CN113871344A - 半导体器件及半导体器件的形成方法 - Google Patents

半导体器件及半导体器件的形成方法 Download PDF

Info

Publication number
CN113871344A
CN113871344A CN202010610934.2A CN202010610934A CN113871344A CN 113871344 A CN113871344 A CN 113871344A CN 202010610934 A CN202010610934 A CN 202010610934A CN 113871344 A CN113871344 A CN 113871344A
Authority
CN
China
Prior art keywords
layer
barrier layer
crystal orientation
tungsten
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010610934.2A
Other languages
English (en)
Inventor
刘曦光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changxin Memory Technologies Inc
Original Assignee
Changxin Memory Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changxin Memory Technologies Inc filed Critical Changxin Memory Technologies Inc
Priority to CN202010610934.2A priority Critical patent/CN113871344A/zh
Priority to PCT/CN2021/100514 priority patent/WO2022001677A1/zh
Priority to US17/446,083 priority patent/US20210408228A1/en
Publication of CN113871344A publication Critical patent/CN113871344A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • H01L23/53266Additional layers associated with refractory-metal layers, e.g. adhesion, barrier, cladding layers

Abstract

一种半导体器件及半导体器件的形成方法,能够解决金属钨填充至所述接触窗或接触口内时出现的孔洞问题。所述半导体器件的形成方法,包括以下步骤:S11提供衬底;S12在所述衬底上表面形成阻挡层,且所述阻挡层的晶向中,<111>晶向的占比至少为一预设值;S13在所述阻挡层上表面形成金属材料层,所述金属材料层的晶向包括<111>晶向。

Description

半导体器件及半导体器件的形成方法
技术领域
本发明涉及半导体制备领域,尤其涉及半导体器件及半导体器件的形成方法。
背景技术
随着器件尺寸的不断缩小,接触孔和通孔的深宽比不断变大,这给化学气相沉积金属钨的工艺不断地带来挑战。在集成电路中,金属钨的化学气相沉积常用于接触窗或接触口的金属互连。随着器件尺寸的不断缩小,接触孔和通孔的深宽比不断变大,这给金属钨的化学气相沉积工艺不断地带来挑战。
现有技术中,进行金属钨的化学气相沉积时,容易出现以下问题:金属钨悬垂在接触窗或接触口的上方,形成悬垂。这将造成接触窗或接触口内沉积的金属钨层出现孔洞,影响产品的良率。
发明内容
本发明提出了一种半导体器件及半导体器件的形成方法,能够解决金属钨填充至所述接触窗或接触口内时出现的孔洞问题。
为了解决上述问题,以下提供了半导体器件的形成方法,包括以下步骤:提供衬底;在所述衬底上表面形成阻挡层,且所述阻挡层的晶向中,<111>晶向的占比至少为一预设值;在所述阻挡层上表面形成金属材料层,所述金属材料层的晶向包括<111>晶向
可选的,形成所述阻挡层时,包括以下步骤:在所述衬底上表面形成具有<111>晶向的晶体种籽层;根据所述晶体种籽层在所述衬底上表面形成具有<111>晶向的所述阻挡层。
可选的,向所述衬底上方通入具有第一分压比例的反应气体,以形成所述晶体种籽层,向所述衬底上方通入具有第二分压比例的反应气体,以形成所述阻挡层。
可选的,所述反应气体包括TiCl4和NH3以及载气,且所述载气包括N2,第一分压比例中TiCl4的分压小于第二分压比例中TiCl4的分压。
可选的,所述金属材料层包括钨层,且在所述阻挡层上表面形成所述金属材料层时,包括以下步骤:在所述阻挡层上表面形成反应离子层;向所述反应离子层上方通入含钨气体,所述含钨气体与所述反应离子层反应,在所述阻挡层表面形成钨晶核层;向所述钨晶核层上方通入含钨气体和载气,以形成所述金属材料层。
可选的,所述反应离子层为硼离子层,在所述阻挡层上表面形成硼离子层时,包括以下步骤:向所述阻挡层上方通入含硼气体,形成所述硼离子层。
可选的,所述含钨气体包括六氟化钨,所述含硼气体包括B2H6,所述载气包括H2、Ar以及N2中的至少一种。
可选的,所述预设值至少为70%。
可选的,形成所述晶体种籽层以及所述阻挡层时,分时段通入TiCl4以及NH3,并在每次TiCl4以及NH3通入后使用N2将剩余气体吹出。
为了解决上述问题,以下还提供了一种半导体器件,包括:衬底,所述衬底表面形成有开孔;形成于所述开孔的底面、侧壁表面以及所述衬底上表面的阻挡层,且所述阻挡层的晶向中,<111>晶向的占比至少为一预设值;形成于所述阻挡层上表面的金属材料层,所述金属材料层的晶向包括<111>晶向。
可选的,所述预设值至少为70%。
本发明的半导体器件及半导体器件的形成方法在所述衬底上表面形成了占比在预设值以上的<111>晶向的阻挡层,因此通过合适的预设值,能够保证生长在该阻挡层上方的金属材料层也绝大部分呈现<111>晶向。<111>晶向的晶面大,金属材料可以在各个表面均匀生长,当将该形成方法用于开孔中金属材料的填充时,可以大大减少所述开孔内填充的金属材料出现空洞的可能,提高该种半导体器件的生产良率。
附图说明
图1为本发明的一种具体实施方式中的半导体器件的形成方法的步骤流程示意图。
图2A至图2F为本发明的一种具体实施方式中的半导体器件的形成方法的各步骤对应的结构示意图。
图3为本发明的一种具体实施方式中的半导体器件的结构示意图。
具体实施方式
研究发现,由于进行金属钨的化学气相沉积时,金属钨的填洞能力不够,导致很容易出现空洞的问题。
以下结合图示对半导体器件及半导体器件的形成方法进行了进一步的解释和阐述。
请看图1,为本发明的一种具体实施方式中的半导体器件的形成方法的步骤流程示意图。
在该具体实施方式中,提出了一种半导体器件的形成方法,包括以下步骤:S11提供衬底;S12在所述衬底上表面形成阻挡层,且所述阻挡层的晶向中,<111>晶向的占比至少为一预设值;S13在所述阻挡层上表面形成金属材料层,所述金属材料层的晶向包括<111>晶向。
该具体实施方式中的形成方法在所述衬底上表面形成了占比在预设值以上的<111>晶向的阻挡层,通过合适的预设值,能够保证生长在该阻挡层上方的金属材料层也绝大部分呈现<111>晶向。<111>晶向的晶面大,金属材料可以在各个表面均匀生长,当将该形成方法用于开孔中金属材料的填充时,可以大大减少所述开孔内填充的金属材料出现空洞的可能,提高该种半导体器件的生产良率。
在一种具体实施方式中,所述预设值至少为70%。在一种具体实施方式中,所述预设值在90%甚至95%以上是更优的。
由于在化学气相沉积的过程中,有一些反应物对所述衬底101有腐蚀作用,所述阻挡层103能够阻挡沉积过程中反应物对衬底101的侵蚀。另外,设置合适的阻挡层103,也可以用来增加金属材料层102和衬底101之间的黏着度,从而降低金属材料层102从衬底101表面剥离的几率。
在一种具体实施方式中,在所述衬底101上表面形成阻挡层103时,包括以下步骤:在所述衬底101上表面形成具有<111>晶向的晶体种籽层107,此处可参阅图2A和图2B;根据所述晶体种籽层107在所述衬底101上表面形成具有<111>晶向的所述阻挡层103,此处可以参阅所述图2C。
在该具体实施方式中,通过化学气相沉积的方法来依次形成所述晶体种籽层107和所述阻挡层103。在形成特定晶向的晶体种籽层107时,可以通过化学气相沉积过程中的反应气体的流量和流速来实现。实际上,也可以采用原子层沉积、超临界流体沉积、金属有机化合物化学气相淀积、化学气相沉积等方法来形成具有<111>晶向的阻挡层103。在采用这些方法来形成具有<111>晶向的阻挡层103时,也是先在所述衬底101上表面形成<111>晶向的晶体种籽层107,再依据该<111>晶向的晶体种籽层107形成所述阻挡层103。
在一种具体实施方式中,通向所述衬底101上方通入具有第一分压比例的反应气体,以形成所述晶体种籽层107,向所述衬底上方通入具有第二分压比例的反应气体,以形成所述阻挡层103。在一种具体实施方式中,所述反应气体包括TiCl4和NH3以及载气,且所述载气包括N2,第一分压比例中TiCl4的分压小于第二分压比例中TiCl4的分压。
通过控制第一分压比例中TiCl4的分压小于第二分压比例中TiCl4的分压,可以控制在所述衬底101表面生成的TiN的晶核的晶向大致为<111>晶向。在一种具体实施方式中,第一组反应气体中TiCl4的分压应当小于10mtorr,第二组反应气体中TiCl4的分压大于等于10mtorr。
在其他的具体实施方式中,还可以通过控制NH3的流量,以及N2的流量等,来调控第一组反应气体和第二组反应气体中TiCl4的分压。
在一种具体实施方式中,所述金属材料层102包括钨层,在所述阻挡层103上表面形成所述金属材料层102时,包括以下步骤:在所述阻挡层103上表面形成反应离子层104,此处可参阅图2D;向所述反应离子层104上方通入含钨气体,所述含钨气体与所述反应离子层104反应,在所述阻挡层103表面形成钨晶核层105,此处可参阅图2E;向所述钨晶核层105上方通入含钨气体和载气,以形成所述金属材料层102,此处可参阅图2F。
在该具体实施方式中,所述反应离子层104是用于与后续通入的含钨气体进行置换反应,将含钨气体中的钨置换出来,在所述阻挡层103表面形成钨晶核层105的。在该具体实施方式中,由于所述阻挡层103是<111>晶向的TiN层,因此可以选用B2H6气体来作为反应离子层104的制备气体,B2H6气体在<111>晶向的TiN层表面具有较低的活化能,可以在TiN层表面进行热力学的自动分解,形成更多的B离子。
在该具体实施方式中,所述阻挡层103表面的B离子越多,越容易与含钨气体反应形成阶梯覆盖率较好的钨晶核层105,从而改善化学气相沉积过程中钨的覆盖率。
在一种具体实施方式中,所述含钨气体包括六氟化钨。实际上,也可以根据需要选择其他的含钨气体,来提供置换所需的钨离子。
在实际的使用过程中,所述阻挡层103中不仅仅会有<111>晶向的TiN,还会有其他晶向的TiN,但<111>晶向的TiN薄膜硬度较大。
因此,在该具体实施方式中,通过控制所述阻挡层103的晶型结构,就能促进钨晶核层105的成核,改善后续的化学气相沉积过程钨的填洞能力。
在该具体实施方式中,所述反应离子层104为硼离子层,在所述阻挡层103上表面形成硼离子层时,包括以下步骤:向所述阻挡层上方通入含硼气体,形成所述硼离子层。
在一种具体实施方式中,所述含硼气体包括B2H6。B2H6气体在所述阻挡层103表面分解,形成所述硼离子层。
在一种具体实施方式中,形成所述晶体种籽层107以及所述阻挡层103时,分时段通入TiCl4以及NH3,并在每次TiCl4以及NH3通入后使用N2将剩余气体吹出。实际上,也可以不使用TiCl4以及NH3,而是使用TiCl4、N2和H2等其他气体的混合,来制备所述晶体种籽层107以及所述阻挡层103。
请看图3,在该具体实施方式中,还提供了一种半导体器件,包括:衬底101,所述衬底101表面形成有开孔301;形成于所述开孔301的底面、侧壁表面以及所述衬底101上表面的阻挡层103,且所述阻挡层的晶向中,<111>晶向的占比至少为一预设值;形成于所述阻挡层103上表面的金属材料层102,所述金属材料层102的晶向包括<111>晶向。
该具体实施方式中的所述半导体器件形成了占比在预设值以上的<111>晶向的阻挡层,因此通过合适的预设值,能够保证生长在该阻挡层上方的金属材料层也绝大部分呈现<111>晶向。<111>晶向的晶面大,金属材料可以在各个表面均匀生长,当将该形成方法用于开孔中金属材料的填充时,可以大大减少所述开孔内填充的金属材料出现空洞的可能,提高该种半导体器件的生产良率。
在一种具体实施方式中,所述衬底101包括二氧化硅衬底,实际上也可根据需要设置其他种类的衬底101,如绝缘体上硅衬底、绝缘体上锗衬底等。
在一种具体实施方式中,可以采用原子层沉积的方法将所述金属材料层102形成到所述衬底101上方。采用原子层沉积方法沉积金属材料层102时,具有较好的阶梯覆盖率,作为半导体器件制作过程中的金属互连填充层。
在一种具体实施方式中,由于在化学气相沉积的过程中,有一些反应物对所述衬底101有腐蚀作用,因此所述阻挡层103还可以阻挡沉积过程中反应物对衬底101的侵蚀。另外,设置合适的阻挡层103,也可以用来降低金属材料层102从衬底101表面剥离的几率。阻挡层中有预设值以上的晶粒其晶向是<111>晶向,能够使得形成在该阻挡层上的金属材料层是<111>晶向的β晶相,这样可以快速结晶,加快结晶速度,形成均匀的种子层。选用具有<111>晶向的金属材料层,是因为<111>晶向的晶面大,可以在各个表面均匀生长。
在一种具体实施方式中,在制备所述金属材料层102的过程中,首先使用B2H6对所述衬底101进行较长时间的浸润,使得所述B2H6能够在衬底101表面分解,形成的B离子能够尽可能多的停留在所述衬底101表面,形成B离子层。在一种具体实施方式中,所述B离子层的厚度为0.1nm至5nm。为了使尽可能多的<111>晶向的金属钨形成在所述衬底101上方,在此将所述阻挡层103设置成<111>晶向的阻挡层103。在一种具体实施方式中,所述阻挡层103包括<111>晶向的TiN。
实际上,所述阻挡层103中也可以具有其他晶向的TiN。但是为了能够尽可能多的生长出<111>晶向的金属钨,需要保证所述阻挡层103中<111>晶向的TiN的含量至少是所述阻挡层103中TiN总量的70%。在一种具体实施方式中,所述预设值在90%甚至95%以上是更优的。
在一种具体实施方式中,所述阻挡层103的厚度为2nm至20nm。实际上,可以根据需要来设置所述阻挡层103的厚度。
在使用B2H6对所述衬底101进行较长时间的浸润后,还需要向所述衬底101通入含钨气体,如六氟化钨,由所述衬底101表面的B离子将含钨气体中的钨置换出来,以在所述衬底101表面形成钨晶核层105。在一种具体实施方式中,所述钨晶核层105的厚度在2nm至10nm。
之后,再利用氢气还原含钨气体中的钨。此时,载气和含钨气体同时通入反应空间内,在钨晶核的基础上继续形成所述金属材料层102。在一种具体实施方式中,所述金属材料层102的厚度在20nm至100nm。在该具体实施方式中,所述含钨气体也包括六氟化钨,所述载气包括氮气、氢气、氩气等中的至少一种。
由于所述阻挡层103中<111>晶向的TiN的含量至少是所述阻挡层103中TiN总量的70%,这使得在阻挡层103上表面生长出来的钨金属的绝大部分也是<111>晶向。<111>晶向的钨具有较大的晶面,可以在各个表面均匀生长。
在一种其他的具体实施方式中,也可以使用硅烷(SiH4)来还原六氟化钨,以形成所述钨晶核。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (11)

1.一种半导体器件的形成方法,其特征在于,包括以下步骤:
提供衬底;
在所述衬底上表面形成阻挡层,且所述阻挡层的晶向中,<111>晶向的占比至少为一预设值;
在所述阻挡层上表面形成金属材料层,所述金属材料层的晶向包括<111>晶向。
2.根据权利要求1所述的形成方法,其特征在于,形成所述阻挡层时,包括以下步骤:
在所述衬底上表面形成具有<111>晶向的晶体种籽层;
根据所述晶体种籽层在所述衬底上表面形成具有<111>晶向的所述阻挡层。
3.根据权利要求2所述的形成方法,其特征在于,向所述衬底上方通入具有第一分压比例的反应气体,以形成所述晶体种籽层,向所述衬底上方通入具有第二分压比例的反应气体,以形成所述阻挡层。
4.根据权利要求3所述的形成方法,其特征在于,所述反应气体包括TiCl4和NH3以及载气,且所述载气包括N2,第一分压比例中TiCl4的分压小于第二分压比例中TiCl4的分压。
5.根据权利要求1所述的形成方法,其特征在于,所述金属材料层包括钨层,且在所述阻挡层上表面形成所述金属材料层时,包括以下步骤:
在所述阻挡层上表面形成反应离子层;
向所述反应离子层上方通入含钨气体,所述含钨气体与所述反应离子层反应,在所述阻挡层表面形成钨晶核层;
向所述钨晶核层上方通入含钨气体和载气,以形成所述金属材料层。
6.根据权利要求5所述的形成方法,其特征在于,所述反应离子层为硼离子层,在所述阻挡层上表面形成硼离子层时,包括以下步骤:
向所述阻挡层上方通入含硼气体,形成所述硼离子层。
7.根据权利要求6所述的形成方法,其特征在于,所述含钨气体包括六氟化钨,所述含硼气体包括B2H6,所述载气包括H2、Ar以及N2中的至少一种。
8.根据权利要求2所述的形成方法,其特征在于,形成所述晶体种籽层以及所述阻挡层时,分时段通入TiCl4以及NH3,并在每次TiCl4以及NH3通入后使用N2将剩余气体吹出。
9.根据权利要求1所述的形成方法,其特征在于,所述预设值至少为70%。
10.一种半导体器件,其特征在于,包括:
衬底,所述衬底表面形成有开孔;
形成于所述开孔的底面、侧壁表面以及所述衬底上表面的阻挡层,且所述阻挡层的晶向中,<111>晶向的占比至少为一预设值;
形成于所述阻挡层上表面的金属材料层,所述金属材料层的晶向包括<111>晶向。
11.根据权利要求10所述的半导体器件,其特征在于,所述预设值至少为70%。
CN202010610934.2A 2020-06-30 2020-06-30 半导体器件及半导体器件的形成方法 Pending CN113871344A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010610934.2A CN113871344A (zh) 2020-06-30 2020-06-30 半导体器件及半导体器件的形成方法
PCT/CN2021/100514 WO2022001677A1 (zh) 2020-06-30 2021-06-17 半导体器件及半导体器件的形成方法
US17/446,083 US20210408228A1 (en) 2020-06-30 2021-08-26 Semiconductor device and method for forming semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010610934.2A CN113871344A (zh) 2020-06-30 2020-06-30 半导体器件及半导体器件的形成方法

Publications (1)

Publication Number Publication Date
CN113871344A true CN113871344A (zh) 2021-12-31

Family

ID=78981137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010610934.2A Pending CN113871344A (zh) 2020-06-30 2020-06-30 半导体器件及半导体器件的形成方法

Country Status (2)

Country Link
CN (1) CN113871344A (zh)
WO (1) WO2022001677A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW460597B (en) * 1997-03-27 2001-10-21 Applied Materials Inc A barrier layer structure for use in semiconductors and a method of producing an aluminum-comprising layer having a 111 crystal orientation
US6887353B1 (en) * 1997-12-19 2005-05-03 Applied Materials, Inc. Tailored barrier layer which provides improved copper interconnect electromigration resistance
US6281121B1 (en) * 1998-03-06 2001-08-28 Advanced Micro Devices, Inc. Damascene metal interconnects using highly directional deposition of barrier and/or seed layers including (III) filling metal
JP4307592B2 (ja) * 1998-07-07 2009-08-05 Okiセミコンダクタ株式会社 半導体素子における配線形成方法
US7449409B2 (en) * 2005-03-14 2008-11-11 Infineon Technologies Ag Barrier layer for conductive features
US7956463B2 (en) * 2009-09-16 2011-06-07 International Business Machines Corporation Large grain size conductive structure for narrow interconnect openings

Also Published As

Publication number Publication date
WO2022001677A1 (zh) 2022-01-06

Similar Documents

Publication Publication Date Title
CN109661481B (zh) 使用MoOC14的CVD Mo沉积
CN108987336B (zh) 用于形成低温半导体层及相关半导体器件结构的方法
JP7224335B2 (ja) モリブデンを含有する低抵抗膜
US8409985B2 (en) Methods for growing low-resistivity tungsten for high aspect ratio and small features
KR102197537B1 (ko) 표면 조성을 제어함에 의한 텅스텐 성장 조정
US7589017B2 (en) Methods for growing low-resistivity tungsten film
US7655567B1 (en) Methods for improving uniformity and resistivity of thin tungsten films
KR100287180B1 (ko) 계면 조절층을 이용하여 금속 배선층을 형성하는 반도체 소자의 제조 방법
US7419904B2 (en) Method for forming barrier film and method for forming electrode film
US6136690A (en) In situ plasma pre-deposition wafer treatment in chemical vapor deposition technology for semiconductor integrated circuit applications
JP2000178735A (ja) タングステン膜の成膜方法
CN110911347A (zh) 半导体结构及其形成方法
CN113871344A (zh) 半导体器件及半导体器件的形成方法
KR102474184B1 (ko) 서브-옥사이드들로부터의 자기-정렬 구조들
WO2006098259A1 (ja) 選択W-CVD法及びCu多層配線の製作法
US20210408228A1 (en) Semiconductor device and method for forming semiconductor device
US20030157797A1 (en) High throughput process for the formation of a refractory metal nucleation layer
CN208767295U (zh) 半导体结构
JP3149912B2 (ja) 半導体装置およびその製造方法
US6812144B2 (en) Method for forming metal wiring in a semiconductor device
JP3953244B2 (ja) 薄膜形成方法
JPH06275624A (ja) 導電層の形成方法
JP4248056B2 (ja) Cvd法による金属銅薄膜作製方法およびcvd装置
CN110265354B (zh) 钨塞的制备方法
JP2001023930A (ja) バリア膜製造方法、及びバリア膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination