CN113900226A - 光学系统、取像模组及电子设备 - Google Patents
光学系统、取像模组及电子设备 Download PDFInfo
- Publication number
- CN113900226A CN113900226A CN202111159407.5A CN202111159407A CN113900226A CN 113900226 A CN113900226 A CN 113900226A CN 202111159407 A CN202111159407 A CN 202111159407A CN 113900226 A CN113900226 A CN 113900226A
- Authority
- CN
- China
- Prior art keywords
- lens
- optical system
- lens element
- image
- refractive power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/006—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明涉及一种光学系统、取像模组及电子设备。光学系统包括:具有正屈折力的第一透镜;具有负屈折力的第二透镜;具有屈折力的第三透镜,物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;具有正屈折力的第四透镜;具有负屈折力的第五透镜;具有屈折力的第六透镜,物侧面于近光轴处为凸面,于圆周处为凹面;具有正屈折力的第七透镜,像侧面于近光轴处为凹面;具有负屈折力的第八透镜;光学系统满足:1≤R14/f7≤6。上述光学系统,像差校正能力良好,具备良好的成像质量。
Description
技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
随着智能手机、平板电脑、电子阅读器等电子设备的迅速发展,摄像功能已经成为电子设备的一种标配功能,业界对电子设备的摄像性能要求也越来越高。其中,摄像镜头的像差校正能力作为摄像性能的一项重要指标,极大影响着用户的使用体验。良好的像差校正能力能够使得摄像镜头具备良好的成像质量,满足用户对高成像质量的需求。然而,目前的摄像镜头像差校正能力还有待提升。
发明内容
基于此,有必要提供一种光学系统、取像模组及电子设备,以提升摄像镜头的像差校正能力。
一种光学系统,沿光轴由物侧至像侧依次包括:
具有正屈折力的第一透镜;
具有负屈折力的第二透镜;
具有屈折力的第三透镜,所述第三透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有正屈折力的第四透镜;
具有负屈折力的第五透镜;
具有屈折力的第六透镜,所述第六透镜的物侧面于近光轴处为凸面,于圆周处为凹面;
具有正屈折力的第七透镜,所述第七透镜的像侧面于近光轴处为凹面;
具有负屈折力的第八透镜;
且所述光学系统满足以下条件式:
1≤R14/f7≤6;
其中,R14为所述第七透镜的像侧面于光轴处的曲率半径,f7为所述第七透镜的有效焦距。
上述光学系统,第一透镜具有正屈折力,有利于汇聚光线,从而有利于缩短光学系统的总长。第二透镜具有负屈折力,有利于减小光线入射角,同时平衡第一透镜所产生的球差,提升光学系统的轴上成像质量。第三透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面,有利于校正光学系统的像差,提升光学系统的成像质量。第六透镜的物侧面于近光轴处为凸面,有利于轴上球差的校正,第六透镜的物侧面于圆周处为凹面,有利于光线进入与偏折,可减小像侧透镜承担的偏折角,避免光学系统像差过度增大而导致像差矫正困难。第七透镜具有正屈折力,有利于平衡光学系统的像散量。第八透镜具有负屈折力,有利于改善光线入射到成像面上的入射角。
满足上述条件式时,能够合理配置第七透镜的像侧面于光轴处的曲率半径与第七透镜的有效焦距的比值,使得第七透镜能够有效校正像差,提升光学系统的像差校正能力,从而有利于提升光学系统的成像质量;同时也使得第七透镜的像侧面面型不会过度弯曲,有利于第七透镜的加工成型。低于上述条件式的下限时,第七透镜的像侧面面型过度弯曲,导致第七透镜的成型良率低,镜片制造困难。超过上述条件式的上限时,第七透镜像侧面的曲率半径与第七透镜的有效焦距搭配不合适,第七透镜的屈折力过大导致像差过度校正,成像质量不佳。具备上述屈折力和面型特征并满足上述条件式,光学系统具备良好的成像质量同时能够满足小型化设计的需求。
在其中一个实施例中,所述光学系统满足以下条件式:
-0.45≤f/f2≤-0.1;
其中,f为所述光学系统的有效焦距,f2为所述第二透镜的有效焦距。满足上述条件式时,能够合理配置光学系统的有效焦距与第二透镜的有效焦距的比值,有利于减小光线在第二透镜的偏折角度,同时使得第二透镜提供的负屈折力能够有效平衡光学系统的球差,有效校正像差从而实现良好的成像品质,同时也有利于合理配置第二透镜的中心厚度,从而缩短光学系统的总长,另外还有利于扩大光学系统的视场角。
在其中一个实施例中,所述光学系统满足以下条件式:
f/EPD≤1.9;
其中,f为所述光学系统的有效焦距,EPD为所述光学系统的入瞳直径。满足上述条件式时,光学系统能够具备大光圈特性,从而增加光学系统的光通量,有利于提升光学系统在弱光环境下的成像质量。
在其中一个实施例中,所述光学系统满足以下条件式:
-1.65≤f123/f8≤-1.2;
其中,f123为所述第一透镜、所述第二透镜和所述第三透镜的组合焦距,f8为所述第八透镜的有效焦距。满足上述条件式时,能够合理配置第一透镜、第二透镜及第三透镜的组合焦距与第八透镜的有效焦距的比值,有利于平衡光学系统前后端的屈折力,从而有利于校正光学系统的像差,同时有利于缩短光学系统的后焦距,从而有利于缩短光学系统的总长,实现小型化设计。
在其中一个实施例中,所述光学系统满足以下条件式:
0.7≤CT7/|SAG71|≤1.8;
其中,CT7为所述第七透镜于光轴上的厚度,即所述第七透镜的中心厚度,SAG71为所述第七透镜的物侧面于最大有效口径处的矢高,即所述第七透镜的物侧面与光轴的交点至所述第七透镜的物侧面最大有效口径处于光轴方向上的距离。满足上述条件式时,能够合理配置第七透镜的形状,有利于第七透镜的制造及成型,减少成型不良的缺陷;同时有利于第七透镜校正物侧透镜所产生的场曲,从而平衡光学系统的场曲,进而有利于提升光学系统的成像质量。
在其中一个实施例中,所述光学系统满足以下条件式:
5≤f4/f7≤20;
其中,f4为所述第四透镜的有效焦距。满足上述条件式时,能够合理配置第四透镜与第七透镜的有效焦距的比值,以合理分配第四透镜与第七透镜的正屈折力,有利于第四透镜与第七透镜平衡其他负透镜所产生的负球差,提高光学系统的成像质量;同时也有利于避免第四透镜与第七透镜中单个透镜的屈折力过大导致面型过度弯曲的情况,从而有利于降低光学系统的公差敏感度,提升透镜的成型良率。超过上述条件式的上限,第七透镜的正屈折力过强,导致第七透镜的面型过度弯曲,不利于第七透镜的制造成型,降低第七透镜的制造良率。超过上述条件式的范围时,第四透镜与第七透镜的屈折力分配不平衡,导致光学系统像差过大,修正困难,不利于成像质量的提升。
在其中一个实施例中,所述光学系统满足以下条件式:
-7≤f2/f1+f7/f8≤-3;
其中,f2为所述第二透镜的有效焦距,f1为所述第一透镜的有效焦距,f8为所述第八透镜的有效焦距。满足上述条件式时,能够合理配置靠近物侧的第一透镜与第二透镜以及靠近像侧的第六透镜与第七透镜的屈折力,有利于缩短光学系统的总长,实现小型化设计,同时也有利于平衡光学系统的正负球差,从而提升光学系统的成像质量。
在其中一个实施例中,所述光学系统满足以下条件式:
1≤(R3+R4)/(R3-R4)≤6;
其中,R3为所述第二透镜的物侧面于光轴处的曲率半径,R4为所述第二透镜的像侧面于光轴处的曲率半径。满足上述条件式时,能够合理配置第二透镜的物侧面与像侧面的曲率半径,从而能够有效分配第二透镜承担的光学偏折角,同时有利于改善轴外视场的像散像差,进而有利于提升光学系统的成像质量。
在其中一个实施例中,所述光学系统满足以下条件式:
0.65≤TTL/(ImgH*FNO)≤0.85;
其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,即所述光学系统的光学总长,ImgH为所述光学系统的最大视场角所对应的像高的一半,FNO为所述光学系统的光圈数。满足上述条件式时,光学系统能够具备大像面特性,从而有利于提升光学系统的成像质量,同时也有利于缩短光学系统的总长,实现小型化设计。超过上述条件式的上限时,光学系统的总长过长,难以满足小型化设计的需求。低于上述条件式的下限,光学系统的总长过短,光学系统的结构过于紧凑,不利于像差的平衡矫正,且会导致大像面边缘视场的画质降低。
在其中一个实施例中,所述光学系统满足以下条件式:
0.5≤R5/R6≤1.6;
其中,R5为所述第三透镜的物侧面于光轴处的曲率半径,R6为所述第三透镜的像侧面于光轴处的曲率半径。满足上述条件式时,能够合理配置第三透镜的物侧面与像侧面于光轴处的曲率半径的比值,有利于使得第三透镜具备足够的屈折力从而能够有效校正光学系统的像散像差,提升光学系统的成像质量;同时也能够使得第三透镜的屈折力不会过大,从而有利于降低光学系统的敏感度,提升第三透镜的成型良率。
在其中一个实施例中,所述光学系统满足以下条件式:
0.5≤T56/T45≤1.5;
其中,T56为所述第五透镜的像侧面至所述第六透镜的物侧面于光轴上的距离,T45为所述第四透镜的像侧面至所述第五透镜的物侧面于光轴上的距离。满足上述条件式时,能够合理配置第五透镜与第六透镜的空气间隔以及第四透镜与第五透镜的空气间隔的比值,使得第四透镜、第五透镜与第六透镜之间有足够的空间偏折光线,有利于抑制像差的产生,从而提升光学系统的成像质量;同时也能够有效压缩光学系统的总长,从而有利于小型化设计的实现。
在其中一个实施例中,所述光学系统满足以下条件式:
2≤ImgH/(10*CT2)≤2.8;
其中,ImgH为所述光学系统的最大视场角所对应的像高的一半,CT2为所述第二透镜于光轴上的厚度,即所述第二透镜的中心厚度。满足上述条件式时,能够合理配置光学系统的半像高以及第二透镜的中心厚度,有利于光学系统具备大像面特性,从而有利于提升光学系统的成像质量,同时也有利于满足小型化设计的需求;另外还有利于合理配置第二透镜的形状,从而有利于第二透镜的制造成型,减少成型不良的缺陷。
在其中一个实施例中,所述光学系统满足以下条件式:
1.9≤ImgH/(10*CT3)≤2.3;
其中,ImgH为所述光学系统的最大视场角所对应的像高的一半,CT3为所述第三透镜于光轴上的厚度。满足上述条件式时,能够合理配置光学系统的半像高以及第三透镜的中心厚度,有利于光学系统具备大像面特性,从而有利于提升光学系统的成像质量,同时也有利于满足小型化设计的需求;另外还有利于合理配置第三透镜的形状,从而有利于第三透镜的制造成型,减少成型不良的缺陷。
在其中一个实施例中,所述光学系统满足以下条件式:
10≤Vd3≤60;
30≤Vd6≤60;
其中,Vd3为所述第三透镜在587.5618nm波长下的阿贝数,Vd6为所述第六透镜在587.5618nm波长下的阿贝数。满足上述条件式时,能够合理配置第三透镜与第六透镜的透镜材料,使得第三透镜与第六透镜能够有效修正光学系统的色差,提升光学系统的成像清晰度,从而提升光学系统的成像品质。
一种取像模组,包括感光元件以及上述任一实施例所述的光学系统,所述感光元件设置于所述光学系统的像侧。在所述取像模组中采用上述光学系统,像差校正能力良好,能够具备良好的成像质量,同时也能够满足小型化设计的需求。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组设置于所述壳体。在所述电子设备中采用上述取像模组,像差校正能力良好,能够具备良好的成像质量,同时也能够满足小型化设计的需求。
附图说明
图1为本申请第一实施例中的光学系统的结构示意图;
图2为本申请第一实施例中的光学系统的纵向球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的结构示意图;
图4为本申请第二实施例中的光学系统的纵向球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的结构示意图;
图6为本申请第三实施例中的光学系统的纵向球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的结构示意图;
图8为本申请第四实施例中的光学系统的纵向球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的结构示意图;
图10为本申请第五实施例中的光学系统的纵向球差图、像散图及畸变图;
图11为本申请第六实施例中的光学系统的结构示意图;
图12为本申请第六实施例中的光学系统的纵向球差图、像散图及畸变图;
图13为本申请一实施例中的取像模组的示意图;
图14为本申请一实施例中的电子设备的示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100沿光轴110由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11及像侧面S12,第七透镜L7包括物侧面S13及像侧面S14,第八透镜L8包括物侧面S15及像侧面S16。第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8同轴设置,光学系统100中各透镜共同的轴线即为光学系统100的光轴110。
其中,第一透镜L1具有正屈折力,有利于汇聚光线,从而有利于缩短光学系统100的总长。第二透镜L2具有负屈折力,有利于减小光线入射角,同时平衡第一透镜L1所产生的球差,提升光学系统100的轴上成像质量。第三透镜L3具有屈折力,第三透镜L3的物侧面S5于近光轴110处为凸面,像侧面S6于近光轴110处为凹面,有利于校正光学系统100的像差,提升光学系统100的成像质量。第四透镜L4具有正屈折力,第五透镜L5具有负屈折力。第六透镜L6具有屈折力。第六透镜L6的物侧面S11于近光轴110处为凸面,有利于轴上球差的校正,第六透镜L6的物侧面S11于圆周处为凹面,有利于光线进入与偏折,可减小像侧透镜承担的偏折角,避免光学系统100像差过度增大而导致像差矫正困难。第七透镜L7具有正屈折力,有利于平衡光学系统100的像散量。第七透镜L7的像侧面S14于近光轴110处为凹面。第八透镜L8具有负屈折力,有利于改善光线入射到成像面上的入射角。
在一些实施例中,第七透镜L7的物侧面S13和像侧面S14均为非球面,有利于校正光学系统100的球差,提升光学系统100的成像质量。在一些实施例中,第七透镜L7的物侧面S13与像侧面S14中的至少一者存在反曲点,有利于校正离轴视场的像差,提升光学系统100的成像质量。
另外,在一些实施例中,光学系统100设置有光阑STO,光阑STO可设置于第一透镜L1的物侧。在一些实施例中,光学系统100还包括设置于第八透镜L8像侧的红外滤光片L9。红外滤光片L9可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的成像面而影响正常成像。进一步地,光学系统100还包括位于第八透镜L8像侧的像面S19,像面S19即为光学系统100的成像面,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8调节后能够成像于像面S19。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,光学系统100的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学系统100中各透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本,配合光学系统100的小尺寸以实现光学系统100的轻薄化设计。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7或第八透镜L8中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,光学系统100满足条件式:1≤R14/f7≤6;其中,R14为第七透镜L7的像侧面S14于光轴110处的曲率半径,f7为第七透镜L7的有效焦距。具体地,R14/f7可以为:1.238、1.487、1.741、2.125、2.647、2.983、3.247、3.554、3.763或4.600。满足上述条件式时,能够合理配置第七透镜L7的像侧面S14于光轴110处的曲率半径与第七透镜L7的有效焦距的比值,使得第七透镜L7能够有效校正像差,提升光学系统100的像差校正能力,从而有利于提升光学系统100的成像质量;同时也使得第七透镜L7的像侧面S14面型不会过度弯曲,有利于第七透镜L7的加工成型。低于上述条件式的下限时,第七透镜L7的像侧面S14面型过度弯曲,导致第七透镜L7的成型良率低,镜片制造困难。超过上述条件式的上限时,第七透镜L7像侧面S14的曲率半径与第七透镜L7的有效焦距搭配不合适,第七透镜L7的屈折力过大导致像差过度校正,成像质量不佳。具备上述屈折力和面型特征并满足上述条件式,光学系统100具备良好的成像质量同时能够满足小型化设计的需求。
在一些实施例中,光学系统100满足条件式:-0.45≤f/f2≤-0.1;其中,f为光学系统100的有效焦距,f2为第二透镜L2的有效焦距。具体地,f/f2可以为:-0.407、-0.387、-0.355、-0.315、-0.298、-0.274、-0.234、-0.212、-0.199或-0.186。满足上述条件式时,能够合理配置光学系统100的有效焦距与第二透镜L2的有效焦距的比值,有利于减小光线在第二透镜L2的偏折角度,同时使得第二透镜L2提供的负屈折力能够有效平衡光学系统100的球差,有效校正像差从而实现良好的成像品质,同时也有利于合理配置第二透镜L2的中心厚度,从而缩短光学系统100的总长,另外还有利于扩大光学系统100的视场角。
在一些实施例中,光学系统100满足条件式:f/EPD≤1.9;其中,f为光学系统100的有效焦距,EPD为光学系统100的入瞳直径。具体地,f/EPD可以为:1.70、1.72、1.73、1.75、1.77、1.80、1.81、1.84、1.89或1.90。满足上述条件式时,光学系统100能够具备大光圈特性,从而增加光学系统100的光通量,有利于提升光学系统100在弱光环境下的成像质量。
在一些实施例中,光学系统100满足条件式:-1.65≤f123/f8≤-1.2;其中,f123为第一透镜L1、第二透镜L2和第三透镜L3的组合焦距,f8为第八透镜L8的有效焦距。具体地,f123/f8可以为:-1.65、-1.61、-1.58、-1.52、-1.49、-1.47、-1.45、-1.43、-1.40或-1.39。满足上述条件式时,能够合理配置第一透镜L1、第二透镜L2及第三透镜L3的组合焦距与第八透镜L8的有效焦距的比值,有利于平衡光学系统100前后端的屈折力,从而有利于校正光学系统100的像差,同时有利于缩短光学系统100的后焦距,从而有利于缩短光学系统100的总长,实现小型化设计。
在一些实施例中,光学系统100满足条件式:0.7≤CT7/|SAG71|≤1.8;其中,CT7为第七透镜L7于光轴110上的厚度,即第七透镜L7的中心厚度,SAG71为第七透镜L7的物侧面S13于最大有效口径处的矢高。具体地,CT7/|SAG71|可以为:0.92、1.10、1.18、1.21、1.24、1.29、1.35、1.47、1.52或1.62。满足上述条件式时,能够合理配置第七透镜L7的形状,有利于第七透镜L7的制造及成型,减少成型不良的缺陷;同时有利于第七透镜L7校正物侧透镜所产生的场曲,从而平衡光学系统100的场区,进而有利于提升光学系统100的成像质量。
在一些实施例中,光学系统100满足条件式:5≤f4/f7≤20;其中,f4为第四透镜L4的有效焦距。具体地,f4/f7可以为:5.06、5.42、5.63、5.77、5.80、6.12、9.14、11.36、15.94或19.23。满足上述条件式时,能够合理配置第四透镜L4与第七透镜L7的有效焦距的比值,以合理分配第四透镜L4与第七透镜L7的正屈折力,有利于第四透镜L4与第七透镜L7平衡其他负透镜所产生的负球差,提高光学系统100的成像质量;同时也有利于避免第四透镜L4与第七透镜L7中单个透镜的屈折力过大导致面型过度弯曲的情况,从而有利于降低光学系统100的公差敏感度,提升透镜的成型良率。超过上述条件式的上限,第七透镜L7的正屈折力过强,导致第七透镜L7的面型过度弯曲,不利于第七透镜L7的制造成型,降低第七透镜L7的制造良率。超过上述条件式的范围时,第四透镜L4与第七透镜L7的屈折力分配不平衡,导致光学系统100像差过大,修正困难,不利于成像质量的提升。
在一些实施例中,光学系统100满足条件式:-7≤f2/f1+f7/f8≤-3;其中,f2为第二透镜L2的有效焦距,f1为第一透镜L1的有效焦距,f8为第八透镜L8的有效焦距。具体地,f2/f1+f7/f8可以为:-6.67、-6.45、-6.10、-5.74、-5.55、-5.12、-4.78、-4.63、-4.52或-4.10。满足上述条件式时,能够合理配置靠近物侧的第一透镜L1与第二透镜L2以及靠近像侧的第六透镜L6与第七透镜L7的屈折力,有利于缩短光学系统100的总长,实现小型化设计,同时也有利于平衡光学系统100的正负球差,从而提升光学系统100的成像质量。
在一些实施例中,光学系统100满足条件式:1≤(R3+R4)/(R3-R4)≤6;其中,R3为第二透镜L2的物侧面S3于光轴110处的曲率半径,R4为第二透镜L2的像侧面S4于光轴110处的曲率半径。具体地,(R3+R4)/(R3-R4)可以为:1.44、1.78、2.21、2.55、2.94、3.34、3.74、4.25、4.49或5.79。满足上述条件式时,能够合理配置第二透镜L2的物侧面S3与像侧面S4的曲率半径,从而能够有效分配第二透镜L2承担的光学偏折角,同时有利于改善轴外视场的像散像差,进而有利于提升光学系统100的成像质量。
在一些实施例中,光学系统100满足条件式:0.65≤TTL/(ImgH*FNO)≤0.85;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴110上的距离,ImgH为光学系统100的最大视场角所对应的像高的一半,FNO为光学系统100的光圈数。具体地,TTL/(ImgH*FNO)可以为:0.71、0.72、0.73、0.74、0.75、0.76、0.77、0.78、0.79或0.81。满足上述条件式时,光学系统100能够具备大像面特性,从而有利于提升光学系统100的成像质量,同时也有利于缩短光学系统100的总长,实现小型化设计。超过上述条件式的上限时,光学系统100的总长过长,难以满足小型化设计的需求。低于上述条件式的下限,光学系统100的总长过短,光学系统100的结构过于紧凑,不利于像差的平衡矫正,且会导致大像面边缘视场的画质降低。
需要说明的是,在一些实施例中,光学系统100可以匹配具有矩形感光面的感光元件,光学系统100的成像面与感光元件的感光面重合。此时,光学系统100成像面上有效像素区域具有水平方向以及对角线方向,则最大视场角可以理解为光学系统100对角线方向的最大视场角,ImgH可以理解为光学系统100成像面上有效像素区域对角线方向的长度的一半。
在一些实施例中,光学系统100满足条件式:0.5≤R5/R6≤1.6;其中,R5为第三透镜L3的物侧面S5于光轴110处的曲率半径,R6为第三透镜L3的像侧面S6于光轴110处的曲率半径。具体地,R5/R6可以为:0.678、0.714、0.837、0.889、0.955、1.102、1.238、1.341、1.399或1.463。满足上述条件式时,能够合理配置第三透镜L3的物侧面S5与像侧面S6于光轴110处的曲率半径的比值,有利于使得第三透镜L3具备足够的屈折力从而能够有效校正光学系统100的像散像差,提升光学系统100的成像质量;同时也能够使得第三透镜L3的屈折力不会过大,从而有利于降低光学系统100的敏感度,提升第三透镜L3的成型良率。
在一些实施例中,光学系统100满足条件式:0.5≤T56/T45≤1.5;其中,T56为第五透镜L5的像侧面S10至第六透镜L6的物侧面S11于光轴110上的距离,T45为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴110上的距离。具体地,T56/T45可以为:0.856、0.874、0.889、1.123、1.147、1.220、1.258、1.367、1.405或1.429。满足上述条件式时,能够合理配置第五透镜L5与第六透镜L6的空气间隔以及第四透镜L4与第五透镜L5的空气间隔的比值,使得第四透镜L4、第五透镜L5与第六透镜L6之间有足够的空间偏折光线,有利于抑制像差的产生,从而提升光学系统100的成像质量;同时也能够有效压缩光学系统100的总长,从而有利于小型化设计的实现。
在一些实施例中,光学系统100满足条件式:2≤ImgH/(10*CT2)≤2.8;其中,ImgH为光学系统100的最大视场角所对应的像高的一半,CT2为第二透镜L2于光轴110上的厚度。具体地,ImgH/(10*CT2)可以为:2.067、2.105、2.174、2.222、2.347、2.389、2.411、2.435、2.517或2.680。满足上述条件式时,能够合理配置光学系统100的半像高以及第二透镜L2的中心厚度,有利于光学系统100具备大像面特性,从而有利于提升光学系统100的成像质量,同时也有利于满足小型化设计的需求;另外还有利于合理配置第二透镜L2的形状,从而有利于第二透镜L2的制造成型,减少成型不良的缺陷。
在一些实施例中,光学系统100满足条件式:1.9≤ImgH/(10*CT3)≤2.3;其中,ImgH为光学系统100的最大视场角所对应的像高的一半,CT3为第三透镜L3于光轴110上的厚度。具体地,ImgH/(10*CT3)可以为:1.914、1.955、1.967、1.972、1.983、1.990、2.022、2.035、2.055或2.067。满足上述条件式时,能够合理配置光学系统100的半像高以及第三透镜L3的中心厚度,有利于光学系统100具备大像面特性,从而有利于提升光学系统100的成像质量,同时也有利于满足小型化设计的需求;另外还有利于合理配置第三透镜L3的形状,从而有利于第三透镜L3的制造成型,减少成型不良的缺陷。
在一些实施例中,光学系统100满足条件式:10≤Vd3≤60;30≤Vd6≤60;其中,Vd3为第三透镜L3在587.5618nm波长下的阿贝数,Vd6为第六透镜L6在587.5618nm波长下的阿贝数。具体地,Vd3可以为:19.25、21.64、29.54、31.52、33.67、39.54、45.17、49.88、51.63或56.14。Vd6可以为:37.35、39.55、41.02、43.67、47.81、49.03、50.57、52.16、53.88或55.82。满足上述条件式时,能够合理配置第三透镜L3与第六透镜L6的透镜材料,使得第三透镜L3与第六透镜L6能够有效修正光学系统100的色差,提升光学系统100的成像清晰度,从而提升光学系统100的成像品质。
以上的有效焦距以及组合焦距数值的参考波长均为587.5618nm。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图2由左至右依次为第一实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为587.5618nm,其他实施例相同。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近光轴110处(该表面的中心区域)为凸面时,可理解为该透镜的该表面于光轴110附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于近光轴110处为凸面,且于圆周处也为凸面时,该表面由中心(该表面与光轴110的交点)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴110处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
进一步地,光学系统100满足条件式:R14/f7=4.170;其中,R14为第七透镜L7的像侧面S14于光轴110处的曲率半径,f7为第七透镜L7的有效焦距。满足上述条件式时,能够合理配置第七透镜L7的像侧面S14于光轴110处的曲率半径与第七透镜L7的有效焦距的比值,使得第七透镜L7能够有效校正像差,提升光学系统100的像差校正能力,从而有利于提升光学系统100的成像质量;同时也使得第七透镜L7的像侧面S14面型不会过度弯曲,有利于第七透镜L7的加工成型。
光学系统100满足条件式:f/f2=-0.363;其中,f为光学系统100的有效焦距,f2为第二透镜L2的有效焦距。满足上述条件式时,能够合理配置光学系统100的有效焦距与第二透镜L2的有效焦距的比值,有利于减小光线在第二透镜L2的偏折角度,同时使得第二透镜L2提供的负屈折力能够有效平衡光学系统100的球差,有效校正像差从而实现良好的成像品质,同时也有利于合理配置第二透镜L2的中心厚度,从而缩短光学系统100的总长,另外还有利于扩大光学系统100的视场角。
光学系统100满足条件式:f/EPD=1.70;其中,f为光学系统100的有效焦距,EPD为光学系统100的入瞳直径。满足上述条件式时,光学系统100能够具备大光圈特性,从而增加光学系统100的光通量,有利于提升光学系统100在弱光环境下的成像质量。
光学系统100满足条件式:f123/f8=-1.63;其中,f123为第一透镜L1、第二透镜L2和第三透镜L3的组合焦距,f8为第八透镜L8的有效焦距。满足上述条件式时,能够合理配置第一透镜L1、第二透镜L2及第三透镜L3的组合焦距与第八透镜L8的有效焦距的比值,有利于平衡光学系统100前后端的屈折力,从而有利于校正光学系统100的像差,同时有利于缩短光学系统100的后焦距,从而有利于缩短光学系统100的总长,实现小型化设计。
光学系统100满足条件式:CT7/|SAG71|=1.11;其中,CT7为第七透镜L7于光轴110上的厚度,SAG71为第七透镜L7的物侧面S13于最大有效口径处的矢高。满足上述条件式时,能够合理配置第七透镜L7的形状,有利于第七透镜L7的制造及成型,减少成型不良的缺陷;同时有利于第七透镜L7校正物侧透镜所产生的场曲,从而平衡光学系统100的场区,进而有利于提升光学系统100的成像质量。
光学系统100满足条件式:f4/f7=10.47;其中,f4为第四透镜L4的有效焦距。满足上述条件式时,能够合理配置第四透镜L4与第七透镜L7的有效焦距的比值,以合理分配第四透镜L4与第七透镜L7的正屈折力,有利于第四透镜L4与第七透镜L7平衡其他负透镜所产生的负球差,提高光学系统100的成像质量;同时也有利于避免第四透镜L4与第七透镜L7中单个透镜的屈折力过大导致面型过度弯曲的情况,从而有利于降低光学系统100的公差敏感度,提升透镜的成型良率。
光学系统100满足条件式:f2/f1+f7/f8=-4.32;其中,f2为第二透镜L2的有效焦距,f1为第一透镜L1的有效焦距,f8为第八透镜L8的有效焦距。满足上述条件式时,能够合理配置靠近物侧的第一透镜L1与第二透镜L2以及靠近像侧的第六透镜L6与第七透镜L7的屈折力,有利于缩短光学系统100的总长,实现小型化设计,同时也有利于平衡光学系统100的正负球差,从而提升光学系统100的成像质量。
光学系统100满足条件式:(R3+R4)/(R3-R4)=1.44;其中,R3为第二透镜L2的物侧面S3于光轴110处的曲率半径,R4为第二透镜L2的像侧面S4于光轴110处的曲率半径。满足上述条件式时,能够合理配置第二透镜L2的物侧面S3与像侧面S4的曲率半径,从而能够有效分配第二透镜L2承担的光学偏折角,同时有利于改善轴外视场的像散像差,进而有利于提升光学系统100的成像质量。
光学系统100满足条件式:TTL/(ImgH*FNO)=0.78;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴110上的距离,ImgH为光学系统100的最大视场角所对应的像高的一半,FNO为光学系统100的光圈数。满足上述条件式时,光学系统100能够具备大像面特性,从而有利于提升光学系统100的成像质量,同时也有利于缩短光学系统100的总长,实现小型化设计。
光学系统100满足条件式:R5/R6=1.054;其中,R5为第三透镜L3的物侧面S5于光轴110处的曲率半径,R6为第三透镜L3的像侧面S6于光轴110处的曲率半径。满足上述条件式时,能够合理配置第三透镜L3的物侧面S5与像侧面S6于光轴110处的曲率半径的比值,有利于使得第三透镜L3具备足够的屈折力从而能够有效校正光学系统100的像散像差,提升光学系统100的成像质量;同时也能够使得第三透镜L3的屈折力不会过大,从而有利于降低光学系统100的敏感度,提升第三透镜L3的成型良率。
光学系统100满足条件式:T56/T45=1.359;其中,T56为第五透镜L5的像侧面S10至第六透镜L6的物侧面S11于光轴110上的距离,T45为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴110上的距离。满足上述条件式时,能够合理配置第五透镜L5与第六透镜L6的空气间隔以及第四透镜L4与第五透镜L5的空气间隔的比值,使得第四透镜L4、第五透镜L5与第六透镜L6之间有足够的空间偏折光线,有利于抑制像差的产生,从而提升光学系统100的成像质量;同时也能够有效压缩光学系统100的总长,从而有利于小型化设计的实现。
光学系统100满足条件式:ImgH/(10*CT2)=2.067;其中,ImgH为光学系统100的最大视场角所对应的像高的一半,CT2为第二透镜L2于光轴110上的厚度。满足上述条件式时,能够合理配置光学系统100的半像高以及第二透镜L2的中心厚度,有利于光学系统100具备大像面特性,从而有利于提升光学系统100的成像质量,同时也有利于满足小型化设计的需求;另外还有利于合理配置第二透镜L2的形状,从而有利于第二透镜L2的制造成型,减少成型不良的缺陷。
光学系统100满足条件式:ImgH/(10*CT3)=1.938;其中,ImgH为光学系统100的最大视场角所对应的像高的一半,CT3为第三透镜L3于光轴110上的厚度。满足上述条件式时,能够合理配置光学系统100的半像高以及第三透镜L3的中心厚度,有利于光学系统100具备大像面特性,从而有利于提升光学系统100的成像质量,同时也有利于满足小型化设计的需求;另外还有利于合理配置第三透镜L3的形状,从而有利于第三透镜L3的制造成型,减少成型不良的缺陷。
光学系统100满足条件式:Vd3=19.25;Vd6=55.82;其中,Vd3为第三透镜L3在587.5618nm波长下的阿贝数,Vd6为第六透镜L6在587.5618nm波长下的阿贝数。满足上述条件式时,能够合理配置第三透镜L3与第六透镜L6的透镜材料,使得第三透镜L3与第六透镜L6能够有效修正光学系统100的色差,提升光学系统100的成像清晰度,从而提升光学系统100的成像品质。
另外,光学系统100的各项参数由表1给出。其中,表1中的像面S19可理解为光学系统100的成像面。由物面(图未示出)至像面S19的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴110处的曲率半径。面序号S1和面序号S2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴110上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一表面于光轴110上的距离。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片L9,但此时第八透镜L8的像侧面S16至像面S19的距离保持不变。
在第一实施例中,光学系统100的有效焦距f=6.82mm,光学总长TTL=8.247mm,最大视场角的一半HFOV=41.90deg,光圈数FNO=1.70。光学系统100具备大像面特性,有利于实现高像素,从而具备良好的成像质量;光学系统100具备大光圈特性,进光量充足,在弱光环境下也能够具备良好的成像质量;光学系统100能够满足小型化设计的需求。
且各透镜的焦距、折射率和阿贝数的参考波长均为587.5618nm,其他实施例也相同。
表1
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从S1-S16分别表示像侧面或物侧面S1-S16。而从上到下的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴110的距离,c为非球面顶点的曲率,K为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
另外,图2包括光学系统100的纵向球差曲线图(Longitudinal SphericalAberration),纵向球差曲线表示不同波长的光线经由镜头后的汇聚焦点偏离,其中,纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示焦点偏移,即成像面到光线与光轴110交点的距离(单位为mm)。由纵向球差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学系统100的像散曲线图(ASTIGMATIC FIELD CURVES),其中,横坐标表示焦点偏移,纵坐标表示像高,单位为mm,且像散曲线图中的S曲线代表587.5618nm下的弧矢场曲,T曲线代表587.5618nm下的子午场曲。由图中可知,光学系统100的场曲较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像。图2还包括光学系统100的畸变曲线图(DISTORTION),畸变曲线表示不同视场角对应的畸变大小值,其中,横坐标表示畸变值,单位为%,纵坐标表示像高,单位为mm。由图中可知,由主光束引起的图像变形较小,系统的成像质量优良。
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图4由左至右依次为第二实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
根据上述所提供的各参数信息,可推得以下数据:
R14/f7 | 1.390 | f2/f1+f7/f8 | -5.240 |
f/f2 | -0.296 | (R3+R4)/(R3-R4) | 2.540 |
f/EPD | 1.770 | TTL/(ImgH*FNO) | 0.740 |
f123/f8 | -1.650 | R5/R6 | 1.389 |
CT7/|SAG71| | 1.100 | T56/T45 | 1.429 |
f4/f7 | 5.060 | ImgH/(10*CT2) | 2.480 |
ImgH/(10*CT3) | 2.067 |
另外,由图4中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图6由左至右依次为第三实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
并且,根据上述所提供的各参数信息,可推得以下数据:
R14/f7 | 1.964 | f2/f1+f7/f8 | -5.560 |
f/f2 | -0.241 | (R3+R4)/(R3-R4) | 5.790 |
f/EPD | 1.800 | TTL/(ImgH*FNO) | 0.730 |
f123/f8 | -1.570 | R5/R6 | 0.892 |
CT7/|SAG71| | 0.920 | T56/T45 | 1.053 |
f4/f7 | 5.740 | ImgH/(10*CT2) | 2.556 |
ImgH/(10*CT3) | 2.005 |
另外,由图6中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图8由左至右依次为第四实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
并且,根据上述所提供的各参数信息,可推得以下数据:
R14/f7 | 2.200 | f2/f1+f7/f8 | -6.670 |
f/f2 | -0.186 | (R3+R4)/(R3-R4) | 4.320 |
f/EPD | 1.750 | TTL/(ImgH*FNO) | 0.770 |
f123/f8 | -1.580 | R5/R6 | 1.463 |
CT7/|SAG71| | 1.620 | T56/T45 | 0.859 |
f4/f7 | 5.800 | ImgH/(10*CT2) | 2.214 |
ImgH/(10*CT3) | 2.067 |
另外,由图8中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图10由左至右依次为第五实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
并且,根据上述所提供的各参数信息,可推得以下数据:
另外,由图10中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第六实施例
请参见图11和图12,图11为第六实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8。图12由左至右依次为第六实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的材质均为塑料。
另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
并且,根据上述所提供的各参数信息,可推得以下数据:
R14/f7 | 4.600 | f2/f1+f7/f8 | -4.220 |
f/f2 | -0.407 | (R3+R4)/(R3-R4) | 2.620 |
f/EPD | 1.730 | TTL/(ImgH*FNO) | 0.810 |
f123/f8 | -1.560 | R5/R6 | 1.239 |
CT7/|SAG71| | 1.490 | T56/T45 | 0.856 |
f4/f7 | 5.340 | ImgH/(10*CT2) | 2.067 |
ImgH/(10*CT3) | 2.067 |
另外,由图12中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
请参见图13,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学系统100的像面S19。取像模组200还可设置有红外滤光片L9,红外滤光片L9设置于第八透镜L8的像侧面S16与像面S19之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学系统100,像差校正能力良好,能够具备良好的成像质量,同时也能够满足小型化设计的需求。
请参见图13和图14,在一些实施例中,取像模组200可应用于电子设备300中,电子设备包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。当电子设备300为智能手机时,壳体310可以为电子设备300的中框。在电子设备300中采用上述取像模组200,像差校正能力良好,能够具备良好的成像质量,同时也能够满足小型化设计的需求。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (11)
1.一种光学系统,其特征在于,沿光轴由物侧至像侧依次包括:
具有正屈折力的第一透镜;
具有负屈折力的第二透镜;
具有屈折力的第三透镜,所述第三透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有正屈折力的第四透镜;
具有负屈折力的第五透镜;
具有屈折力的第六透镜,所述第六透镜的物侧面于近光轴处为凸面,于圆周处为凹面;
具有正屈折力的第七透镜,所述第七透镜的像侧面于近光轴处为凹面;
具有负屈折力的第八透镜;
且所述光学系统满足以下条件式:
1≤R14/f7≤6;
其中,R14为所述第七透镜的像侧面于光轴处的曲率半径,f7为所述第七透镜的有效焦距。
2.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
f/EPD≤1.9;
其中,f为所述光学系统的有效焦距,EPD为所述光学系统的入瞳直径。
3.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
-1.65≤f123/f8≤-1.2;
其中,f123为所述第一透镜、所述第二透镜和所述第三透镜的组合焦距,f8为所述第八透镜的有效焦距。
4.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.7≤CT7/|SAG71|≤1.8;
其中,CT7为所述第七透镜于光轴上的厚度,SAG71为所述第七透镜的物侧面于最大有效口径处的矢高。
5.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
1≤(R3+R4)/(R3-R4)≤6;
其中,R3为所述第二透镜的物侧面于光轴处的曲率半径,R4为所述第二透镜的像侧面于光轴处的曲率半径。
6.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.5≤T56/T45≤1.5;
其中,T56为所述第五透镜的像侧面至所述第六透镜的物侧面于光轴上的距离,T45为所述第四透镜的像侧面至所述第五透镜的物侧面于光轴上的距离。
7.根据权利要求1所述的光学系统,其特征在于,
满足以下条件式:
-0.45≤f/f2≤-0.1;
其中,f为所述光学系统的有效焦距,f2为所述第二透镜的有效焦距;
和/或,所述光学系统满足以下条件式:
5≤f4/f7≤20;
其中,f4为所述第四透镜的有效焦距;
和/或,所述光学系统满足以下条件式:
-7≤f2/f1+f7/f8≤-3;
其中,f2为所述第二透镜的有效焦距,f1为所述第一透镜的有效焦距,f8为所述第八透镜的有效焦距。
8.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.65≤TTL/(ImgH*FNO)≤0.85;
其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,ImgH为所述光学系统的最大视场角所对应的像高的一半,FNO为所述光学系统的光圈数;
和/或,所述光学系统满足以下条件式:
0.5≤R5/R6≤1.6;
其中,R5为所述第三透镜的物侧面于光轴处的曲率半径,R6为所述第三透镜的像侧面于光轴处的曲率半径。
9.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
2≤ImgH/(10*CT2)≤2.8;
其中,ImgH为所述光学系统的最大视场角所对应的像高的一半,CT2为所述第二透镜于光轴上的厚度;
和/或,所述光学系统满足以下条件式:
1.9≤ImgH/(10*CT3)≤2.3;
其中,ImgH为所述光学系统的最大视场角所对应的像高的一半,CT3为所述第三透镜于光轴上的厚度。
10.一种取像模组,其特征在于,包括感光元件以及权利要求1-9任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
11.一种电子设备,其特征在于,包括壳体以及权利要求10所述的取像模组,所述取像模组设置于所述壳体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111159407.5A CN113900226B (zh) | 2021-09-30 | 2021-09-30 | 光学系统、取像模组及电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111159407.5A CN113900226B (zh) | 2021-09-30 | 2021-09-30 | 光学系统、取像模组及电子设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113900226A true CN113900226A (zh) | 2022-01-07 |
CN113900226B CN113900226B (zh) | 2023-09-19 |
Family
ID=79189619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111159407.5A Active CN113900226B (zh) | 2021-09-30 | 2021-09-30 | 光学系统、取像模组及电子设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113900226B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114994880A (zh) * | 2022-08-08 | 2022-09-02 | 江西晶超光学有限公司 | 光学系统、镜头模组及电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6463591B1 (ja) * | 2018-07-20 | 2019-02-06 | エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd | 撮像レンズ |
CN111308658A (zh) * | 2020-03-11 | 2020-06-19 | 南昌欧菲精密光学制品有限公司 | 光学系统、摄像模组及电子装置 |
CN211669434U (zh) * | 2020-02-20 | 2020-10-13 | 浙江舜宇光学有限公司 | 光学成像系统 |
CN112083550A (zh) * | 2019-06-12 | 2020-12-15 | 大立光电股份有限公司 | 摄影镜头组、取像装置及电子装置 |
US20210109323A1 (en) * | 2019-10-10 | 2021-04-15 | Zhejiang Sunny Optical Co., Ltd | Optical imaging lens assembly |
JP2021096449A (ja) * | 2019-12-13 | 2021-06-24 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | 撮像光学レンズ |
-
2021
- 2021-09-30 CN CN202111159407.5A patent/CN113900226B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6463591B1 (ja) * | 2018-07-20 | 2019-02-06 | エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd | 撮像レンズ |
CN112083550A (zh) * | 2019-06-12 | 2020-12-15 | 大立光电股份有限公司 | 摄影镜头组、取像装置及电子装置 |
US20210109323A1 (en) * | 2019-10-10 | 2021-04-15 | Zhejiang Sunny Optical Co., Ltd | Optical imaging lens assembly |
JP2021096449A (ja) * | 2019-12-13 | 2021-06-24 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | 撮像光学レンズ |
CN211669434U (zh) * | 2020-02-20 | 2020-10-13 | 浙江舜宇光学有限公司 | 光学成像系统 |
CN111308658A (zh) * | 2020-03-11 | 2020-06-19 | 南昌欧菲精密光学制品有限公司 | 光学系统、摄像模组及电子装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114994880A (zh) * | 2022-08-08 | 2022-09-02 | 江西晶超光学有限公司 | 光学系统、镜头模组及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN113900226B (zh) | 2023-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113138458B (zh) | 光学系统、取像模组及电子设备 | |
CN113805310B (zh) | 光学系统、取像模组及电子设备 | |
CN112987258B (zh) | 光学系统、取像模组及电子设备 | |
CN113552696A (zh) | 光学系统、取像模组及电子设备 | |
CN114114654B (zh) | 光学系统、取像模组及电子设备 | |
CN112612117A (zh) | 光学系统、取像模组及电子设备 | |
CN112987259B (zh) | 光学系统、取像模组及电子设备 | |
CN111736306A (zh) | 光学系统、取像模组及电子设备 | |
CN113741005B (zh) | 光学系统、取像模组及电子设备 | |
CN113156612B (zh) | 光学系统、取像模组及电子设备 | |
CN112799211B (zh) | 光学系统、取像模组及电子设备 | |
CN113376810A (zh) | 光学系统、取像模组及电子设备 | |
CN113189748A (zh) | 光学系统、取像模组及电子设备 | |
CN113900222A (zh) | 光学系统、取像模组及电子设备 | |
CN114994880B (zh) | 光学系统、镜头模组及电子设备 | |
CN113900226B (zh) | 光学系统、取像模组及电子设备 | |
CN114675407B (zh) | 光学系统、镜头模组及电子设备 | |
CN114326052B (zh) | 光学系统、取像模组及电子设备 | |
CN114740596B (zh) | 光学系统、取像模组及电子设备 | |
CN114326019B (zh) | 光学系统、取像模组及电子设备 | |
CN113866943B (zh) | 光学系统、取像模组及电子设备 | |
CN113900225B (zh) | 光学系统、取像模组及电子设备 | |
CN115480365A (zh) | 光学系统、取像模组及电子设备 | |
CN112505900A (zh) | 光学系统、取像模组及电子设备 | |
CN215494317U (zh) | 光学系统、取像模组及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |