CN113897609B - 一种超疏水导热多层膜及其制备方法 - Google Patents

一种超疏水导热多层膜及其制备方法 Download PDF

Info

Publication number
CN113897609B
CN113897609B CN202111124727.7A CN202111124727A CN113897609B CN 113897609 B CN113897609 B CN 113897609B CN 202111124727 A CN202111124727 A CN 202111124727A CN 113897609 B CN113897609 B CN 113897609B
Authority
CN
China
Prior art keywords
purity
carbon
film
multilayer film
radio frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111124727.7A
Other languages
English (en)
Other versions
CN113897609A (zh
Inventor
姜礼华
韩梦梦
侯萍萍
何思妙
向鹏
肖婷
杨雄波
谭新玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202111124727.7A priority Critical patent/CN113897609B/zh
Publication of CN113897609A publication Critical patent/CN113897609A/zh
Application granted granted Critical
Publication of CN113897609B publication Critical patent/CN113897609B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种超疏水导热多层膜及其制备方法,包括如下步骤:采用等离子体增强化学气相沉积技术以高纯甲烷和四氟化碳为碳源气体在单晶硅基片表面制备碳膜;采用磁控溅射技术以高纯铜为靶材在步骤中所生长的碳膜表面溅射沉积铜纳米膜;采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在所生长的铜纳米膜表面再次沉积碳膜;重复制备碳膜及铜纳米膜表面再次沉积碳膜的步骤2~4次;对所制备的多层膜在氢气氛围保护下高温烧结;采用PECVD技术以高纯四氟化碳为工作气体对所烧结处理后的多层膜实施等离子体处理。通过上述步骤所获得的多层膜具有优异的超疏水和导热功能,在电子元器件散热和防水方面具有很好的应用前景。

Description

一种超疏水导热多层膜及其制备方法
技术领域
本发明属于超疏水和导热薄膜材料制备技术领域,具体涉及一种超疏水导热多层膜及其制备方法。
背景技术
随着工业和电子科学技术的不断发展,电子产品不断微型化、集成化和高性能化,由此导致电子系统和芯片在运行过程中将产生大量热量。如果产生的热量不能及时散出,这些累积的热量将引起电子系统和芯片温度过高,特别是电子模块与外界环境之间过大的温差会形成热应力,直接影响电子芯片的电性能、工作频率、机械强度以及可靠性。并且,电子系统和设备中的金属电路在长期使用过程中,内部金属电路及芯片可能会受潮或遇到水,这将导致金属电路及芯片发生腐蚀或短路,导致电子产品性能衰退、失效甚至可能引发重大事故。此外,电子产品能够在严苛的高温高湿甚至腐蚀的环境中持续稳定地工作也成为高性能特种电子产品必须具备的性能。因此,开发一种兼具防水和导热功能的薄膜材料在电子系统和芯片散热和防水方面具有很好的应用价值。
发明内容
本发明旨在为电子系统和芯片在散热和防水材料和技术方面提供一种超疏水导热多层膜及其制备方法。该方法包括下述步骤:
(1)采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在单晶硅基片表面制备碳膜;
(2)采用磁控溅射技术以高纯铜为靶材在步骤(1)中所生长的碳膜表面溅射沉积铜纳米膜;
(3)采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在步骤(2)中所生长的铜纳米膜表面再次沉积碳膜;
(4)重复步骤(2)、步骤(3)2~4次实现多次表面溅射沉积铜纳米膜及表面制备碳膜;
(5)对步骤(3)或步骤(4)中所制备的多层膜在氢气氛围保护下实施高温烧结处理;
(6)采用PECVD技术以高纯四氟化碳为工作气体对步骤(5)中所烧结处理后的多层膜实施等离子体处理。经过上述步骤变可获得一种超疏水导热多层膜。
所述的步骤(1)中高纯甲烷的纯度为99.999%及以上,高纯四氟化碳的纯度为99.9999%及以上。PECVD沉积参数为:射频功率300~450W,射频频率13.56MHz,基片温度350~400℃,腔体压强50~90Pa,通入高纯甲烷气体流量30~50sccm,通入高纯四氟化碳气体流量10~20sccm,沉积时间30~50分钟。在此步骤中,甲烷和四氟化碳一方面为碳膜生长提供碳源,另一方面二者所形成的等离子体能为碳膜提供大量-CHn和-CFn基团。这些低表面能基团有利于降低薄膜表面能,从而提高薄膜超疏水性能。
所述的步骤(2)中高纯铜靶的纯度为99.9995%及以上,磁控溅射沉积参数为:射频功率180~280W,射频频率13.56MHz,基片温度350~400℃,腔体压强3~10Pa,通入纯度为99.999%的氩气气体流量5~15sccm,沉积时间20~40秒。在此步骤中,碳膜表面生长铜纳米膜不仅可以通过异质多层膜结构构造具有一定粗糙度结构的表面,从而提高薄膜疏水性。它还能通过后续热处理工艺诱导碳膜石墨化,并利用铜纳米膜本身的高热导率特性,提高薄膜热导率。
所述的步骤(3)中PECVD工艺参数与步骤(1)中的工艺参数完全一致。
所述的步骤(4)重复步骤(2)、步骤(3)2~4次。在此步骤中,通过重复步骤(2)、步骤(3)的次数调控薄膜表面粗糙度,并利用碳膜内大量-CHn和-CFn基团,实现薄膜的超疏水性能。
所述的步骤(5)中氢气纯度为99.999%及以上,高温烧结的温度为450~500℃,高温烧结时间为1~2小时。
所述的步骤(6)中高纯四氟化碳的纯度为99.9999%及以上。PECVD等离子体处理的参数为:射频功率300~450W,射频频率13.56MHz,基片温度350~400℃,腔体压强50~90Pa,通入高纯四氟化碳气体流量30~40sccm,等离子体处理时间5~10分钟。在此步骤中,对烧结处理后的多层膜实施四氟化碳等离子体处理的主要功能是一方面钝化多层膜表面,减少缺陷的产生和提高薄膜稳定性,另一方面能在多层膜表面补充因退火处理所减少的低表面能基团,提高薄膜超疏水性能。
通过上述步骤,在单晶硅或玻璃基片表面便可制备出一种具有超疏水导热功能的多层膜。
散热和防水是电子系统和芯片高性能稳定运行的两个重要因素。本发明利用碳膜和铜膜的高热导率特性使所制备的碳铜复合膜具有高导热功能。同时,利用多层膜结构、退火以及等离子处理工艺促使多层复合膜表面具有多级粗糙结构,并结合等离子体产生的-CH n 和-CF n 基团实现多层复合膜的低表面能特性。最终,结合多层复合膜表面的多级粗糙结构和低表面能特性实现其超疏水功能。从而,本发明所制备的多层复合膜不仅具有优良的导热特性还具有超疏水功能。由于本发明所采用的技术方法和工艺同传统半导体工艺相兼容,因此在电子系统和芯片的散热和防水方面具有很好的应用前景。
具体实施方式
为进一步阐述本发明所提供的一种超疏水导热多层膜及其制备方法,以下实施案例用以说明本发明,但不用于限制本发明。
实施例1
一种超疏水导热多层膜及其制备方法,该方法包括以下步骤:
(1)采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在表面制备碳膜。高纯甲烷的纯度为99.999%,高纯四氟化碳的纯度为99.9999%。PECVD沉积参数为:射频功率300W,射频频率13.56MHz,基片温度350℃,腔体压强50Pa,通入高纯甲烷气体流量30sccm,通入高纯四氟化碳气体流量10sccm,沉积时间50分钟。
(2)采用磁控溅射技术以高纯铜为靶材在步骤(1)中所生长的碳膜表面溅射沉积铜纳米膜。高纯铜靶的纯度为99.9995%,磁控溅射沉积参数为:射频功率180W,射频频率13.56MHz,基片温度350℃,腔体压强3Pa,通入纯度为99.999%的氩气气体流量5sccm,沉积时间20秒。
(3)采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在步骤(2)中所生长的铜纳米膜表面再次沉积碳膜。
(4)依次重复步骤(2)、步骤(3)2次。
(5)对步骤(4)中所制备的多层膜在氢气氛围保护下实施高温烧结处理。氢气纯度为99.999%,高温烧结的温度为450℃,高温烧结时间为2小时。
(6)采用PECVD技术以高纯四氟化碳为工作气体对步骤(5)中所烧结处理后的多层膜实施等离子体处理。高纯四氟化碳的纯度为99.9999%。PECVD等离子体处理的参数为:射频功率300W,射频频率13.56MHz,基片温度350℃,腔体压强50Pa,通入高纯四氟化碳气体流量30sccm,等离子体处理时间10分钟。
经过上述步骤变可获得一种超疏水导热多层膜。多层膜的热导率可达12.5W/mK,水接触角可达153°,滚动角可达5°。
实施例1-1
方法及步骤同实施例1,仅不进行步骤(2)在步骤(1)中所生长的碳膜表面溅射沉积铜纳米膜工艺。则步骤(3)为:采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在步骤(1)中所生长的碳膜表面再次沉积碳膜。步骤(4)为:重复步骤(3)2次。得到的多层膜的热导率为4.5W/mK,水接触角可达150°,滚动角可达6°。
实施例1-2
方法及步骤同实施例1,仅不进行步骤(3)的铜纳米膜表面再次沉积碳膜的步骤,则步骤(4)为:重复步骤(2)2次。得到的多层膜的热导率为5.6W/mK,水接触角低于130°,滚动角高达30°。
实施例1-3
方法及步骤同实施例1,仅步骤(4)中仅重复步骤(2)2次。得到的多层膜的热导率为5.3W/mK,水接触角低于120°,滚动角高于35°。
实施例1-4
方法及步骤同实施例1,仅步骤(4)中仅重复步骤(3)2次。得到的多层膜的热导率为4.5W/mK,水接触角可达151°,滚动角可达8°。
实施例1-5
方法及步骤同实施例1,不进行步骤(4)的重复性步骤。得到的多层膜的热导率为5.6W/mK,水接触角小于140°,滚动角高于60°。
实施例1-6
方法及步骤同实施例1,不进行步骤(6)的步骤。得到的多层膜的热导率为12.5W/mK,水接触角可达150°,滚动角可达8°。
实施例2
一种超疏水导热多层膜及其制备方法,该方法包括以下步骤:
(1)采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在单晶硅基片表面制备碳膜。高纯甲烷的纯度为99.999%,高纯四氟化碳的纯度为99.9999%。PECVD沉积参数为:射频功率450W,射频频率13.56MHz,基片温度400℃,腔体压强90Pa,通入高纯甲烷气体流量50sccm,通入高纯四氟化碳气体流量20sccm,沉积时间30分钟。
(2)采用磁控溅射技术以高纯铜为靶材在步骤(1)中所生长的碳膜表面溅射沉积铜纳米膜。高纯铜靶的纯度为99.9995%,磁控溅射沉积参数为:射频功率280W,射频频率13.56MHz,基片温度400℃,腔体压强10Pa,通入纯度为99.999%的氩气气体流量15sccm,沉积时间40秒。
(3)采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在步骤(2)中所生长的铜纳米膜表面再次沉积碳膜。
(4)依次重复步骤(2)、步骤(3)4次。
(5)对步骤(4)中所制备的多层膜在氢气氛围保护下实施高温烧结处理。氢气纯度为99.999%,高温烧结的温度为500℃,高温烧结时间为1小时。
(6)采用PECVD技术以高纯四氟化碳为工作气体对步骤(5)中所烧结处理后的多层膜实施等离子体处理。高纯四氟化碳的纯度为99.9999%。PECVD等离子体处理的参数为:射频功率450W,射频频率13.56MHz,基片温度400℃,腔体压强90Pa,通入高纯四氟化碳气体流量40sccm,等离子体处理时间5分钟。
经过上述步骤变可获得一种超疏水导热多层膜。多层膜的热导率可达13.7W/mK,水接触角可达158°,滚动角可达4°。
实施例3
一种超疏水导热多层膜及其制备方法,该方法包括以下步骤:
(1)采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在单晶硅基片表面制备碳膜。高纯甲烷的纯度为99.999%,高纯四氟化碳的纯度为99.9999%。PECVD沉积参数为:射频功率400W,射频频率13.56MHz,基片温度380℃,腔体压强70Pa,通入高纯甲烷气体流量40sccm,通入高纯四氟化碳气体流量15sccm,沉积时间40分钟。
(2)采用磁控溅射技术以高纯铜为靶材在步骤(1)中所生长的碳膜表面溅射沉积铜纳米膜。高纯铜靶的纯度为99.9995%,磁控溅射沉积参数为:射频功率230W,射频频率13.56MHz,基片温度380℃,腔体压强7Pa,通入纯度为99.999%的氩气气体流量10sccm,沉积时间30秒。
(3)采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在步骤(2)中所生长的铜纳米膜表面再次沉积碳膜。
(4)依次重复步骤(2)、步骤(3)3次。
(5)对步骤(4)中所制备的多层膜在氢气氛围保护下实施高温
烧结处理。氢气纯度为99.999%,高温烧结的温度为480℃,高温烧结时间为1.5小时。
(6)采用PECVD技术以高纯四氟化碳为工作气体对步骤(5)中所烧结处理后的多层膜实施等离子体处理。高纯四氟化碳的纯度为99.9999%。PECVD等离子体处理的参数为:射频功率380W,射频频率13.56MHz,基片温度380℃,腔体压强70Pa,通入高纯四氟化碳气体流量35sccm,等离子体处理时间8分钟。
经过上述步骤变可获得一种超疏水导热多层膜。多层膜的热导率可达11.6W/mK,水接触角可达152°,滚动角可达6°。
以上所述为本发明较佳实施例而已,但本发明不应该局限于该实施实例所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (6)

1.一种超疏水导热多层膜的制备方法,其特征在于,该方法包括下述步骤:
(1)采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在单晶硅基片表面制备碳膜,PECVD沉积参数为:射频功率300~450W,射频频率13.56MHz,基片温度350~400℃,腔体压强50~90Pa,通入高纯甲烷气体流量30~50sccm,通入高纯四氟化碳气体流量10~20sccm,沉积时间30~50分钟;
(2)采用磁控溅射技术以高纯铜为靶材在步骤(1)中所生长的碳膜表面溅射沉积铜纳米膜;
(3)采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在步骤(2)中所生长的铜纳米膜表面再次沉积碳膜,PECVD沉积参数为:射频功率300~450W,射频频率13.56MHz,基片温度350~400℃,腔体压强50~90Pa,通入高纯甲烷气体流量30~50sccm,通入高纯四氟化碳气体流量10~20sccm,沉积时间30~50分钟;
(4)依次重复步骤(2)、步骤(3)2~4次;
(5)对步骤(4)中所制备的多层膜在氢气氛围保护下实施高温烧结处理;
(6)采用PECVD技术以高纯四氟化碳为工作气体对步骤(5)中所烧结处理后的多层膜实施等离子体处理,获得超疏水导热多层膜。
2.根据权利要求1所述的一种超疏水导热多层膜的制备方法,其特征在于,步骤(1)中高纯甲烷的纯度为99.999%及以上,高纯四氟化碳的纯度为99.9999%。
3.根据权利要求1所述的一种超疏水导热多层膜的制备方法,其特征在于,步骤(2)中高纯铜靶的纯度为99.9995%及以上,磁控溅射沉积参数为:射频功率180~280W,射频频率13.56MHz,基片温度350~400℃,腔体压强3~10Pa,通入纯度为99.999%及以上的氩气气体流量5~15sccm,沉积时间20~40秒。
4.根据权利要求1所述的一种超疏水导热多层膜的制备方法,其特征在于,步骤(3)中高纯甲烷的纯度为99.999%及以上,高纯四氟化碳的纯度为99.9999%。
5.根据权利要求1所述的一种超疏水导热多层膜的制备方法,其特征在于,步骤(5)中氢气纯度为99.999%及以上,高温烧结的温度为450~500℃,高温烧结时间为1~2小时。
6.根据权利要求1所述的一种超疏水导热多层膜的制备方法,其特征在于,步骤(6)中高纯四氟化碳的纯度为99.9999%及以上,PECVD等离子体处理的参数为:射频功率300~450W,射频频率13.56MHz,基片温度350~400℃,腔体压强50~90Pa,通入高纯四氟化碳气体流量30~40sccm,等离子体处理时间5~10分钟。
CN202111124727.7A 2021-09-25 2021-09-25 一种超疏水导热多层膜及其制备方法 Active CN113897609B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111124727.7A CN113897609B (zh) 2021-09-25 2021-09-25 一种超疏水导热多层膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111124727.7A CN113897609B (zh) 2021-09-25 2021-09-25 一种超疏水导热多层膜及其制备方法

Publications (2)

Publication Number Publication Date
CN113897609A CN113897609A (zh) 2022-01-07
CN113897609B true CN113897609B (zh) 2023-10-27

Family

ID=79029491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111124727.7A Active CN113897609B (zh) 2021-09-25 2021-09-25 一种超疏水导热多层膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113897609B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409264B (zh) * 2022-01-12 2024-03-19 三峡大学 一种透明超疏水玻璃的制备方法
CN115254792B (zh) * 2022-07-26 2023-05-30 江苏富乐华功率半导体研究院有限公司 一种电子陶瓷浆料流延用pet膜带清洗方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461386A (zh) * 2018-03-16 2018-08-28 三峡大学 一种含硅量子点多层膜及其制备方法
CN110551975A (zh) * 2019-09-27 2019-12-10 佛山科学技术学院 一种复合多层疏水耐蚀薄膜及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461386A (zh) * 2018-03-16 2018-08-28 三峡大学 一种含硅量子点多层膜及其制备方法
CN110551975A (zh) * 2019-09-27 2019-12-10 佛山科学技术学院 一种复合多层疏水耐蚀薄膜及其制备方法和应用

Also Published As

Publication number Publication date
CN113897609A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
CN113897609B (zh) 一种超疏水导热多层膜及其制备方法
CN103094366A (zh) 一种太阳电池钝化减反射膜及其制备工艺方法
CN111455205B (zh) 一种具有夹层结构的高导热低膨胀Diamond-Cu复合材料的制备方法
CN103160803A (zh) 石墨舟预处理方法
CN104096939B (zh) 一种陶瓷基复合材料低温表面渗碳辅助钎焊方法
CN103035794B (zh) 一种生长在Si衬底上的LED外延片及其制备方法
CN109735826A (zh) 一种石墨烯/铜复合材料及其制备方法和应用
CN105252137A (zh) 一种铝或铝合金与铜的真空扩散焊接方法
CN105386003A (zh) 一种三维结构石墨烯增强铜基复合材料的制备方法
CN106486568A (zh) 一种perc电池的退火处理工艺
CN109545900A (zh) 一种太阳能电池片用硅片的背表面的钝化方法
CN110666158A (zh) 一种石墨烯包覆纳米铜的方法
CN104167469A (zh) 一种SnS2/SnS异质结薄膜太阳能电池的一次性制备方法
CN103311104B (zh) 一种石墨烯的制备方法
CN104835881A (zh) 一种太阳能电池减反射膜的制作方法以及太阳能电池
CN111187582A (zh) 一种绝缘导热胶黏材料及其制备方法
CN101440498A (zh) 一种在沉积前预清洁薄膜表面氧化物的方法
CN116322072A (zh) 一种半透明钙钛矿太阳电池制备方法
CN108767056A (zh) 一种增强太阳能电池氢钝化能力的富氢pecvd工艺方法
CN115224159A (zh) 一种高效TOPCon太阳电池及其制备方法
CN102931076B (zh) 一种氧化锌衬底转移石墨烯的退火方法
CN104762610A (zh) 一种pecvd镀膜方法
CN220149660U (zh) 一种在石墨零件表面制备氮化硅防护涂层的装置
TW201915212A (zh) 石墨烯均溫板結構及其製程方法
CN1443870A (zh) 高光电导增益氮化碳薄膜制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant