CN113881007A - 高导热、低泄露光热转换定型相变材料及制备方法 - Google Patents

高导热、低泄露光热转换定型相变材料及制备方法 Download PDF

Info

Publication number
CN113881007A
CN113881007A CN202111292485.2A CN202111292485A CN113881007A CN 113881007 A CN113881007 A CN 113881007A CN 202111292485 A CN202111292485 A CN 202111292485A CN 113881007 A CN113881007 A CN 113881007A
Authority
CN
China
Prior art keywords
change material
leakage
conductivity
photothermal conversion
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111292485.2A
Other languages
English (en)
Inventor
李敏
沈超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202111292485.2A priority Critical patent/CN113881007A/zh
Publication of CN113881007A publication Critical patent/CN113881007A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种高导热、低泄露光热转换定型相变材料及制备方法,以4,4'‑二环己基甲烷二异氰酸酯为硬段材料,不同分子量的聚乙二醇为软段,以Ti3C2Tx、纳米CuS为光热转换材料聚合而成。本发明高导热、低泄露光热转换增强定型相变材料通过Ti3C2Tx和纳米CuS高导热性和表面等离子体共振效应赋予定型相变材料高热导率和光热转换特性,HMDI将PEG分子进行一定的束缚,从而有效解决了使用过程中的泄露问题,该定型相变材料制备方法简单,原料易得,最终进行了光热转换性能测试,发现添加光热转换材料制成的定型相变材料相变特性明显,且相变性能随着光热转换材料添加量的增加而提高。

Description

高导热、低泄露光热转换定型相变材料及制备方法
技术领域
本发明涉及相变材料,具体涉及一种高导热、低泄露光热转换定型相变材料及制备方法。
背景技术
随着全球经济的快速发展,各国对化石能源的需求激增,由此导致的能源枯竭及一系列环境问题也日益突显,寻求高效、清洁、可再生的能源成为研究热点之一。目前常见的可再生能源有太阳能、风能、水能等,其中太阳能因普遍分布、易于获取、高效清洁的优点成为首选能源。然而日夜交替、阴晴变化造成了太阳能获取的间歇性,一定程度上限制了其发展。
热能储存(储热)技术可用于解决太阳能间歇获取的问题。储热方式主要分为显热、潜热和热化学三种,其中潜热储热技术因储热密度大、工作过程中近乎等温的优势,在电力移峰、电子元件热管理、太阳能热利用等领域展现出广阔的应用前景。该技术以吸收和释放大量潜热的相变材料为介质。按相变前后的状态,可分为固-液、固-固、固-气和液-气等类型,涉及气态的相变材料在工作时体积变化较大,对容器有较高的耐压要求。因此,常用的相变材料主要是固-固相变材料和固-液相变材料。固-液相变材料的品种较固-固相变材料多,但液相的相变材料存在易泄露、腐蚀性以及需额外高成本封装的不足。相比之下,固-固相变材料无相分离且过冷度小、体积变化小、无泄漏及无需封装且易加工成型,是值得大力发展的一类相变材料。
目前,研究较多的固-固相变材料主要分为三类:多元醇类、无机盐类及高分子类。多元醇类即分子中含3个或以上羟基的醇,有一元体系、二元及多元体系。该类相变材料有相变焓较大,相变温度适中且易于调节的优点,但存在易升华、过冷度大、与水反应、价格偏高的缺点,一定程度上限制了其进一步发展。无机盐类主要包含层状钙钛矿、NH4SCN、LiSO4、KHF2等物质,虽相变可逆性好、相变温度可调、合成较简单、稳定性优良,但相变焓较低、价格昂贵、部分材料存在毒性,不能满足大规模、安全应用。高分子类一般为固-液相变的组分通过交联共聚、嵌段共聚等方式,被并入熔点较高的大分子骨架中,形成性能稳定的高分子材料。相变过程中,大分子骨架限制了其宏观流动。该类固-固相变材料相变温度较宽且易于调控、过冷度小、性能稳定,但合成过程往往较为复杂,常常涉及多个合成步骤。
太阳光谱是一种不同波长的吸收光谱,分为可见光与不可见光两部分。可见光波长为400-760nm,不可见光分为紫外光(波长<400nm)和红外光(波长>760nm)两部分。相变材料对太阳光谱的吸收是有限,无法做到宽波段范围的吸收。
发明内容
发明目的:本发明的目的是提供一种高导热、低泄露光热转换定型相变材料,解决现有相变材料导热性不好,对太阳光谱的吸收是有限的问题。
本发明的另一目的是提供一种高导热、低泄露光热转换定型相变材料的制备方法,解决涉及多个步骤,方法复杂的问题。
技术方案:本发明所述的高导热、低泄露光热转换定型相变材料,包括HMDI硬段材料、有机相变材料和光热转换材料,其中,光热转换材料为盐酸多巴胺修饰的Ti3C2Tx和纳米CuS组成的复合材料,HMDI与有机相变材料的摩尔比为1:1-1.1:1,光热转换材料加入量为0-3wt%。
为了应用于不同场合,所述有机相变材料为不同分子量的聚乙二醇中的任一种。
为了保证定型相变材料纯度,所述HMDI的纯度≥99.5wt%,异氰酸酯基含量≥31.8wt%。
本发明所述的高导热、低泄露光热转换定型相变材料的制备方法,包括以下步骤:
(1)在浓度为9-9.5M范围的盐酸中加入LiF,磁力搅拌直至完全溶解,再加入与LiF等质量的Ti3AlC2至上述溶液中,静置,用NaOH溶液调PH>6,依次用去离子水、乙醇清洗沉淀物直至清洗液PH≥7,沉淀物分散于去离子水,离心后取上层清液超声处理,真空干燥得到分层Ti3C2Tx
(2)将步骤(1)制得的Ti3C2Tx分散于三羟甲基氨基甲烷缓冲液中并搅拌,加入盐酸多巴胺,搅拌均匀,离心后取沉淀物依次用去离子水和乙醇多次洗涤,真空干燥获得多巴胺修饰的Ti3C2Tx
(3)取CuCl2·2H2O溶于无水乙醇,Na2S·9H2O溶于去离子水和PEG400的混合溶液中,经水热反应、离心、水和乙醇洗涤后烘干,即得到纳米CuS。
(4)取PEG热熔于烧杯中,加入HMDI,充分搅拌溶解后加入步骤(2)制得的多巴胺修饰的Ti3C2Tx和步骤(3)制得的纳米CuS并混合均匀,经干燥、静置,即得高导热、低泄露光热转换定型相变材料。
其中,所述步骤(1)中盐酸和LiF的浓度/质量比为9:1-9.5:1,38℃温度静置。
所述步骤(2)中Ti3C2Tx与盐酸多巴胺的质量比为5:3-5:3.2,25℃温度下搅拌均匀。
所述步骤(3)中CuCl2·2H2O和Na2S·9H2O质量比为1:1-1:2,CuCl2·2H2O和无水乙醇、Na2S·9H2O和去离子水、PEG400体积比均为1:1。
所述步骤(4)中PEG和HMDI的摩尔比为1:1-1:1.1,多巴胺修饰的Ti3C2Tx和纳米CuS加入量为0-3wt%。
技术原理:本发明采用属于碳基材料的Ti3C2Tx和半导体的纳米CuS作为光热转换材料,Ti3C2Tx是一种二维过渡族金属碳化物材料,T表示该材料表面连接的羟基、氧离子、氟离子等活性基团。Ti3C2Tx具有较大的比表面积、优异的导电导热性能及良好的亲水性,在相变材料中添加Ti3C2Tx,并对其进行表面修饰,可有效提高相变材料的导热性,在等离子体共振效应的作用下可将光能转化为热能,纳米CuS属于硫属铜基p型半导体的一种,由于其花状、管状、盘状等微观特征和纳米尺寸效应,CuS在近红外区域显示出较强的光吸收性能,使得材料具有宽波段光吸收能力。
有益效果:本发明制备的是固-固相变材料,其中采用HMDI作为硬段材料,接枝软段PEG,有效限制了其相变过程中的宏观流动,从而可降低使用过程中的泄露;通过使用不同碳链长度的聚乙二醇作为相变材料来获得具有不同相变温度区间的定型复合相变材料。随着聚乙二醇平均分子量从2000增加至6000,其相变焓和相变温度也不断变化,定型复合相变材料的储放热能力和温度也随之变化,可满足多种使用条件下的要求;选用具有宽波段光吸收能力和导热性优异的Ti3C2Tx和纳米CuS,其中Ti3C2Tx通过盐酸多巴胺进行表面修饰,然后与聚乙二醇复合,在HMDI的束缚作用下得到高导热、低泄露光热转换定型相变材料。Ti3C2Tx和纳米CuS可有效提高相变材料的导热性,同时可作为光热转换载体将太阳能转化为热能储存到相变材料中。
附图说明
图1是实施例1多巴胺修饰的Ti3C2Tx不同添加量的光热转换性能测试结果图,其中A、B、C、D、E分别对应添加0mg、2.5mg、7.5mg、12.5mg、17.5mg;
图2是实施例2和3添加分子量不同PEG制成的定型相变材料的光热转换性能测试结果图,其中1、2、3分别对应分子量为2000、4000、6000。
具体实施方式
下面结合实施例对本发明进行进一步说明。
实施例1
本发明公开的高导热、低泄露光热转换定型相变材料是以HMDI作为硬段材料,与储存热能的有机相变材料PEG和拥有光热转换能力的光热转换材料Ti3C2Tx和纳米CuS复合,盐酸多巴胺对Ti3C2Tx作表面修饰增强其光热转换能力。
本发明的热转换定型相变材料制备时,包括以下步骤:
(1)Ti3C2Tx的制备
在10mL浓度为9M、9.25M、9.5M的盐酸中分别加入1g LiF,磁力搅拌直至完全溶解,再加入1g Ti3AlC2至上述溶液中,38℃下静置72h,用0.5M NaOH溶液调PH>6,依次用去离子水、乙醇清洗沉淀物直至清洗液PH≥7,沉淀物分散于去离子水,在8000rpm下离心10min,取上层清液超声处理1h,在低于0.1MPa下的60℃真空干燥48h得到分层Ti3C2Tx
(2)Ti3C2Tx的表面修饰
取200mg上述步骤(1)中制得的Ti3C2Tx分散于200mL三羟甲基氨基甲烷缓冲液中(PH=8.5)并搅拌1h,分别加入60mg、62mg、64mg盐酸多巴胺,在25℃下搅拌8h,在8000rpm下离心10min,取沉淀物依次用去离子水和乙醇多次洗涤,于30℃真空烘箱中干燥24h获得多巴胺修饰的Ti3C2Tx
(3)纳米CuS的制备
取1mmol CuCl2·2H2O溶于15mL无水乙醇,1mmol、1.5mmol、2mmol Na2S·9H2O溶于15mL去离子水和15mL PEG400的混合溶液中,边搅拌边向Na2S溶液中加入CuCl2溶液,充分混合均匀后倒入容积为100mL的聚四氟乙烯内衬中,经140℃水热反应12h,离心后经水和乙醇各洗涤3次后于60℃真空烘箱中放置36h烘干,即得到纳米CuS。
(4)高导热、低泄露光热转换定型相变材料的制备
取0.5mol PEG2000,70℃下热熔于烧杯中,分别加入0.5mol、0.525mol、0.55mol的HMDI,70℃下搅拌45min后分别加入0mg、2.5mg、7.5mg、12.5mg、17.5mg的步骤b制得的多巴胺修饰的Ti3C2Tx和分别等量的步骤c制得的纳米CuS并混合均匀,于100℃烘箱中干燥12h,再在室温下静置72h,即得本发明所述高导热、低泄露光热转换定型相变材料。
图1为实施例1样品的光热转换性能测试,图例A、B、C、D、E分别为添加0mg、2.5mg、7.5mg、12.5mg、17.5mg的步骤b制得的多巴胺修饰的Ti3C2Tx和分别等量的步骤c制得的纳米CuS得到的定型相变材料。对比A和B、C、D、E可得,未添加Ti3C2Tx和纳米CuS的样品A光热转换性能较差,未达到相变点时温度就已恒定,而添加了Ti3C2Tx和纳米CuS的样品B、C、D、E的光热转换性能显著提高,样品在吸收光后温度迅速升高至相变点(曲线拐点处);对比B、C、D、E可得,随着Ti3C2Tx和纳米CuS添加量的增加,样品升温速率也逐渐提高,即光热转换性能更优。
实施例2
本实施例定型相变材料的制备方法同实施例1,所添加的Ti3C2Tx和纳米CuS为17.5mg,不同的是所添加的有机相变材料为0.5mol PEG4000。
实施例3
本实施例定型相变材料的制备方法同实施例1,所添加的Ti3C2Tx和纳米CuS为17.5mg,不同的是所添加的有机相变材料为0.5mol PEG6000。
图2为实施例2、3样品的光热转换性能测试,1为实施例1中添加17.5mg Ti3C2Tx和纳米CuS的样品,2、3分别为实施例2、3对应的样品。对比可得,随着添加PEG分子量从2000增至6000,样品相变点对应的温度逐渐增加,这是由于PEG的相变温度随着分子量的增加而提高,故可通过改变PEG的分子量来改变最终定型相变材料的相变温度,以适应不同情况下的应用。

Claims (8)

1.一种高导热、低泄露光热转换定型相变材料,其特征在于,包括HMDI硬段材料、有机相变材料和光热转换材料,其中光热转换材料为盐酸多巴胺修饰的Ti3C2Tx和纳米CuS组成的复合材料,HMDI与有机相变材料的摩尔比为1:1-1.1:1,光热转换材料加入量为0-3wt%。
2.根据权利要求1所述的高导热、低泄露光热转换定型相变材料,其特征在于,所述有机相变材料为2000-6000不同分子量的聚乙二醇中的任一种,。
3.根据权利要求1所述的高导热、低泄露光热转换定型相变材料,其特征在于,所述HMDI的纯度≥99.5wt%,异氰酸酯基含量≥31.8wt%。
4.一种如权利要求1所述的高导热、低泄露光热转换定型相变材料的制备方法,其特征在于,包括以下步骤:
(1)在浓度为9-9.5M范围的盐酸中加入LiF,磁力搅拌直至完全溶解,再加入与LiF等质量的Ti3AlC2至上述溶液中,静置,用NaOH溶液调PH>6,依次用去离子水、乙醇清洗沉淀物直至清洗液PH≥7,沉淀物分散于去离子水,离心后取上层清液超声处理,真空干燥得到分层Ti3C2Tx
(2)将步骤(1)制得的Ti3C2Tx分散于三羟甲基氨基甲烷缓冲液中并搅拌,加入盐酸多巴胺,搅拌均匀,离心后取沉淀物依次用去离子水和乙醇多次洗涤,真空干燥获得多巴胺修饰的Ti3C2Tx
(3)取CuCl2·2H2O溶于无水乙醇,Na2S·9H2O溶于去离子水和PEG400的混合溶液中,经水热反应、离心、水和乙醇洗涤后烘干,即得到纳米CuS。
(4)取PEG热熔于烧杯中,加入HMDI,充分搅拌溶解后加入步骤(2)制得的多巴胺修饰的Ti3C2Tx和步骤(3)制得的纳米CuS并混合均匀,经干燥、静置,即得高导热、低泄露光热转换定型相变材料。
5.根据权利要求4所述的高导热、低泄露光热转换定型相变材料的制备方法,其特征在于,所述步骤(1)中盐酸和LiF的浓度/质量比为9:1-9.5:1,38℃温度静置。
6.根据权利要求4所述的高导热、低泄露光热转换定型相变材料的制备方法,其特征在于,所述步骤(2)中Ti3C2Tx与盐酸多巴胺的质量比为5:3-5:3.2,25℃温度下搅拌均匀。
7.根据权利要求4所述的高导热、低泄露光热转换定型相变材料的制备方法,其特征在于,所述步骤(3)中CuCl2·2H2O和Na2S·9H2O质量比为1:1-1:2,CuCl2·2H2O和无水乙醇、Na2S·9H2O和去离子水、PEG400体积比均为1:1。
8.根据权利要求4所述的高导热、低泄露光热转换定型相变材料的制备方法,其特征在于,所述步骤(4)中PEG和HMDI的摩尔比为1:1-1:1.1,多巴胺修饰的Ti3C2Tx和纳米CuS加入量为0-3wt%。
CN202111292485.2A 2021-11-03 2021-11-03 高导热、低泄露光热转换定型相变材料及制备方法 Pending CN113881007A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111292485.2A CN113881007A (zh) 2021-11-03 2021-11-03 高导热、低泄露光热转换定型相变材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111292485.2A CN113881007A (zh) 2021-11-03 2021-11-03 高导热、低泄露光热转换定型相变材料及制备方法

Publications (1)

Publication Number Publication Date
CN113881007A true CN113881007A (zh) 2022-01-04

Family

ID=79016071

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111292485.2A Pending CN113881007A (zh) 2021-11-03 2021-11-03 高导热、低泄露光热转换定型相变材料及制备方法

Country Status (1)

Country Link
CN (1) CN113881007A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806510A (zh) * 2022-02-24 2022-07-29 东南大学 一种复合相变储能材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080008858A1 (en) * 2006-07-08 2008-01-10 Hong Keith C Roofing Products Containing Phase Change Materials
IN2015CH01182A (zh) * 2015-03-10 2015-04-10 Nosch Labs Private Ltd
CN106675525A (zh) * 2016-11-25 2017-05-17 贺迈新能源科技(上海)有限公司 一种双相变点的相变蓄冷材料及制备方法
CN109328390A (zh) * 2016-06-22 2019-02-12 纺织和塑料研究协会图林根研究院 具有正温度系数的导电成型体
CN110156066A (zh) * 2019-05-06 2019-08-23 上海应用技术大学 一种应用于肿瘤光热治疗的纳米硫化铜的制备方法
CN111748255A (zh) * 2020-06-30 2020-10-09 陕西科技大学 一种基于Pickering乳液聚合法的光热保温型复合皮革涂饰剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080008858A1 (en) * 2006-07-08 2008-01-10 Hong Keith C Roofing Products Containing Phase Change Materials
IN2015CH01182A (zh) * 2015-03-10 2015-04-10 Nosch Labs Private Ltd
CN109328390A (zh) * 2016-06-22 2019-02-12 纺织和塑料研究协会图林根研究院 具有正温度系数的导电成型体
CN106675525A (zh) * 2016-11-25 2017-05-17 贺迈新能源科技(上海)有限公司 一种双相变点的相变蓄冷材料及制备方法
CN110156066A (zh) * 2019-05-06 2019-08-23 上海应用技术大学 一种应用于肿瘤光热治疗的纳米硫化铜的制备方法
CN111748255A (zh) * 2020-06-30 2020-10-09 陕西科技大学 一种基于Pickering乳液聚合法的光热保温型复合皮革涂饰剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XIAOSHENG DU等: "Ti3C2Tx@PDA-Integrated Polyurethane Phase Change Composites with Superior Solar-Thermal Conversion Efficiency and Improved Thermal Conductivity", 《ACS SUSTAINABLE CHEMISTRY ENGINEERING》 *
刘佳佳等: "石蜡/SiO_2/CuS纳米复合相变材料的制备用于太阳能的光热转换与存储", 《化工新型材料》 *
樊晓乔: "聚乙二醇基复合定形相变材料的制备与性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
熊丰: "聚氨酯基固固复合相变材料的制备与光热性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806510A (zh) * 2022-02-24 2022-07-29 东南大学 一种复合相变储能材料及其制备方法
CN114806510B (zh) * 2022-02-24 2024-03-26 东南大学 一种复合相变储能材料及其制备方法

Similar Documents

Publication Publication Date Title
Krishna et al. State-of-the-art heat transfer fluids for parabolic trough collector
Maghrabie et al. Phase change materials based on nanoparticles for enhancing the performance of solar photovoltaic panels: A review
Wu et al. Three-dimensional directional cellulose-based carbon aerogels composite phase change materials with enhanced broadband absorption for light-thermal-electric conversion
Liu et al. Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting
Du et al. Poly (ethylene glycol)-grafted nanofibrillated cellulose/graphene hybrid aerogels supported phase change composites with superior energy storage capacity and solar-thermal conversion efficiency
Aggarwal et al. A comprehensive review of techniques for increasing the efficiency of evacuated tube solar collectors
Weng et al. MXene-based phase change materials for multi-source driven energy storage, conversion and applications
CN104818001A (zh) 一种网络多孔聚合物基复合相变材料的制备方法
Weng et al. Intrinsically lighting absorptive PANI/MXene aerogel encapsulated PEG to construct PCMs with efficient photothermal energy storage and stable reusability
Ma et al. Halloysite-based aerogels for efficient encapsulation of phase change materials with excellent solar energy storage and retrieval performance
CN113881007A (zh) 高导热、低泄露光热转换定型相变材料及制备方法
Omeiza et al. Challenges, limitations, and applications of nanofluids in solar thermal collectors—a comprehensive review
Kong et al. Composite phase change materials with thermal-flexible and efficient photothermal conversion properties for solar thermal management
Li et al. Recent advances and perspectives in solar photothermal conversion and storage systems: A review
CN110437805B (zh) 一种纳米粒子掺杂型光热转化复合相变材料的制备方法
CN111187599B (zh) 一种三维碱式氧化锰纳米棒泡沫复合相变材料及其制备方法和应用
CN112724936B (zh) 一种储能新材料的制备方法
Chichghare et al. Applications of nanofluids in solar thermal systems
Wang et al. Graphene oxide stabilized carbon nanotube-water nanofluids for direct absorption solar collectors
CN111960402A (zh) 一种用于太阳能水蒸发的光热材料的制备方法
CN112778980B (zh) 一种提高传热传质效率的储能新材料
CN112812750B (zh) 硅烷偶联剂在储能新材料和太阳能新能源供热系统中的用途
Dhanola et al. Current Research Trends on the Utilization of Mono and Hybrid Nano-Fluids for Solar Energy Applications
CN114806510B (zh) 一种复合相变储能材料及其制备方法
CN118599294A (zh) 一种光热储能复合材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220104