条件求解模型中的待定系数,从而求解出平顺速度控制模型。
2.根据权利要求1所述的一种数控系统平顺速度控制方法,其特征在于:在第三步中,确立模型的边界条件包括位置、速度和加速度连续的条件。
3.根据权利要求2所述的一种数控系统平顺速度控制方法,其特征在于:在确立模型位置边界条件时,应具备:模型路径初始位置和原始路径初始位置重合,模型路径终止位置和原始路径终止位置重合。
4.根据权利要求2所述的一种数控系统平顺速度控制方法,其特征在于:在确立模型速度边界条件时,应具备:模型路径初始速度和原始路径初始速度相等,模型路径终止速度和原始路径终止速度相等。
5.根据权利要求2所述的一种数控系统平顺速度控制方法,其特征在于:在确立模型加速度边界条件时,应具备:模型路径初始加速度和原始路径初始加速度相等,模型路径终止加速度和原始路径终止加速度相等。
CN202111407171.2A 2021-11-24 2021-11-24 一种数控系统平顺速度控制方法 Active CN113900413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111407171.2A CN113900413B (zh) 2021-11-24 2021-11-24 一种数控系统平顺速度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111407171.2A CN113900413B (zh) 2021-11-24 2021-11-24 一种数控系统平顺速度控制方法

Publications (2)

Publication Number Publication Date
CN113900413A true CN113900413A (zh) 2022-01-07
CN113900413B CN113900413B (zh) 2024-06-18

Family

ID=79195170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111407171.2A Active CN113900413B (zh) 2021-11-24 2021-11-24 一种数控系统平顺速度控制方法

Country Status (1)

Country Link
CN (1) CN113900413B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352876A (ja) * 2004-06-11 2005-12-22 Toyoda Mach Works Ltd Ncデータ作成装置、5軸nc工作機械の制御装置及びclデータ作成装置
CN102147600A (zh) * 2011-04-30 2011-08-10 上海交通大学 实时生成曲率连续路径的数控插补系统
CN103792887A (zh) * 2014-03-06 2014-05-14 苏州新代数控设备有限公司 具有加工路径修补功能的数值控制器及其加工路径修补方法
CN108132645A (zh) * 2016-12-01 2018-06-08 华中科技大学 一种保证刀具轨迹整体g2连续的曲线拟合方法
CN110865610A (zh) * 2019-10-18 2020-03-06 中国工程物理研究院机械制造工艺研究所 一种基于机床振动抑制的刀具轨迹插值和速度规划方法
CN110874082A (zh) * 2018-08-31 2020-03-10 大族激光科技产业集团股份有限公司 工件拐角的切割路径确定方法、设备和存储介质
CN111061213A (zh) * 2019-12-04 2020-04-24 天津大学 一种基于Bezier曲线转角平滑过渡算法的加工方法
CN113253677A (zh) * 2021-07-05 2021-08-13 武汉瀚迈科技有限公司 一种速度优化和前馈补偿相结合的机器人运动控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352876A (ja) * 2004-06-11 2005-12-22 Toyoda Mach Works Ltd Ncデータ作成装置、5軸nc工作機械の制御装置及びclデータ作成装置
CN102147600A (zh) * 2011-04-30 2011-08-10 上海交通大学 实时生成曲率连续路径的数控插补系统
CN103792887A (zh) * 2014-03-06 2014-05-14 苏州新代数控设备有限公司 具有加工路径修补功能的数值控制器及其加工路径修补方法
CN108132645A (zh) * 2016-12-01 2018-06-08 华中科技大学 一种保证刀具轨迹整体g2连续的曲线拟合方法
CN110874082A (zh) * 2018-08-31 2020-03-10 大族激光科技产业集团股份有限公司 工件拐角的切割路径确定方法、设备和存储介质
CN110865610A (zh) * 2019-10-18 2020-03-06 中国工程物理研究院机械制造工艺研究所 一种基于机床振动抑制的刀具轨迹插值和速度规划方法
CN111061213A (zh) * 2019-12-04 2020-04-24 天津大学 一种基于Bezier曲线转角平滑过渡算法的加工方法
CN113253677A (zh) * 2021-07-05 2021-08-13 武汉瀚迈科技有限公司 一种速度优化和前馈补偿相结合的机器人运动控制方法

Also Published As

Publication number Publication date
CN113900413B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
CN109571473B (zh) 一种误差可控的小线段轨迹光顺方法
CN109623820B (zh) 一种机器人空间轨迹过渡方法
CN110900612B (zh) 一种位姿同步的六轴工业机器人轨迹平顺方法
CN109623166B (zh) 一种激光切割的拐角处理方法及系统
CN108940759B (zh) 连续加工路径的恒定胶量的控制方法及系统
CN108568817B (zh) 一种基于贝塞尔曲线的Delta机器人轨迹连接控制方法
Wang et al. A look-ahead and adaptive speed control algorithm for high-speed CNC equipment
CN104331025B (zh) 一种面向微小线段高效加工的速度前瞻预处理方法
CN108189038A (zh) 一种实用的工业六轴机械臂直线运动轨迹规划方法及系统
CN111158318B (zh) 一种非对称性四次曲线柔性加减速规划方法
CN111913441B (zh) 一种基于轨迹模式的拐角平滑过渡方法
CN112486101B (zh) Nurbs曲线自适应前瞻插补方法
CN108594757B (zh) 一种基于位置和姿态约束的机器人小线段前瞻规划方法
CN110874082B (zh) 工件拐角的切割路径确定方法、设备和存储介质
CN111633668B (zh) 一种用于机器人加工三维自由曲面的运动控制方法
CN112965443B (zh) 一种裁床拐角轨迹跟踪高精度插值控制方法
CN109901518B (zh) 一种恒力约束条件下的数控机床加减速速度规划方法
JP2011158982A (ja) 工作機械の制御装置
CN115202291A (zh) 一种基于椭圆弧拟合的nurbs曲线插补方法
CN113900413A (zh) 一种数控系统平顺速度控制方法
CN113741336A (zh) 基于实时运动的笛卡尔空间轨迹规划方法和系统
CN110531700B (zh) 基于三维广义欧拉螺线的空间拐角光顺方法
CN113189938A (zh) 一种连续加工路径的速度曲线规划方法
CN114019911B (zh) 一种基于速度规划的曲线拟合方法
CN109491321A (zh) 一种基于h型精密运动平台的轮廓误差估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant