CN113897650B - 一种铝合金微通道散热器内表面流道的钝化方法 - Google Patents

一种铝合金微通道散热器内表面流道的钝化方法 Download PDF

Info

Publication number
CN113897650B
CN113897650B CN202111228226.3A CN202111228226A CN113897650B CN 113897650 B CN113897650 B CN 113897650B CN 202111228226 A CN202111228226 A CN 202111228226A CN 113897650 B CN113897650 B CN 113897650B
Authority
CN
China
Prior art keywords
channel
radiator
micro
electrolyte
microchannel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111228226.3A
Other languages
English (en)
Other versions
CN113897650A (zh
Inventor
边燕飞
童立超
李石
谢明君
武胜璇
蔡萌
王若甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 54 Research Institute
Original Assignee
CETC 54 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 54 Research Institute filed Critical CETC 54 Research Institute
Priority to CN202111228226.3A priority Critical patent/CN113897650B/zh
Publication of CN113897650A publication Critical patent/CN113897650A/zh
Application granted granted Critical
Publication of CN113897650B publication Critical patent/CN113897650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明公开了一种铝合金微通道散热器内表面流道的钝化方法,属于钝化工艺技术领域。该方法具体包括以下步骤:1)钝化前,微通道散热器浸入NaOH溶液中进行电化学抛光;2)钝化过程中,采用2电极的电化学系统,以一定的速率调节直流电源的电压,其中浸入电解液中的铂对电极接直流电源的负极,金属微通道散热器接直流电源的正极;3)通过PV软管使微通道散热器的内表面流道通入所述电解液;4)钝化后用去离子水清洗微通道散热器,并在空气中进行干燥;5)对微通道散热器进行封孔处理。本发明能够在微通道内表面形成一层均匀、致密的阳极氧化铝层,可提高微通道散热器内微通道的抗蚀性能。

Description

一种铝合金微通道散热器内表面流道的钝化方法
技术领域
本发明涉及到钝化工艺技术领域,特别涉及一种铝合金微通道散热器内表面流道的钝化方法。
背景技术
电子器件向高频化、集成化、高功率及高密度方向发展,使得容积电子器件的发热量和热流密度大幅度地增加,散热空间减小。芯片的发热量不只关系到能耗问题,也关系到芯片的安全高效工作状态。目前传统的散热方式已无法满足电子技术日益发展的要求。
为了应对这种挑战,国内外众多的研究者提出了多种用于器件级和系统级的高效散热技术,如热管技术和微通道散热技术等。其中,微通道散热技术因其传热面积大、热扩散距离短的特点具有较高的散热能力和能与现有电子器件基板集成的特性使其成为国内外散热领域研究的热点。
目前微通道散热器常采用真空钎焊技术,焊接后尚未对水冷基板内的微通道做任何防腐处理。在使用过程中,钎料与冷板基材的接触面在冷却液中易产生电偶腐蚀,加速了水冷散热器内微通道的腐蚀。
发明内容
有鉴于此,本发明提供了一种铝合金微通道散热器内表面流道的钝化方法。该方法能够在微通道内表面形成一层均匀、致密的阳极氧化铝层,可提高微通道散热器内微通道的抗蚀性能。
为了实现上述目的,本发明所采取的技术方案为:
一种铝合金微通道散热器内表面流道的钝化方法,包括以下步骤:
步骤1,将NaOH溶液通入至微通道散热器的内表面流道,对内表面流道进行化学抛光;
步骤2,微通道散热器化学抛光完成后,采用去离子水清洗,并放置在空气中干燥;
步骤3,将抛光后的微通道散热器连接直流电源的正极,直流电源的负极连接电解液中的铂对电极;
步骤4,通过耐腐蚀软管使微通道散热器的内表面流道通入所述电解液;
步骤5,逐渐增大可编程直流电源的电压并保持恒定,对微通道散热器的内表面流道进行钝化;
步骤6,微通道散热器的钝化完成后,采用去离子水清洗,并放置在空气中干燥;
步骤7,对干燥后的微通道散热器进行封孔处理。
进一步的,所述耐腐蚀软管上设有使电解液流动的电解液泵和用于过滤电解液杂质的过滤器以及控制电解液流量的流量控制阀;所述耐腐蚀软管为聚氯乙烯管、橡胶管或PV软管。
进一步的,所述步骤5中,在进行钝化时,可编程直流电源的电压恒定后,进行循环直至钝化完成;具体循环过程如下:通过数据记录器测量实时电解液的电压和电流,当阳极氧化电流达到指定的低阈值时,数据记录器的多功能数据采集单元打开电解液泵,使微通道散热器流道内的离子得到补充;电解液重新通入微通道散热器内表面流道后,关闭电解液泵并再次对微通道散热器内表面流道进行阳极氧化。
进一步的,所述步骤1中,NaOH溶液的摩尔浓度为1mol/L,流速为50ml/min,微通道散热器进行化学抛光1.5min。
进一步的,所述步骤5中,调节电压从0V到30V,调节速率为4V/min;所述电解液为0.3mol/L的草酸溶液。
进一步的,所述耐腐蚀软管内电解液的流量为50ml/min。
进一步的,所述耐腐蚀软管通过耐酸碱塑胶卡套接头与微通道散热器连接。
进一步的,所述微通道散热器的钝化时间为3h。
进一步的,在步骤2和步骤6中,均用去离子水以50ml/min的流速冲洗1.5min,并用0.34MPa压缩空气干燥1min。
进一步的,在步骤7中,微通道散热器浸入温度为95℃-98℃的去离子水中30min进行封孔处理。
本发明采取上述技术方案所产生的有益效果在于:
本发明改变目前将微通道散热器整体放入电解池中这一传统钝化工艺方法,而是将微通道散热器置于电解池外,避免了传统钝化工艺中需要对散热器的外表面进行保护的繁琐步骤,降低了人工成本;并且本发明能够在微通道内表面形成一层均匀、致密的阳极氧化铝层,可提高微通道散热器内表面流道的抗蚀性能;并且实现方式简单。
附图说明
图1是本发明实施例的钝化过程设备安装示意图。
图中:1、可编程直流电源,2、导线,3、铂对电极,4、电解液,5、电解池,6、耐腐蚀软管,7、过滤器,8、流量控制阀,9、快速接头,10、微通道散热器,11、电解液泵。
具体实施方式
下面,结合附图和具体实施方式对本发明做进一步的说明。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
本发明改变将微通道散热器整体放入电解池中这一传统钝化工艺方法,而是将微通道散热器置于电解池外,依次与电解液泵、流量控制阀、电解池、过滤器,通过耐腐蚀的软管与快速接头,形成一个电解液流动的闭环系统。该系统中,将铂对电极插入电解池中,可编程直流电源用于在铝微通道散热器与铂对电极之间施加电压。另外,在系统中采用一数据记录器,以固定频率测量电化学池中的电压和电流,当阳极氧化电流达到指定的低阈值时,使用多功能数据采集单元打开电解液泵,以补充微通道散热器内部通道的离子。
阳极氧化是在恒定电解液流动或脉冲电解液流动的条件下进行的,微通道散热器的内部体积很小,而且微通道散热器放置在电解液池的外部,因此,随着阳极氧化反应的进行,电解液可能会耗尽。基于这些考虑,采用脉冲电解液流动条件来避免可能存在的质量传输问题。在脉冲电解液流动阳极氧化中,当电化学池中的电流降至指定阈值时,使用数据记录器装置打开电解液泵,迫使新鲜电解液流入微通道散热器内部。在迫使新电解液流过整个微通道散热器内部后,切断泵,并在微通道散热器内部存在固定电解液的情况下再次进行阳极氧化。
参照图1,本实施例由电解池5、过滤器7、铝合金微通道散热器9、电解液泵11、流量控制阀8,通过耐腐蚀软管6与快速接头9,形成一个电解液流动的闭环系统。该系统中,将铂对电极3插入电解池5中,可编程直流电源1用于在铝微通道散热器9与铂对电极3之间施加电压。另外,在系统中采用一数据记录器,以固定频率测量电化学池5中的电压和电流,当电流值低于一定阈值时,自动控制电解液泵11开始工作,迫使新鲜电解液4流入微通道散热器9内部。当新电解液4流过整个微通道散热器9内部时,则自动切断电解液泵11,并在微通道散热器9内部存在固定电解液的情况下再次进行阳极氧化。该过程一直循环进行。直到钝化过程结束。该方法能够在微通道内表面形成一层均匀、致密的阳极氧化铝层,可提高微通道散热器内微通道的抗蚀性能。
本实施例具体实施步骤包括:
1)钝化前,通过橡胶管接头,将微通道散热器放入电解液循环系统中。开启电解液泵,在铝微通道散热器内部通1M NaOH溶液,并以50ml/min的流速抛光1.5min。然后,用去离子水以50ml/min的流速冲洗1.5min,并用0.34MPa压缩空气干燥1min;
2)采用2电极的电化学系统,铂对电极3通过导线2接可编程直流电源1的负极,金属微通道散热器接可编程直流电源1的正极,以4V/min的速率调节电压从0V到30V,其中电解池5中的电解液4为0.3mol/L的草酸溶液;
3)过滤器7用以过滤掉电解液中的杂质,防止微通道堵塞;
4)流量控制阀8用于控制电解液流量,本实施例中采用针阀;
5)电解液泵11驱动电解液的循环,电解液的流量为50ml/min;
6)快速接头9连接金属微通道散热器与耐腐蚀软管6,该快速接头为耐酸碱塑胶卡套接头,该耐腐蚀软管为PV软管;
7)耐腐蚀软管紧紧地安装在微通道散热器的每一端,在微通道散热器内部形成一个封闭的电解液流动路径。使用数据记录器,以固定频率测量电化学池5中的电压和电流,当电流值低于一定阈值时,自动控制电解液泵11开始工作,迫使新鲜电解液4流入微通道散热器9内部。当新电解液4流过整个微通道散热器9内部时,则自动切断电解液泵11,并在微通道散热器9内部存在固定电解液的情况下再次进行阳极氧化。该过程一直循环进行。直到钝化过程结束。
本实施例中,数据记录器采用Agilent 34970A,以1Hz的采样率测量电化学电池中的电压和电流。当阳极氧化电流达到指定的低阈值时,使用Agilent 34970A的多功能数据采集单元打开电解液泵,以补充微通道热交换器通道内的离子。
8)微通道散热器10的钝化时间为3h,钝化后将微通道换热器从电解液循环系统中取出,用去离子水以~50ml/min的流速冲洗1.5min,然后用压缩空气干燥1min。
9)微通道散热器浸入温度为95-98℃的去离子水中30min进行封孔处理。密封后,微通道换热器用压缩空气干燥1min。

Claims (7)

1.一种铝合金微通道散热器内表面流道的钝化方法,其特征在于,包括以下步骤:
步骤1,将NaOH溶液通入至微通道散热器(10)的内表面流道,对内表面流道进行化学抛光;
步骤2,微通道散热器化学抛光完成后,采用去离子水清洗,并放置在空气中干燥;
步骤3,将抛光后的微通道散热器连接可编程直流电源(1)的正极,可编程直流电源的负极连接电解液中的铂对电极(3);
步骤4,通过耐腐蚀软管使微通道散热器的内表面流道通入所述电解液;
步骤5,逐渐增大可编程直流电源的电压并保持恒定,对微通道散热器的内表面流道进行钝化;
步骤6,微通道散热器的钝化完成后,采用去离子水清洗,并放置在空气中干燥;
步骤7,对干燥后的微通道散热器进行封孔处理;
所述步骤5中,在进行钝化时,可编程直流电源的电压恒定后,进行循环直至钝化完成;具体循环过程如下:通过数据记录器测量实时电解液的电压和电流,当阳极氧化电流达到指定的低阈值时,数据记录器的多功能数据采集单元打开电解液泵,使微通道散热器流道内的离子得到补充;电解液重新通入微通道散热器内表面流道后,关闭电解液泵并再次对微通道散热器内表面流道进行阳极氧化;
所述耐腐蚀软管(6)上设有使电解液流动的电解液泵(11)和用于过滤电解液杂质的过滤器(7)以及控制电解液流量的流量控制阀(8);所述耐腐蚀软管为聚氯乙烯管、橡胶管或PV软管;
所述步骤5中,调节电压从0 V到30 V,调节速率为4V/min;所述电解液为0.3mol/L的草酸溶液;
微通道散热器置于电解池外,依次与电解液泵、流量控制阀、电解池、过滤器,通过耐腐蚀的软管与快速接头,形成一个电解液流动的闭环系统。
2.根据权利要求1所述的一种铝合金微通道散热器内表面流道的钝化方法,其特征在于,所述步骤1中,NaOH溶液的摩尔浓度为1mol/L,流速为50ml/min,微通道散热器进行化学抛光1.5 min。
3.根据权利要求1所述的一种铝合金微通道散热器内表面流道的钝化方法,其特征在于,所述耐腐蚀软管内电解液的流量为50 ml/min。
4.根据权利要求1所述的一种铝合金微通道散热器内表面流道的钝化方法,其特征在于,所述耐腐蚀软管通过耐酸碱塑胶卡套接头与微通道散热器连接。
5.根据权利要求1所述的一种铝合金微通道散热器内表面流道的钝化方法,其特征在于,所述微通道散热器的钝化时间为3h。
6.根据权利要求1所述的一种铝合金微通道散热器内表面流道的钝化方法,其特征在于,在步骤2和步骤6中,均用去离子水以50ml/min的流速冲洗1.5min,并用0.34 MPa压缩空气干燥1min。
7.根据权利要求1所述的一种铝合金微通道散热器内表面流道的钝化方法,其特征在于,在步骤7中,微通道散热器浸入温度为95℃-98℃的去离子水中30min进行封孔处理。
CN202111228226.3A 2021-10-21 2021-10-21 一种铝合金微通道散热器内表面流道的钝化方法 Active CN113897650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111228226.3A CN113897650B (zh) 2021-10-21 2021-10-21 一种铝合金微通道散热器内表面流道的钝化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111228226.3A CN113897650B (zh) 2021-10-21 2021-10-21 一种铝合金微通道散热器内表面流道的钝化方法

Publications (2)

Publication Number Publication Date
CN113897650A CN113897650A (zh) 2022-01-07
CN113897650B true CN113897650B (zh) 2022-12-27

Family

ID=79026018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111228226.3A Active CN113897650B (zh) 2021-10-21 2021-10-21 一种铝合金微通道散热器内表面流道的钝化方法

Country Status (1)

Country Link
CN (1) CN113897650B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767269A (zh) * 2009-12-22 2010-07-07 中国航空工业集团公司第六三一研究所 一种液冷防腐蚀散热器的加工方法
CN207176110U (zh) * 2017-08-18 2018-04-03 深圳先进技术研究院 多通道原位测量电沉积过程参数的溶液循环流动装置
CN110195247A (zh) * 2019-06-27 2019-09-03 东莞智富五金制品有限公司 一种自动补充电解液的阳极氧化镀膜设备
CN110791794A (zh) * 2019-11-27 2020-02-14 云南电网有限责任公司电力科学研究院 一种利用镀液制备换流阀晶闸管的方法及装置
CN113046810A (zh) * 2021-03-17 2021-06-29 无锡鹰贝电化学工程有限公司 铝合金硬质阳极氧化加压方法及铝合金硬质阳极氧化工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767269A (zh) * 2009-12-22 2010-07-07 中国航空工业集团公司第六三一研究所 一种液冷防腐蚀散热器的加工方法
CN207176110U (zh) * 2017-08-18 2018-04-03 深圳先进技术研究院 多通道原位测量电沉积过程参数的溶液循环流动装置
CN110195247A (zh) * 2019-06-27 2019-09-03 东莞智富五金制品有限公司 一种自动补充电解液的阳极氧化镀膜设备
CN110791794A (zh) * 2019-11-27 2020-02-14 云南电网有限责任公司电力科学研究院 一种利用镀液制备换流阀晶闸管的方法及装置
CN113046810A (zh) * 2021-03-17 2021-06-29 无锡鹰贝电化学工程有限公司 铝合金硬质阳极氧化加压方法及铝合金硬质阳极氧化工艺

Also Published As

Publication number Publication date
CN113897650A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
CN108441918A (zh) 一种铝合金表面处理工艺
CN108321399A (zh) 双金属热再生氨基电池系统、液流电池系统及使用方法
CN113897650B (zh) 一种铝合金微通道散热器内表面流道的钝化方法
CN216192852U (zh) 一种用于钝化铝合金微通道散热器内表面流道的系统
CN101767269B (zh) 一种液冷防腐蚀散热器的加工方法
CN205313690U (zh) 一种钛合金微弧氧化和阳极氧化一体的加工设备
CN109786800B (zh) 采用泡沫镍基镀铜电极的热再生氨电池及制备方法
CN209918466U (zh) 燃料电池铝制换热器降低电导率的清洗系统
CN208667878U (zh) 一种用于压铸铝合金的氧化装置
CN211734490U (zh) 一种解决银电解过程中电解液浓差极化的设备
CN2463404Y (zh) 铝电解电容器用铝箔带液体导电阳极氧化装置
CN205810987U (zh) 一种蓄电池内化成冷却水循环系统
CN212560483U (zh) 一种铝合金型材用氧化装置
CN108385156B (zh) 灵活控制环境参数的镀层或钝化层制备装置及使用方法
CN213061063U (zh) 一种铝型材电泳生产线槽液冷却系统
CN114050329B (zh) 一种免维护汽车蓄电池生产工艺
CN213772244U (zh) 一种应用于液相等离子体电解技术的电解系统
CN215163235U (zh) 一种低能耗微弧氧化装置
CN219800981U (zh) 一种电池化成板温控装置
CN214361759U (zh) 一种低温阳极氧化装置
CN219508041U (zh) 一种杯状工件热电化学氧化装置
CN215856374U (zh) 一种微蚀刻液电解提铜装置
CN220767193U (zh) 一种电解水制氢冷却装置
CN214361775U (zh) 一种铝件表面阳极氧化加工用电解池
CN108796576A (zh) 一种用于压铸铝合金的阳极处理工艺及其氧化装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant