CN113866943A - 光学系统、取像模组及电子设备 - Google Patents

光学系统、取像模组及电子设备 Download PDF

Info

Publication number
CN113866943A
CN113866943A CN202111082119.4A CN202111082119A CN113866943A CN 113866943 A CN113866943 A CN 113866943A CN 202111082119 A CN202111082119 A CN 202111082119A CN 113866943 A CN113866943 A CN 113866943A
Authority
CN
China
Prior art keywords
lens
optical system
image
lens element
conditional expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111082119.4A
Other languages
English (en)
Other versions
CN113866943B (zh
Inventor
谢晗
李明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Jingchao Optical Co Ltd
Original Assignee
Jiangxi Jingchao Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Jingchao Optical Co Ltd filed Critical Jiangxi Jingchao Optical Co Ltd
Priority to CN202111082119.4A priority Critical patent/CN113866943B/zh
Priority to US17/536,010 priority patent/US20230084833A1/en
Publication of CN113866943A publication Critical patent/CN113866943A/zh
Application granted granted Critical
Publication of CN113866943B publication Critical patent/CN113866943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明涉及一种光学系统、取像模组及电子设备。光学系统包括:具有负屈折力的第一透镜,像侧面于近光轴处为凹面;具有正屈折力的第二透镜,物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;具有正屈折力的第三透镜,物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;具有负屈折力的第四透镜;具有正屈折力的第五透镜,物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;光学系统满足:0.58≤R12/f≤0.71。上述光学系统,能够实现广角特性同时具备良好的成像质量。

Description

光学系统、取像模组及电子设备
技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
近年来,随着生活水平的飞速提升以及智能手机、平板电脑、电子阅读器等电子设备的快速发展,消费者对摄像镜头的摄像功能要求越来越高,市场上广角镜头,微距镜头,红外镜头等层出不穷来满足不同群体的需求,摄像镜头的研发难度陡然攀升。其中,广角镜头需求量逐年增多,它能在有限的距离内拍摄出更广阔的图像,在户外旅游时可以拍摄出周边更全面的景色。为满足大范围拍摄需求,提升消费者的使用体验,业界急需研发具备广角特性的摄像镜头。
发明内容
基于此,有必要提供一种光学系统、取像模组及电子设备,以实现广角特性。
一种光学系统,其特征在于,沿光轴由物侧至像侧依次包括:
具有负屈折力的第一透镜,所述第一透镜的像侧面于近光轴处为凹面;
具有正屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有正屈折力的第三透镜,所述第三透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
具有负屈折力的第四透镜;
具有正屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
且所述光学系统满足以下条件式:
0.58≤R12/f≤0.71;
其中,R12为所述第一透镜的像侧面于光轴处的曲率半径,f为所述光学系统的有效焦距。
上述光学系统,第一透镜具有负屈折力,第一透镜的像侧面于近光轴处为凹面,有利于大角度的光线入射光学系统,从而有利于实现广角特性。第二透镜具有正屈折力,第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面,有利于校正第一透镜产生的球差等像差,同时使得光线能够平稳过渡,从而有利于提升光学系统的成像质量。第三透镜具有正屈折力,第三透镜的物侧面和像侧面于近光轴处均为凸面,能够有效会聚光线以压缩入射光线的角度,使得光线能够平缓过渡,同时有利于缩短光学系统的总长。第四透镜具有负屈折力,与第三透镜的正屈折力相配合,有利于第二透镜出射的光线平缓过渡至第五透镜。第五透镜具有正屈折力,第五透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面,有利于校正光学系统的场曲、像散以及大角度视场的高阶像差,从而提升光学系统的成像质量。具备上述屈折力及面型特征,光学系统在具备广角特性的时候,畸变像差也不会过大,有利于提高图像还原真实度,从而提升消费者的使用体验。
满足上述条件式时,能够合理配置第一透镜的像侧面于光轴处的曲率半径及光学系统的有效焦距的比值,配合第一透镜像侧面的凹面面型,有利于扩大光学系统的视场角,使得光学系统具备广角特性,同时也有利于使得第一透镜像侧面的面型不会过度弯曲,从而有利于降低第一透镜的设计和成型难度。超过上述条件式的上限,第一透镜像侧面于光轴处的曲率半径过大,第一透镜的像侧面面型过于平缓,大角度的光线不易经第一透镜偏折到第二透镜和第三透镜中,从而不利于广角特性的实现。低于上述条件式的下限,第一透镜像侧面于光轴处的曲率半径过小,第一透镜的像侧面面型过度弯曲,第一透镜像侧面的边缘倾角也随之增大,容易导致第一透镜的公差敏感度增大,工艺性差,不利于第一透镜的设计和制造。
在其中一个实施例中,所述光学系统满足以下条件式:
-0.7≤f12/f45<0;
其中,f12为所述第一透镜和所述第二透镜的组合焦距,f45为所述第四透镜和所述第五透镜的组合焦距。满足上述条件式时,能够合理配置第一透镜、第二透镜的组合焦距与第四透镜、第五透镜的组合焦距的比值,有利于第一透镜和第二透镜引入大角度的光线,从而有利于实现光学系统的广角特性,同时也有利于第四透镜、第五透镜校正光学系统的像差,并缩短光学系统的总长;另外,还有利于第三透镜物方及像方两个透镜组与第三透镜的双凸面型配合,从而有利于抑制光学系统的畸变,提升光学系统的图像还原度。低于上述条件式的下限,第一透镜、第二透镜提供的屈折力过弱,与第四透镜、第五透镜的屈折力失衡,不利于第三透镜物方及像方两个透镜组与第三透镜的配合,从而不利于光学系统成像质量的提升。
在其中一个实施例中,所述光学系统满足以下条件式:
1.6≤f2/f3≤2.1;
其中,f2为所述第二透镜的有效焦距,f3为所述第三透镜的有效焦距。满足上述条件式时,能够合理配置第二透镜与第三透镜的有效焦距的比值,有利于第二透镜与第一透镜的配合,从而有利于校正第一透镜产生的严重球面像差;另外,也有利于第三透镜为光学系统提供足够的正屈折力,从而缩短光学系统的总长,同时也使得第三透镜具有足够的中心厚度来抑制光线偏折角变大导致敏感度上升的现象,从而有利于校正光学系统的像差,抑制大角度的光学畸变,进而有利于解决光学系统在实现广角特性时畸变严重导致拍摄画面边缘扭曲失真的现象。
在其中一个实施例中,所述光学系统满足以下条件式:
0.3≤∑T/∑CT≤0.55;
其中,∑T为所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜中相邻两透镜于光轴上的空气间隔之和,即所述第一透镜的像侧面至所述第二透镜的物侧面、所述第二透镜的像侧面至所述第三透镜的物侧面、所述第三透镜的像侧面至所述第四透镜的物侧面以及所述第四透镜的像侧面至所述第五透镜的物侧面于光轴上的距离之和,∑CT为所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜于光轴上的厚度之和,即所述光学系统的五片透镜的中心厚度之和。满足上述条件式时,能够合理配置光学系统中五片透镜的中心厚度与空气间隔,有利于使得光学系统的结构更加紧凑,从而有利于缩短光学总长,同时也有利于五片透镜的中心厚度与空气间隔不会过于极端,有利于提升光学系统的工艺性。超过上述条件式的上限,五片透镜之间的空气间隔过大,不利于缩短光学系统的总长;低于上述条件式的下限,五片透镜之间的空气间隔过小,导致光线偏折的空间受限,光线偏折角增大,不利于光学系统像差的校正,也不利于光学系统的装配。
在其中一个实施例中,所述光学系统满足以下条件式:
1.8≤ET1/CT1≤2.9;
其中,ET1为所述第一透镜的物侧面最大有效口径处至像侧面最大有效口径处于光轴方向上的距离,即所述第一透镜的边缘厚度,CT1为所述第一透镜于光轴上的厚度,即所述第一透镜的中心厚度。满足上述条件式时,能够合理配置第一透镜的边缘厚度与中心厚度的比值,使得第一透镜的面型不会过度弯曲,有利于第一透镜的设计和成型,从而提升第一透镜的工艺性,同时也有利于充分压缩第一透镜的厚度,从而减小光学系统的头部尺寸。低于上述条件式的下限,第一透镜的边缘厚度过小,导致第一透镜的面型过度弯曲,不利于第一透镜的成型,降低了第一透镜的工艺性;高于上述条件式的上限,第一透镜的边缘厚度过大,导致光学系统的头部尺寸过大,不利于光学系统的装配。
在其中一个实施例中,所述光学系统满足以下条件式:
0.9≤Y11/Y52≤1.1;
其中,Y11为所述第一透镜的物侧面最大有效口径,Y52为所述第五透镜的像侧面最大有效口径。满足上述条件式时,能够合理配置第一透镜的物侧面与第五透镜的像侧面最大有效口径的比值,使得光学系统的前端口径与后端口径相近,光学系统的结构对称性更好,从而更有利于校正光学系统的像差,抑制光学系统的畸变,进而提升光学系统的成像质量。
在其中一个实施例中,所述光学系统满足以下条件式:
0.6≤BFL/f≤0.8;
其中,BFL为所述第五透镜的像侧面至所述光学系统的成像面于光轴上的距离,即所述光学系统的光学后焦。满足上述条件式时,能够合理配置光学系统的光学后焦与有效焦距的比值,有利于使得光学系统具有足够的后焦空间来前后移动对焦,也使得光学系统能够更容易与感光元件匹配,从而有利于提升光学系统的成像质量;另外也使得光学系统的光学后焦不会过长,从而有利于缩短光学系统的总长。低于上述条件式的下限,光学系统的光学后焦过小,导致光学系统的主光线角度(Chief Ray Angle,CRA)受限制,不利于光学系统与感光元件的匹配;超过上述条件式的上限,光学系统的光学后焦过长,不利于缩短光学系统的总长,从而不利于光学系统在便携式电子设备中的应用。
在其中一个实施例中,所述光学系统满足以下条件式:
55deg/mm≤FOV/ImgH≤57deg/mm;
其中,FOV为所述光学系统的最大视场角,ImgH为所述光学系统的最大视场角所对应的像高的一半。满足上述条件式时,能够合理配置光学系统的最大视场角和半像高的比值,既有利于扩大光学系统的视场角,实现广角特性,使得光学系统能够拍摄出更广阔的画面,同时也有利于增大光学系统的成像面尺寸,使得光学系统能够匹配更大尺寸的感光元件,从而有利于提高光学系统的像素,另外,光学系统的视场角也不会过大,有利于光学系统畸变像差的校正。超过上述条件式的上限,光学系统的视场角过大,导致光学系统的畸变像差校正困难,从而导致光学系统出现成像不清晰、图像严重变形等情况;低于上述条件式的下限,光学系统的视场角过小,难以满足大范围拍摄的需求。
在其中一个实施例中,所述光学系统满足以下条件式:
|DIST|≤5%;
其中,DIST为所述光学系统的光学畸变的最大值。满足上述条件式时,在实现广角特性的同时也能够抑制光学系统的畸变,从而提高画面还原真实度,提升消费者的使用体验。
在其中一个实施例中,所述光学系统满足以下条件式:
n2+n4≥3.32;
其中,n2为所述第二透镜在587.5618nm波长下的折射率,n4为所述第四透镜在587.5618nm波长下的折射率。满足上述条件式时,能够合理配置第二透镜与第四透镜的折射率,从而提高光学系统的调制传递函数,并有利于校正光学系统的色差,提升光学系统的分辨率。低于上述条件式的下限,第二透镜与第四透镜的折射率不足,不利于光线的会聚,导致光学系统的像差校正不充分。
一种取像模组,包括感光元件以及上述任一实施例所述的光学系统,所述感光元件设置于所述光学系统的像侧。在所述取像模组中采用上述光学系统,能够具备广角特性以及良好的成像质量,在满足大范围拍摄需求的同时也能够形成清晰图像。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组设置于所述壳体。在所述电子设备中采用上述取像模组,能够具备广角特性以及良好的成像质量,在满足大范围拍摄需求的同时也能够形成清晰图像。
附图说明
图1为本申请第一实施例中的光学系统的结构示意图;
图2为本申请第一实施例中的光学系统的纵向球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的结构示意图;
图4为本申请第二实施例中的光学系统的纵向球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的结构示意图;
图6为本申请第三实施例中的光学系统的纵向球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的结构示意图;
图8为本申请第四实施例中的光学系统的纵向球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的结构示意图;
图10为本申请第五实施例中的光学系统的纵向球差图、像散图及畸变图;
图11为本申请一实施例中的取像模组的示意图;
图12为本申请一实施例中的电子设备的示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100沿光轴110由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10。第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5同轴设置,光学系统100中各透镜共同的轴线即为光学系统100的光轴110。
其中,第一透镜L1具有负屈折力,第一透镜L1的像侧面S2于近光轴110处为凹面,有利于大角度的光线入射光学系统100,从而有利于实现广角特性。第二透镜L2具有正屈折力,第二透镜L2的物侧面S3于近光轴110处为凸面,像侧面S4于近光轴110处为凹面,有利于校正第一透镜L1产生的球差等像差,同时使得光线能够平稳过渡,从而有利于提升光学系统100的成像质量。第三透镜L3具有正屈折力,第三透镜L3的物侧面S5和像侧面S6于近光轴110处均为凸面,能够有效会聚光线以压缩入射光线的角度,使得光线能够平缓过渡,同时有利于缩短光学系统100的总长。第四透镜L4具有负屈折力,与第三透镜L3的正屈折力相配合,有利于第二透镜L2出射的光线平缓过渡至第五透镜L5。第五透镜L5具有正屈折力,第五透镜L5的物侧面S9于近光轴110处为凸面,像侧面S10于近光轴110处为凹面,有利于校正光学系统100的场曲、像散以及大角度视场的高阶像差,从而提升光学系统100的成像质量。具备上述屈折力及面型特征,光学系统100在具备广角特性的时候,畸变像差也不会过大,有利于提高图像还原真实度,从而提升消费者的使用体验。
另外,在一些实施例中,光学系统100设置有光阑STO,光阑STO可设置于第二透镜L2与第三透镜L3之间。在一些实施例中,光学系统100还包括设置于第五透镜L5像侧的红外滤光片L6。红外滤光片L6可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的成像面而影响正常成像。进一步地,光学系统100还包括位于第五透镜L5像侧的像面S13,像面S13即为光学系统100的成像面,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5调节后能够成像于像面S13。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,光学系统100的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学系统100中各透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本,配合光学系统100的小尺寸以实现光学系统100的轻薄化设计。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4或第五透镜L5中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,光学系统100满足条件式:0.58≤R12/f≤0.71;其中,R12为第一透镜L1的像侧面S2于光轴110处的曲率半径,f为光学系统100的有效焦距。具体地,R12/f可以为:0.581、0.585、0.590、0.592、0.598、0.634、0.648、0.673、0.688或0.701。满足上述条件式时,能够合理配置第一透镜L1的像侧面S2于光轴110处的曲率半径及光学系统100的有效焦距的比值,配合第一透镜L1像侧面S2的凹面面型,有利于扩大光学系统100的视场角,使得光学系统100具备广角特性,同时也有利于使得第一透镜L1像侧面S2的面型不会过度弯曲,从而有利于降低第一透镜L1的设计和成型难度。超过上述条件式的上限,第一透镜L1像侧面S2于光轴110处的曲率半径过大,第一透镜L1的像侧面S2面型过于平缓,大角度的光线不易经第一透镜L1偏折到第二透镜L2和第三透镜L3中,从而不利于广角特性的实现。低于上述条件式的下限,第一透镜L1像侧面S2于光轴110处的曲率半径过小,第一透镜L1的像侧面S2面型过度弯曲,第一透镜L1像侧面S2的边缘倾角也随之增大,容易导致第一透镜L1的公差敏感度增大,工艺性差,不利于第一透镜L1的设计和制造。
在一些实施例中,光学系统100满足条件式:-0.7≤f12/f45<0;其中,f12为第一透镜L1和第二透镜L2的组合焦距,f45为第四透镜L4和第五透镜L5的组合焦距。具体地,f12/f45可以为:-0.631、-0.625、-0.613、-0.587、-0.573、-0.555、-0.527、-0.519、-0.453或-0.404。满足上述条件式时,能够合理配置第一透镜L1、第二透镜L2的组合焦距与第四透镜L4、第五透镜L5的组合焦距的比值,有利于第一透镜L1和第二透镜L2引入大角度的光线,从而有利于实现光学系统100的广角特性,同时也有利于第四透镜L4、第五透镜L5校正光学系统100的像差,并缩短光学系统100的总长;另外,还有利于第三透镜L3物方及像方两个透镜组与第三透镜L3的双凸面型配合,从而有利于抑制光学系统100的畸变,提升光学系统100的图像还原度。低于上述条件式的下限,第一透镜L1、第二透镜L2提供的屈折力过弱,与第四透镜L4、第五透镜L5的屈折力失衡,不利于第三透镜L3物方及像方两个透镜组与第三透镜L3的配合,从而不利于光学系统100成像质量的提升。
在一些实施例中,光学系统100满足条件式:1.6≤f2/f3≤2.1;其中,f2为第二透镜L2的有效焦距,f3为第三透镜L3的有效焦距。具体地,f2/f3可以为:1.682、1.712、1.735、1.786、1.822、1.847、1.889、1.924、1.955或2.019。满足上述条件式时,能够合理配置第二透镜L2与第三透镜L3的有效焦距的比值,有利于第二透镜L2与第一透镜L1的配合,从而有利于校正第一透镜L1产生的严重球面像差;另外,也有利于第三透镜L3为光学系统100提供足够的正屈折力,从而缩短光学系统100的总长,同时也使得第三透镜L3具有足够的中心厚度来抑制光线偏折角变大导致敏感度上升的现象,从而有利于校正光学系统100的像差,抑制大角度的光学畸变,进而有利于解决光学系统100在实现广角特性时畸变严重导致拍摄画面边缘扭曲失真的现象。
在一些实施例中,光学系统100满足条件式:0.3≤∑T/∑CT≤0.55;其中,∑T为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5中相邻两透镜于光轴110上的空气间隔之和,∑CT为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5于光轴110上的厚度之和。具体地,∑T/∑CT可以为:0.338、0.357、0.386、0.412、0.435、0.478、0.493、0.511、0.515或0.520。满足上述条件式时,能够合理配置光学系统100中五片透镜的中心厚度与空气间隔,有利于使得光学系统100的结构更加紧凑,从而有利于缩短光学总长,同时也有利于五片透镜的中心厚度与空气间隔不会过于极端,有利于提升光学系统100的工艺性。超过上述条件式的上限,五片透镜之间的空气间隔过大,不利于缩短光学系统100的总长;低于上述条件式的下限,五片透镜之间的空气间隔过小,导致光线偏折的空间受限,光线偏折角增大,不利于光学系统100像差的校正,也不利于光学系统100的装配。
在一些实施例中,光学系统100满足条件式:1.8≤ET1/CT1≤2.9;其中,ET1为第一透镜L1的物侧面S1最大有效口径处至像侧面S2最大有效口径处于光轴110方向上的距离,CT1为第一透镜L1于光轴110上的厚度。具体地,ET1/CT1可以为:1.940、1.974、2.026、2.134、2.257、2.364、2.455、2.637、2.722或2.887。满足上述条件式时,能够合理配置第一透镜L1的边缘厚度与中心厚度的比值,使得第一透镜L1的面型不会过度弯曲,有利于第一透镜L1的设计和成型,从而提升第一透镜L1的工艺性,同时也有利于充分压缩第一透镜L1的厚度,从而减小光学系统100的头部尺寸。低于上述条件式的下限,第一透镜L1的边缘厚度过小,导致第一透镜L1的面型过度弯曲,不利于第一透镜L1的成型,降低了第一透镜L1的工艺性;高于上述条件式的上限,第一透镜L1的边缘厚度过大,导致光学系统100的头部尺寸过大,不利于光学系统100的装配。
在一些实施例中,光学系统100满足条件式:0.9≤Y11/Y52≤1.1;其中,Y11为第一透镜L1的物侧面S1最大有效口径,Y52为第五透镜L5的像侧面S10最大有效口径。具体地,Y11/Y52可以为:0.957、0.963、0.975、0.986、0.994、1.021、1.034、1.055、1.064或1.075。满足上述条件式时,能够合理配置第一透镜L1的物侧面S1与第五透镜L5的像侧面S10最大有效口径的比值,使得光学系统100的前端口径与后端口径相近,光学系统100的结构对称性更好,从而更有利于校正光学系统100的像差,抑制光学系统100的畸变,进而提升光学系统100的成像质量。
在一些实施例中,光学系统100满足条件式:0.6≤BFL/f≤0.8;其中,BFL为第五透镜L5的像侧面S10至光学系统100的成像面于光轴110上的距离。具体地,BFL/f可以为:0.645、0.653、0.668、0.672、0.685、0.699、0.705、0.718、0.726或0.731。满足上述条件式时,能够合理配置光学系统100的光学后焦与有效焦距的比值,有利于使得光学系统100具有足够的后焦空间来前后移动对焦,也使得光学系统100能够更容易与感光元件匹配,从而有利于提升光学系统100的成像质量;另外也使得光学系统100的光学后焦不会过长,从而有利于缩短光学系统100的总长。低于上述条件式的下限,光学系统100的光学后焦过小,导致光学系统100的主光线角度(Chief Ray Angle,CRA)受限制,不利于光学系统100与感光元件的匹配;超过上述条件式的上限,光学系统100的光学后焦过长,不利于缩短光学系统100的总长,从而不利于光学系统100在便携式电子设备中的应用。
在一些实施例中,光学系统100满足条件式:55deg/mm≤FOV/ImgH≤57deg/mm;其中,FOV为光学系统100的最大视场角,ImgH为光学系统100的最大视场角所对应的像高的一半。具体地,FOV/ImgH可以为:55.556、55.633、55.715、55.812、55.936、56.217、56.359、56.402、56.474或56.542,数值单位为deg/mm。满足上述条件式时,能够合理配置光学系统100的最大视场角和半像高的比值,既有利于扩大光学系统100的视场角,实现广角特性,使得光学系统100能够拍摄出更广阔的画面,同时也有利于增大光学系统100的成像面尺寸,使得光学系统100能够匹配更大尺寸的感光元件,从而有利于提高光学系统100的像素,另外,光学系统100的视场角也不会过大,有利于光学系统100畸变像差的校正。超过上述条件式的上限,光学系统100的视场角过大,导致光学系统100的畸变像差校正困难,从而导致光学系统100出现成像不清晰、图像严重变形等情况;低于上述条件式的下限,光学系统100的视场角过小,难以满足大范围拍摄的需求。
需要说明的是,在一些实施例中,光学系统100可以匹配具有矩形感光面的感光元件,光学系统100的成像面与感光元件的感光面重合。此时,光学系统100成像面上有效像素区域具有水平方向以及对角线方向,则FOV可以理解为光学系统100对角线方向的最大视场角,ImgH可以理解为光学系统100成像面上有效像素区域对角线方向的长度的一半。
在一些实施例中,光学系统100满足条件式:|DIST|≤5%;其中,DIST为光学系统100的光学畸变的最大值。具体地,DIST可以为:3.000、3.670、4.600、4.830或5.000,数值单位为%。满足上述条件式时,在实现广角特性的同时也能够抑制光学系统100的畸变,从而提高画面还原真实度,提升消费者的使用体验。
在一些实施例中,光学系统100满足条件式:n2+n4≥3.32;其中,n2为第二透镜L2在587.5618nm波长下的折射率,n4为第四透镜L4在587.5618nm波长下的折射率。具体地,n2+n4可以为:3.320、3.322、3.324、3.327、3.328、3.301、3.325、3.326、3.329或3.332。满足上述条件式时,能够合理配置第二透镜L2与第四透镜L4的折射率,从而提高光学系统100的调制传递函数,并有利于校正光学系统100的色差,提升光学系统100的分辨率。低于上述条件式的下限,第二透镜L2与第四透镜L4的折射率不足,不利于光线的会聚,导致光学系统100的像差校正不充分。
以上的有效焦距和组合焦距数值的参考波长均为587.5618nm。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图2由左至右依次为第一实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为587.5618nm,其他实施例相同。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近光轴110处(该表面的中心区域)为凸面时,可理解为该透镜的该表面于光轴110附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于近光轴110处为凸面,且于圆周处也为凸面时,该表面由中心(该表面与光轴110的交点)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴110处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
进一步地,光学系统100满足条件式:R12/f=0.599;其中,R12为第一透镜L1的像侧面S2于光轴110处的曲率半径,f为光学系统100的有效焦距。满足上述条件式时,能够合理配置第一透镜L1的像侧面S2于光轴110处的曲率半径及光学系统100的有效焦距的比值,配合第一透镜L1像侧面S2的凹面面型,有利于扩大光学系统100的视场角,使得光学系统100具备广角特性,同时也有利于使得第一透镜L1像侧面S2的面型不会过度弯曲,从而有利于降低第一透镜L1的设计和成型难度。
光学系统100满足条件式:f12/f45=-0.450;其中,f12为第一透镜L1和第二透镜L2的组合焦距,f45为第四透镜L4和第五透镜L5的组合焦距。满足上述条件式时,能够合理配置第一透镜L1、第二透镜L2的组合焦距与第四透镜L4、第五透镜L5的组合焦距的比值,有利于第一透镜L1和第二透镜L2引入大角度的光线,从而有利于实现光学系统100的广角特性,同时也有利于第四透镜L4、第五透镜L5校正光学系统100的像差,并缩短光学系统100的总长;另外,还有利于第三透镜L3物方及像方两个透镜组与第三透镜L3的双凸面型配合,从而有利于抑制光学系统100的畸变,提升光学系统100的图像还原度。
光学系统100满足条件式:f2/f3=1.682;其中,f2为第二透镜L2的有效焦距,f3为第三透镜L3的有效焦距。满足上述条件式时,能够合理配置第二透镜L2与第三透镜L3的有效焦距的比值,有利于第二透镜L2与第一透镜L1的配合,从而有利于校正第一透镜L1产生的严重球面像差;另外,也有利于第三透镜L3为光学系统100提供足够的正屈折力,从而缩短光学系统100的总长,同时也使得第三透镜L3具有足够的中心厚度来抑制光线偏折角变大导致敏感度上升的现象,从而有利于校正光学系统100的像差,抑制大角度的光学畸变,进而有利于解决光学系统100在实现广角特性时畸变严重导致拍摄画面边缘扭曲失真的现象。
光学系统100满足条件式:∑T/∑CT=0.338;其中,∑T为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5中相邻两透镜于光轴110上的空气间隔之和,∑CT为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5于光轴110上的厚度之和。满足上述条件式时,能够合理配置光学系统100中五片透镜的中心厚度与空气间隔,有利于使得光学系统100的结构更加紧凑,从而有利于缩短光学总长,同时也有利于五片透镜的中心厚度与空气间隔不会过于极端,有利于提升光学系统100的工艺性。
光学系统100满足条件式:ET1/CT1=2.167;其中,ET1为第一透镜L1的物侧面S1最大有效口径处至像侧面S2最大有效口径处于光轴110方向上的距离,CT1为第一透镜L1于光轴110上的厚度。满足上述条件式时,能够合理配置第一透镜L1的边缘厚度与中心厚度的比值,使得第一透镜L1的面型不会过度弯曲,有利于第一透镜L1的设计和成型,从而提升第一透镜L1的工艺性,同时也有利于充分压缩第一透镜L1的厚度,从而减小光学系统100的头部尺寸。
光学系统100满足条件式:Y11/Y52=0.989;其中,Y11为第一透镜L1的物侧面S1最大有效口径,Y52为第五透镜L5的像侧面S10最大有效口径。满足上述条件式时,能够合理配置第一透镜L1的物侧面S1与第五透镜L5的像侧面S10最大有效口径的比值,使得光学系统100的前端口径与后端口径相近,光学系统100的结构对称性更好,从而更有利于校正光学系统100的像差,抑制光学系统100的畸变,进而提升光学系统100的成像质量。
光学系统100满足条件式:BFL/f=0.645;其中,BFL为第五透镜L5的像侧面S10至光学系统100的成像面于光轴110上的距离。满足上述条件式时,能够合理配置光学系统100的光学后焦与有效焦距的比值,有利于使得光学系统100具有足够的后焦空间来前后移动对焦,也使得光学系统100能够更容易与感光元件匹配,从而有利于提升光学系统100的成像质量;另外也使得光学系统100的光学后焦不会过长,从而有利于缩短光学系统100的总长。
光学系统100满足条件式:FOV/ImgH=55.556deg/mm;其中,FOV为光学系统100的最大视场角,ImgH为光学系统100的最大视场角所对应的像高的一半。满足上述条件式时,能够合理配置光学系统100的最大视场角和半像高的比值,既有利于扩大光学系统100的视场角,实现广角特性,使得光学系统100能够拍摄出更广阔的画面,同时也有利于增大光学系统100的成像面尺寸,使得光学系统100能够匹配更大尺寸的感光元件,从而有利于提高光学系统100的像素,另外,光学系统100的视场角也不会过大,有利于光学系统100畸变像差的校正。
光学系统100满足条件式:|DIST|=4.600%;其中,DIST为光学系统100的光学畸变的最大值。满足上述条件式时,在实现广角特性的同时也能够抑制光学系统100的畸变,从而提高画面还原真实度,提升消费者的使用体验。
光学系统100满足条件式:n2+n4=3.322;其中,n2为第二透镜L2在587.5618nm波长下的折射率,n4为第四透镜L4在587.5618nm波长下的折射率。满足上述条件式时,能够合理配置第二透镜L2与第四透镜L4的折射率,从而提高光学系统100的调制传递函数,并有利于校正光学系统100的色差,提升光学系统100的分辨率。
另外,光学系统100的各项参数由表1给出。其中,表1中的像面S13可理解为光学系统100的成像面。由物面(图未示出)至像面S13的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴110处的曲率半径。面序号S1和面序号S2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴110上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一表面于光轴110上的距离。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片L6,但此时第五透镜L5的像侧面S10至像面S13的距离保持不变。
在第一实施例中,光学系统100的有效焦距f=1.309mm,光圈数FNO=2.30,最大视场角FOV=120deg,光学总长TTL=4.57mm。在第一实施例及其他实施例中,光学系统100均满足关系式:115deg≤FOV≤125deg;可知光学系统100具备广角特性,能够满足大范围拍摄的需求。另外,光学系统100在具备广角特性的同时畸变小,图像还原度高,具备良好的成像质量。
各透镜的焦距、折射率和阿贝数的参考波长均为587.5618nm,其他实施例也相同。
表1
Figure BDA0003264364150000101
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从S1-S10分别表示像侧面或物侧面S1-S10。而从上到下的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure BDA0003264364150000102
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴110的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
Figure BDA0003264364150000103
Figure BDA0003264364150000111
另外,图2包括光学系统100的纵向球面像差图(Longitudinal SphericalAberration),其表示不同波长的光线经由镜头后的汇聚焦点偏离。纵向球面像差图的纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示成像面到光线与光轴110交点的距离(单位为mm)。由纵向球面像差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学系统100的像散场曲图(ASTIGMATIC FIELD CURVES),其中S曲线代表587.5618nm下的弧矢场曲,T曲线代表587.5618nm下的子午场曲。由图中可知,光学系统100的场曲较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像。图2还包括光学系统100的畸变图(DISTORTION),由图中可知,由主光束引起的图像变形较小,系统的成像质量优良。
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图4由左至右依次为第二实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure BDA0003264364150000112
Figure BDA0003264364150000121
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
Figure BDA0003264364150000122
根据上述所提供的各参数信息,可推得以下数据:
Figure BDA0003264364150000123
Figure BDA0003264364150000131
另外,由图4中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图6由左至右依次为第三实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure BDA0003264364150000132
Figure BDA0003264364150000141
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
Figure BDA0003264364150000142
并且,根据上述所提供的各参数信息,可推得以下数据:
R12/f 0.581 Y11/Y52 1.013
f12/f45 -0.404 BFL/f 0.731
f2/f3 2.019 FOV/ImgH(deg/mm) 56.542
∑T/∑CT 0.352 DIST(%) 4.830
ET1/CT1 1.957 n2+n4 3.322
另外,由图6中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图8由左至右依次为第四实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure BDA0003264364150000151
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
Figure BDA0003264364150000152
Figure BDA0003264364150000161
并且,根据上述所提供的各参数信息,可推得以下数据:
R12/f 0.591 Y11/Y52 1.006
f12/f45 -0.436 BFL/f 0.718
f2/f3 1.969 FOV/ImgH(deg/mm) 56.472
∑T/∑CT 0.358 DIST(%) 3.000
ET1/CT1 1.940 n2+n4 3.322
另外,由图8中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图10由左至右依次为第五实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凹面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
Figure BDA0003264364150000171
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
Figure BDA0003264364150000172
Figure BDA0003264364150000181
并且,根据上述所提供的各参数信息,可推得以下数据:
R12/f 0.701 Y11/Y52 1.075
f12/f45 -0.631 BFL/f 0.688
f2/f3 1.724 FOV/ImgH(deg/mm) 56.097
∑T/∑CT 0.520 DIST(%) 3.670
ET1/CT1 2.887 n2+n4 3.320
另外,由图10中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
请参见图11,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学系统100的像面S13。取像模组200还可设置有红外滤光片L6,红外滤光片L6设置于第五透镜L5的像侧面S10与像面S13之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学系统100,能够具备广角特性以及良好的成像质量,在满足大范围拍摄需求的同时也能够形成清晰图像。
请参见图11和图12,在一些实施例中,取像模组200可应用于电子设备300中,电子设备包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。当电子设备300为智能手机时,壳体310可以为电子设备300的中框。在电子设备300中采用上述取像模组200,能够具备广角特性以及良好的成像质量,在满足大范围拍摄需求的同时也能够形成清晰图像。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种光学系统,其特征在于,沿光轴由物侧至像侧依次包括:
具有负屈折力的第一透镜,所述第一透镜的像侧面于近光轴处为凹面;
具有正屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有正屈折力的第三透镜,所述第三透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
具有负屈折力的第四透镜;
具有正屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
且所述光学系统满足以下条件式:
0.58≤R12/f≤0.71;
其中,R12为所述第一透镜的像侧面于光轴处的曲率半径,f为所述光学系统的有效焦距。
2.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
-0.7≤f12/f45<0;
其中,f12为所述第一透镜和所述第二透镜的组合焦距,f45为所述第四透镜和所述第五透镜的组合焦距。
3.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
1.6≤f2/f3≤2.1;
其中,f2为所述第二透镜的有效焦距,f3为所述第三透镜的有效焦距。
4.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.3≤∑T/∑CT≤0.55;
其中,∑T为所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜中相邻两透镜于光轴上的空气间隔之和,∑CT为所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜于光轴上的厚度之和。
5.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
1.8≤ET1/CT1≤2.9;
其中,ET1为所述第一透镜的物侧面最大有效口径处至像侧面最大有效口径处于光轴方向上的距离,CT1为所述第一透镜于光轴上的厚度。
6.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.9≤Y11/Y52≤1.1;
其中,Y11为所述第一透镜的物侧面最大有效口径,Y52为所述第五透镜的像侧面最大有效口径。
7.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.6≤BFL/f≤0.8;
其中,BFL为所述第五透镜的像侧面至所述光学系统的成像面于光轴上的距离。
8.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
55deg/mm≤FOV/ImgH≤57deg/mm;
其中,FOV为所述光学系统的最大视场角,ImgH为所述光学系统的最大视场角所对应的像高的一半。
9.一种取像模组,其特征在于,包括感光元件以及权利要求1-8任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
10.一种电子设备,其特征在于,包括壳体以及权利要求9所述的取像模组,所述取像模组设置于所述壳体。
CN202111082119.4A 2021-09-15 2021-09-15 光学系统、取像模组及电子设备 Active CN113866943B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111082119.4A CN113866943B (zh) 2021-09-15 2021-09-15 光学系统、取像模组及电子设备
US17/536,010 US20230084833A1 (en) 2021-09-15 2021-11-27 Optical system, image acquisition module and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111082119.4A CN113866943B (zh) 2021-09-15 2021-09-15 光学系统、取像模组及电子设备

Publications (2)

Publication Number Publication Date
CN113866943A true CN113866943A (zh) 2021-12-31
CN113866943B CN113866943B (zh) 2023-07-04

Family

ID=78996141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111082119.4A Active CN113866943B (zh) 2021-09-15 2021-09-15 光学系统、取像模组及电子设备

Country Status (2)

Country Link
US (1) US20230084833A1 (zh)
CN (1) CN113866943B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021783A (ja) * 2001-07-06 2003-01-24 Canon Inc ズームレンズ及びそれを用いた光学機器
JP2005316181A (ja) * 2004-04-28 2005-11-10 Canon Electronics Inc ズームレンズ及びそれを有する撮像装置
US20050259333A1 (en) * 2004-05-21 2005-11-24 Konica Minolta Opto, Inc. Variable power optical system, image pickup lens devices, and digital device
CN101178475A (zh) * 2006-11-08 2008-05-14 株式会社尼康 变焦透镜系统和使用该系统的光学装置
CN103097934A (zh) * 2010-08-20 2013-05-08 施耐德光学制造有限公司 高孔径宽角度透镜
JP2015018086A (ja) * 2013-07-10 2015-01-29 今國光學工業股▲ふん▼有限公司Kinko Optical Co., Ltd. レンズ系
CN113296237A (zh) * 2021-05-14 2021-08-24 江西晶超光学有限公司 光学系统、取像模组及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021783A (ja) * 2001-07-06 2003-01-24 Canon Inc ズームレンズ及びそれを用いた光学機器
JP2005316181A (ja) * 2004-04-28 2005-11-10 Canon Electronics Inc ズームレンズ及びそれを有する撮像装置
US20050259333A1 (en) * 2004-05-21 2005-11-24 Konica Minolta Opto, Inc. Variable power optical system, image pickup lens devices, and digital device
CN101178475A (zh) * 2006-11-08 2008-05-14 株式会社尼康 变焦透镜系统和使用该系统的光学装置
CN103097934A (zh) * 2010-08-20 2013-05-08 施耐德光学制造有限公司 高孔径宽角度透镜
JP2015018086A (ja) * 2013-07-10 2015-01-29 今國光學工業股▲ふん▼有限公司Kinko Optical Co., Ltd. レンズ系
CN113296237A (zh) * 2021-05-14 2021-08-24 江西晶超光学有限公司 光学系统、取像模组及电子设备

Also Published As

Publication number Publication date
US20230084833A1 (en) 2023-03-16
CN113866943B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
CN113138458B (zh) 光学系统、取像模组及电子设备
CN113552696A (zh) 光学系统、取像模组及电子设备
CN113805310A (zh) 光学系统、取像模组及电子设备
CN112612117A (zh) 光学系统、取像模组及电子设备
CN114114654A (zh) 光学系统、取像模组及电子设备
CN113156612B (zh) 光学系统、取像模组及电子设备
CN112799211B (zh) 光学系统、取像模组及电子设备
CN113900222A (zh) 光学系统、取像模组及电子设备
CN113189748A (zh) 光学系统、取像模组及电子设备
CN113219628A (zh) 光学系统、取像模组及电子设备
CN112987259A (zh) 光学系统、取像模组及电子设备
CN211061764U (zh) 摄像镜头组
CN114675407B (zh) 光学系统、镜头模组及电子设备
CN114326052B (zh) 光学系统、取像模组及电子设备
CN114326019B (zh) 光学系统、取像模组及电子设备
CN112925086B (zh) 光学系统、取像模组及电子设备
CN114994880A (zh) 光学系统、镜头模组及电子设备
CN213690082U (zh) 光学系统、摄像模组及电子设备
CN114740596A (zh) 光学系统、取像模组及电子设备
CN113376810A (zh) 光学系统、取像模组及电子设备
CN113900225A (zh) 光学系统、取像模组及电子设备
CN114167587A (zh) 光学系统、取像模组及电子设备
CN113900226A (zh) 光学系统、取像模组及电子设备
CN113741008A (zh) 光学系统、取像模组及电子设备
CN113741005A (zh) 光学系统、取像模组及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant