CN114167587A - 光学系统、取像模组及电子设备 - Google Patents

光学系统、取像模组及电子设备 Download PDF

Info

Publication number
CN114167587A
CN114167587A CN202111634286.5A CN202111634286A CN114167587A CN 114167587 A CN114167587 A CN 114167587A CN 202111634286 A CN202111634286 A CN 202111634286A CN 114167587 A CN114167587 A CN 114167587A
Authority
CN
China
Prior art keywords
lens
optical system
lens element
image
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111634286.5A
Other languages
English (en)
Other versions
CN114167587B (zh
Inventor
邹金华
李明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Jingchao Optical Co Ltd
Original Assignee
Jiangxi Jingchao Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Jingchao Optical Co Ltd filed Critical Jiangxi Jingchao Optical Co Ltd
Priority to CN202111634286.5A priority Critical patent/CN114167587B/zh
Publication of CN114167587A publication Critical patent/CN114167587A/zh
Application granted granted Critical
Publication of CN114167587B publication Critical patent/CN114167587B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明涉及一种光学系统、取像模组及电子设备。光学系统沿光轴由物侧至像侧依次包括:具有正屈折力的第一透镜,物侧面于近光轴处为凸面;具有屈折力的第二透镜;具有负屈折力的第三透镜;具有正屈折力的第四透镜;具有负屈折力的第五透镜;光学系统满足:0.75≤ET1/CT1≤0.9;ET1为所述第一透镜的边缘厚度,CT1为所述第一透镜的中心厚度。上述光学系统具备小头部特性,有利于提升电子设备的屏占比。

Description

光学系统、取像模组及电子设备
技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
随着智能手机的迅速发展,屏下开孔的应用也越来越广泛。屏下开孔的设计使得智能手机能够实现全面屏设计,提升智能手机的屏占比,从而提升用户的使用体验。其中,业界对智能手机的屏占比要求越来越高,大屏占比能够提升智能手机的产品竞争力。对于具备屏下开孔设计的智能手机而言,摄像镜头的形状会影响智能手机屏幕开孔的大小,从而影响智能手机的屏占比。然而,目前的摄像镜头难以满足大屏占比的需求。
发明内容
基于此,有必要针对目前的摄像镜头难以满足大屏占比的需求的问题,提供一种光学系统、取像模组及电子设备。
一种光学系统,其特征在于,沿光轴由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面;
具有屈折力的第二透镜;
具有负屈折力的第三透镜,所述第三透镜的物侧面于近光轴处为凹面;
具有正屈折力的第四透镜,所述第四透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
具有负屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
且所述光学系统满足以下条件式:
0.75≤ET1/CT1≤0.9;
其中,ET1为所述第一透镜的物侧面最大有效口径处至像侧面最大有效口径处于光轴方向上的距离,即所述第一透镜的边缘厚度,CT1为所述第一透镜于光轴上的厚度,即所述第一透镜的中心厚度。
上述光学系统,第一透镜具有正屈折力,第一透镜的物侧面于近光轴处为凸面,有利于光线的汇聚,从而有利于缩短光学系统的总长,实现小型化设计。第三透镜的物侧面于近光轴处为凹面,有利于减缓光线进入成像面的角度,从而减小光学系统像差,降低光学系统的敏感度。第四透镜为双凸正透镜,有利于抵消第三透镜负透镜产生的球差以及慧差像差。第五透镜的像侧面于近光轴处为凹面,有利于使光学系统投射的光线更好地汇聚至成像面,从而提升成像解析能力,并且还能有效缩短光学系统的总长,实现系统的小型化。
满足上述条件式时,有利于第一透镜的小头部结构的外观设计,从而缩短光学系统头部口径的尺寸,进而有利于减小屏幕开孔的大小,提升电子设备的屏占比;同时,还有利于合理配置第一透镜的形状,使得第一透镜的面型不会过度弯曲,从而降低第一透镜的成型和组装难度,提升成型和组装良率。
在其中一个实施例中,所述光学系统满足以下条件式:
0.1≤f/f45≤1.2;
其中,f为所述光学系统的有效焦距,f45为所述第四透镜和所述第五透镜的组合焦距。满足上述条件式时,能够合理配置光学系统的有效焦距与第四透镜和第五透镜的组合焦距的比值,有利于提升第四透镜与第五透镜的组合对光线的汇聚能力,从而有利于缩短光学系统的总长,实现小型化设计;同时还有利于合理搭配第四透镜提供的正屈折力和第五透镜提供的负屈折力,从而有利于平衡光学系统的球差,进而实现良好的成像品质。
在其中一个实施例中,所述光学系统满足以下条件式:
1≤R3/R4≤2;
其中,R3为所述第二透镜的物侧面于光轴处的曲率半径,R4为所述第二透镜的像侧面于光轴处的曲率半径。满足上述条件式时,能够合理配置第二透镜的物侧面与像侧面于光轴处的曲率半径的比值,有利于避免第二透镜表面曲率过强而产生难以补正的像差,影响镜头成像品质。其中,当第二透镜的物侧面与像侧面于光轴处的曲率半径都为正时,满足上述条件式有利于降低第二透镜的敏感度,使得第二透镜的面型不会过度弯曲,从而有利于提高成型和组装良率。当第二透镜的物侧面与像侧面于光轴处的曲率半径都为负时,满足上述条件式有利于调整光线行进方向,从而有利于增大光学系统的视场角。
在其中一个实施例中,所述光学系统满足以下条件式:
0.2≤(T12+T23+T34+T45)/TT≤0.3;
其中,T12为所述第一透镜的像侧面至所述第二透镜的物侧面于光轴上的距离,T23为所述第二透镜的像侧面至所述第三透镜的物侧面于光轴上的距离,T34为所述第三透镜的像侧面至所述第四透镜的物侧面于光轴上的距离,T45为所述第四透镜的像侧面至所述第五透镜的物侧面于光轴上的距离,TT为所述第一透镜的物侧面至所述第五透镜的像侧面于光轴上的距离。满足上述条件式时,能够避免光学系统中相邻两透镜之间的间距过小,使得各相邻透镜在组装时有足够的空间,避免各相邻透镜在组装时产生碰撞,提升组装良率;同时,在保证光学系统有足够的总长以良好偏折光线,从而提升成像品质的前提下,还有利于最大程度地压缩各相邻透镜的空气间隔,从而缩短光学系统的总长,进而实现小型化设计。超过上述条件式的上限,各相邻透镜之间的间隔过大,导致光学系统的总长过大,不利于小型化设计的实现。低于上述条件式的下限,各相邻透镜之间的间隔过小,不利于光学系统的组装。
在其中一个实施例中,所述光学系统满足以下条件式:
0.9≤SD12/SD21≤1.1;
其中,SD12为所述第一透镜的像侧面最大有效口径的一半,SD21为所述第二透镜的物侧面最大有效口径的一半。满足上述关系式,能够合理配置第一透镜的像侧面与第二透镜的物侧面的最大有效半口径的比值,有利于减小第一透镜与第二透镜之间的段差,从而使得光线能够在第一透镜与第二透镜之间平缓过渡,进而有利于修正离轴视场像差,提升成像品质。
在其中一个实施例中,所述光学系统满足以下条件式:
0.05≤|SAG41|/CT4≤1.0;
其中,SAG41为所述第四透镜的物侧面于最大有效口径处的矢高,即所述第四透镜的物侧面与光轴的交点至第四透镜的物侧面最大有效口径处于光轴方向上的距离,CT4为所述第四透镜于光轴上的厚度,即所述第四透镜的中心厚度。满足上述条件式时,有利于减小成像面上的主光线的入射角度,降低第四透镜对光学成像的敏感度;同时有效控制最大视场的边缘光线在最靠近成像面的透镜的物侧面的入射角;第四透镜物侧面斜率变化较大时,还有利于减小因镀膜不均导致的反射能量,减少杂散光。
在其中一个实施例中,所述光学系统满足以下条件式:
0<|R5/R6|≤5;
R5为所述第三透镜的物侧面于光轴处的曲率半径,R6为所述第三透镜的像侧面于光轴处的曲率半径。满足上述条件式时,能够合理配置第三透镜的物侧面与像侧面曲率半径的比值,从而使得第三透镜具有合适的负屈折力,有利于抵消相邻第四透镜正透镜产生的球差以及慧差像差,实现轴上良好像质。
在其中一个实施例中,所述光学系统满足以下条件式:
1≤TTL/f1≤1.5;
其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,即所述光学系统的光学总长,f1为所述第一透镜的有效焦距。满足上述条件式时,能够合理配置光学系统的光学总长与第一透镜的有效焦距的比值,使得第一透镜提供的正屈折力能够有效汇聚光线,从而缩短光学系统的总长,同时也有利于降低光学系统的敏感度,提升成像质量。低于上述条件式的下限,光学系统的总长过短,导致光学系统的敏感度增大,不利于像差的修正。超过上述条件式的上限,光学系统的总长过长,不利于小型化设计的实现。
在其中一个实施例中,所述光学系统满足以下条件式:
0.6mm≤FFL≤0.95mm;
其中,FFL为所述第五透镜的像侧面至所述光学系统的成像面于光轴方向上的最短距离。满足上述条件式时,在缩短光学系统的总长,实现小型化设计的同时,还有利于增大光学系统的后焦,使得光学系统具有足够的调焦范围,从而有利于提升成像质量。低于上述条件式的下限,光线入射成像面的入射角过大,影响感光元件接收光线的效率,从而降低成像品质;另外也不利于光学系统获得足够的调焦范围。超过上述条件式的上限,光学系统的总长过长,不利于小型化设计的实现。
在其中一个实施例中,所述光学系统满足以下条件式:
10≤|Vd3-Vd4|≤40;
其中,Vd3为所述第三透镜的阿贝数,Vd4为所述第四透镜的阿贝数。满足上述条件式时,能够合理配置第三透镜和第四透镜的材料,使得第三透镜和第四透镜能够有效修正光学系统的色差,提升光学系统的成像清晰度,从而提升光学系统的成像品质。
在其中一个实施例中,所述光学系统满足以下条件式:
0.8≤f4/R7≤1.7;
其中,f4为所述第四透镜的有效焦距,R7为所述第四透镜的物侧面于光轴处的曲率半径。满足上述条件式时,能够合理配置第四透镜的有效焦距和第四透镜的物侧面于光轴处的曲率半径的比值,有利于有效控制光线入射到成像面的入射角,使得光学系统能够更容易与感光元件匹配而获得良好的成像质量;同时也有利于合理配置第四透镜的形状,从而降低第四透镜的敏感度,改善光学系统的场曲像差,实现成像品质的提升;另外,还有利于避免大角度光线在第四透镜内部发生全反射,从而减小鬼像以及杂散光对成像质量的影响。
在其中一个实施例中,所述光学系统满足以下条件式:
1.2≤CT4/CT3≤2.2;
其中,CT4为所述第四透镜于光轴上的厚度,即所述第四透镜的中心厚度,CT3为所述第三透镜于光轴上的厚度,即所述第三透镜的中心厚度。满足上述条件式时,能够合理配置第四透镜与第三透镜的中心厚度的比值,有利于使得第三透镜与第四透镜的厚度均匀分布,同时有利于压缩光学系统像侧端的体积,从而有利于光学系统的小型化设计;另外也可避免第三透镜以及第四透镜中心厚度太薄,导致成型不良,影响制造良率。
一种取像模组,包括感光元件以及上述任一实施例所述的光学系统,所述感光元件设置于所述光学系统的像侧。在所述取像模组中采用上述光学系统,能够实现小型化设计,同时也有利于实现小头部设计,从而有利于增大电子设备的屏占比。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组设置于所述壳体。在所述电子设备中采用上述取像模组,取像模组能够实现小型化设计,有利于缩小电子设备的体积,同时,取像模组还能够实现小头部设计,当电子设备采用屏下开孔设计时,有利于减小电子设备的屏幕开孔尺寸,从而有利于提升电子设备的屏占比。
附图说明
图1为本申请第一实施例中的光学系统的结构示意图;
图2为本申请第一实施例中的光学系统的纵向球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的结构示意图;
图4为本申请第二实施例中的光学系统的纵向球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的结构示意图;
图6为本申请第三实施例中的光学系统的纵向球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的结构示意图;
图8为本申请第四实施例中的光学系统的纵向球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的结构示意图;
图10为本申请第五实施例中的光学系统的纵向球差图、像散图及畸变图;
图11为本申请第六实施例中的光学系统的结构示意图;
图12为本申请第六实施例中的光学系统的纵向球差图、像散图及畸变图;
图13为本申请一实施例中的取像模组的示意图;
图14为本申请一实施例中的电子设备的示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100沿光轴110由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10。第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5同轴设置,光学系统100中各透镜共同的轴线即为光学系统100的光轴110。在一些实施例中,光学系统100还包括位于第五透镜L5像侧的成像面S13,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5调节后能够成像于成像面S13。
其中,第一透镜L1具有正屈折力,第一透镜L1的物侧面S1于近光轴110处为凸面,有利于光线的汇聚,从而有利于缩短光学系统100的总长,实现小型化设计。第二透镜L2具有屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力的,第五透镜L5具有负屈折力。第三透镜L3的物侧面S5于近光轴110处为凹面,有利于减缓光线进入成像面S13的角度,从而减小光学系统100像差,降低光学系统100的敏感度。第四透镜L4为双凸正透镜,有利于抵消第三透镜L3负透镜产生的球差以及慧差像差。第五透镜L5的像侧面S10于近光轴110处为凹面,有利于使光学系统100投射的光线更好地汇聚至成像面S13,从而提升成像解析能力,并且还能有效缩短光学系统100的总长,实现系统的小型化。其中,第一透镜L1的像侧面S2于近光轴处可以为凸面或者凹面,当第一透镜L1的像侧面S2于近光轴110处为凸面时,能够进一步提升第一透镜L1汇聚光线的能力,从而降低光学系统100的敏感度,提升光学系统100的成像质量。当第一透镜L1的像侧面S2于近光轴100处为凹面时,有利于大角度光线的发散,从而避免成像出现暗角。
另外,在一些实施例中,光学系统100设置有光阑STO,光阑STO可设置于第一透镜L1的物侧或设置于任意两片透镜之间,例如光阑STO设置于第一透镜L1的物侧。在一些实施例中,光学系统100还包括设置于第五透镜L5像侧的红外滤光片L6。红外滤光片L6可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的成像面S13而影响正常成像。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,光学系统100的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学系统100中各透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本,配合光学系统100的小尺寸以实现光学系统100的轻薄化设计。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4或第五透镜L5中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,光学系统100满足条件式:0.75≤ET1/CT1≤0.9;其中,ET1为第一透镜L1的物侧面S1最大有效口径处至像侧面S2最大有效口径处于光轴110方向上的距离,CT1为第一透镜L1于光轴110上的厚度。具体地,ET1/CT1可以为:0.774、0.785、0.789、0.793、0.802、0.805、0.814、0.822、0.837或0.854。满足上述条件式时,有利于第一透镜L1的小头部结构的外观设计,从而缩短光学系统100头部口径的尺寸,进而有利于减小屏幕开孔的大小,提升电子设备的屏占比;同时,还有利于合理配置第一透镜L1的形状,使得第一透镜L1的面型不会过度弯曲,从而降低第一透镜L1的成型和组装难度,提升成型和组装良率。
在一些实施例中,光学系统100满足条件式:0.1≤f/f45≤1.2;其中,f为光学系统100的有效焦距,f45为第四透镜L4和第五透镜L5的组合焦距。具体地,f/f45可以为:0.161、0.236、0.389、0.451、0.574、0.695、0.723、0.814、0.925或1.169。满足上述条件式时,能够合理配置光学系统100的有效焦距与第四透镜L4和第五透镜L5的组合焦距的比值,有利于提升第四透镜L4与第五透镜L5的组合对光线的汇聚能力,从而有利于缩短光学系统100的总长,实现小型化设计;同时还有利于合理搭配第四透镜L4提供的正屈折力和第五透镜L5提供的负屈折力,从而有利于平衡光学系统100的球差,进而实现良好的成像品质。
在一些实施例中,光学系统100满足条件式:1≤R3/R4≤2;其中,R3为第二透镜L2的物侧面S3于光轴110处的曲率半径,R4为第二透镜L2的像侧面S4于光轴110处的曲率半径。具体地,R3/R4可以为:1.219、1.263、1.298、1.314、1.355、1.428、1.477、1.539、1.628或1.827。满足上述条件式时,能够合理配置第二透镜L2的物侧面S3与像侧面S4于光轴110处的曲率半径的比值,有利于避免第二透镜L2表面曲率过强而产生难以补正的像差,影响镜头成像品质。其中,当第二透镜L2的物侧面S3与像侧面S4于光轴110处的曲率半径都为正时,满足上述条件式有利于降低第二透镜L2的敏感度,使得第二透镜L2的面型不会过度弯曲,从而有利于提高成型和组装良率。当第二透镜L2的物侧面S3与像侧面S4于光轴110处的曲率半径都为负时,满足上述条件式有利于调整光线行进方向,从而有利于增大光学系统100的视场角。
在一些实施例中,光学系统100满足条件式:0.2≤(T12+T23+T34+T45)/TT≤0.3;其中,T12为第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴110上的距离,T23为第二透镜L2的像侧面S4至第三透镜L3的物侧面S5于光轴110上的距离,T34为第三透镜L3的像侧面S6至第四透镜L4的物侧面S7于光轴110上的距离,T45为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴110上的距离,TT为第一透镜L1的物侧面S1至第五透镜L5的像侧面S10于光轴110上的距离。具体地,(T12+T23+T34+T45)/TT可以为:0.248、0.251、0.254、0.259、0.260、0.263、0.267、0.274、0.285或0.289。满足上述条件式时,能够避免光学系统100中相邻两透镜之间的间距过小,使得各相邻透镜在组装时有足够的空间,避免各相邻透镜在组装时产生碰撞,提升组装良率;同时,在保证光学系统100有足够的总长以良好偏折光线,从而提升成像品质的前提下,还有利于最大程度地压缩各相邻透镜的空气间隔,从而缩短光学系统100的总长,进而实现小型化设计。超过上述条件式的上限,各相邻透镜之间的间隔过大,导致光学系统100的总长过大,不利于小型化设计的实现。低于上述条件式的下限,各相邻透镜之间的间隔过小,不利于光学系统100的组装。
在一些实施例中,光学系统100满足条件式:0.9≤SD12/SD21≤1.1;其中,SD12为第一透镜L1的像侧面S2最大有效口径的一半,SD21为第二透镜L2的物侧面S3最大有效口径的一半。具体地,SD12/SD21可以为:0.990、0.992、0.995、0.998、1.007、1.010、1.012、1.017、1.023或1.027。满足上述关系式,能够合理配置第一透镜L1的像侧面S2与第二透镜L2的物侧面S3的最大有效半口径的比值,有利于减小第一透镜L1与第二透镜L2之间的段差,从而使得光线能够在第一透镜L1与第二透镜L2之间平缓过渡,进而有利于修正离轴视场像差,提升成像品质。
在一些实施例中,光学系统100满足条件式:0.05≤|SAG41|/CT4≤1.0;其中,SAG41为第四透镜L4的物侧面S7于最大有效口径处的矢高,CT4为第四透镜L4于光轴110上的厚度。具体地,|SAG41|/CT4可以为:0.088、0.131、0.155、0.189、0.321、0.377、0.415、0.553、0.597或0.613。满足上述条件式时,有利于减小成像面S13上的主光线的入射角度,降低第四透镜L4对光学成像的敏感度;同时有效控制最大视场的边缘光线在最靠近成像面S13的透镜的物侧面的入射角;第四透镜L4物侧面S7斜率变化较大时,还有利于减小因镀膜不均导致的反射能量,减少杂散光。
在一些实施例中,光学系统100满足条件式:0<|R5/R6|≤5;R5为第三透镜L3的物侧面S5于光轴110处的曲率半径,R6为第三透镜L3的像侧面S6于光轴110处的曲率半径。具体地,|R5/R6|可以为:0.169、0.510、0.553、0.638、0.674、1.036、1.123、1.220、1.335或4.151。满足上述条件式时,能够合理配置第三透镜L3的物侧面S5与像侧面S6曲率半径的比值,从而使得第三透镜L3具有合适的负屈折力,有利于抵消相邻第四透镜L4正透镜产生的球差以及慧差像差,实现轴上良好像质。
在一些实施例中,光学系统100满足条件式:1≤TTL/f1≤1.5;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S13于光轴110上的距离,f1为第一透镜L1的有效焦距。具体地,TTL/f1可以为:1.150、1.173、1.192、1.221、1.258、1.274、1.290、1.304、1.335或1.361。满足上述条件式时,能够合理配置光学系统100的光学总长与第一透镜L1的有效焦距的比值,使得第一透镜L1提供的正屈折力能够有效汇聚光线,从而缩短光学系统100的总长,同时也有利于降低光学系统100的敏感度,提升成像质量。低于上述条件式的下限,光学系统100的总长过短,导致光学系统100的敏感度增大,不利于像差的修正。超过上述条件式的上限,光学系统100的总长过长,不利于小型化设计的实现。
在一些实施例中,光学系统100满足条件式:0.6mm≤FFL≤0.95mm;其中,FFL为第五透镜L5的像侧面S10至光学系统100的成像面S13于光轴110方向上的最短距离。具体地,FFL可以为:0.620、0.673、0.682、0.722、0.753、0.789、0.832、0.857、0.878或0.920,数值单位为mm。满足上述条件式时,在缩短光学系统100的总长,实现小型化设计的同时,还有利于增大光学系统100的后焦,使得光学系统100具有足够的调焦范围,从而有利于提升成像质量。低于上述条件式的下限,光线入射成像面S13的入射角过大,影响感光元件接收光线的效率,从而降低成像品质;另外也不利于光学系统100获得足够的调焦范围。超过上述条件式的上限,光学系统100的总长过长,不利于小型化设计的实现。
在一些实施例中,光学系统100满足条件式:10≤|Vd3-Vd4|≤40;其中,Vd3为第三透镜L3的阿贝数,Vd4为第四透镜L4的阿贝数。具体地,|Vd3-Vd4|可以为:12.52、15.85、19.63、21.54、22.83、24.66、25.91、27.45、30.51或32.59。满足上述条件式时,能够合理配置第三透镜L3和第四透镜L4的材料,使得第三透镜L3和第四透镜L4能够有效修正光学系统100的色差,提升光学系统100的成像清晰度,从而提升光学系统100的成像品质。
在一些实施例中,光学系统100满足条件式:0.8≤f4/R7≤1.7;其中,f4为第四透镜L4的有效焦距,R7为第四透镜L4的物侧面S7于光轴110处的曲率半径。具体地,f4/R7可以为:0.989、0.997、1.028、1.097、1.125、1.183、1.134、1.144、1.502或1.517。满足上述条件式时,能够合理配置第四透镜L4的有效焦距和第四透镜L4的物侧面S7于光轴110处的曲率半径的比值,有利于有效控制光线入射到成像面S13的入射角,使得光学系统100能够更容易与感光元件匹配而获得良好的成像质量;同时也有利于合理配置第四透镜L4的形状,从而降低第四透镜L4的敏感度,改善光学系统100的场曲像差,实现成像品质的提升;另外,还有利于避免大角度光线在第四透镜L4内部发生全反射,从而减小鬼像以及杂散光对成像质量的影响。
在一些实施例中,光学系统100满足条件式:1.2≤CT4/CT3≤2.2;其中,CT4为第四透镜L4于光轴110上的厚度,CT3为第三透镜L3于光轴110上的厚度。具体地,CT4/CT3可以为:1.419、1.458、1.502、1.573、1.628、1.739、1.755、1.802、1.828或1.988。满足上述条件式时,能够合理配置第四透镜L4与第三透镜L3的中心厚度的比值,有利于使得第三透镜L3与第四透镜L4的厚度均匀分布,同时有利于压缩光学系统100像侧端的体积,从而有利于光学系统100的小型化设计;另外也可避免第三透镜L3以及第四透镜L4中心厚度太薄,导致成型不良,影响制造良率。
以上的有效焦距以及阿贝数数值的参考波长均为587.5618nm。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图2由左至右依次为第一实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为587.5618nm,其他实施例相同。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近光轴110处(该表面的中心区域)为凸面时,可理解为该透镜的该表面于光轴110附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于近光轴110处为凸面,且于圆周处也为凸面时,该表面由中心(该表面与光轴110的交点)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴110处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
进一步地,光学系统100满足条件式:ET1/CT1=0.804;其中,ET1为第一透镜L1的物侧面S1最大有效口径处至像侧面S2最大有效口径处于光轴110方向上的距离,CT1为第一透镜L1于光轴110上的厚度。满足上述条件式时,有利于第一透镜L1的小头部结构的外观设计,从而缩短光学系统100头部口径的尺寸,进而有利于减小屏幕开孔的大小,提升电子设备的屏占比;同时,还有利于合理配置第一透镜L1的形状,使得第一透镜L1的面型不会过度弯曲,从而降低第一透镜L1的成型和组装难度,提升成型和组装良率。
光学系统100满足条件式:f/f45=0.161;其中,f为光学系统100的有效焦距,f45为第四透镜L4和第五透镜L5的组合焦距。满足上述条件式时,能够合理配置光学系统100的有效焦距与第四透镜L4和第五透镜L5的组合焦距的比值,有利于提升第四透镜L4与第五透镜L5的组合对光线的汇聚能力,从而有利于缩短光学系统100的总长,实现小型化设计;同时还有利于合理搭配第四透镜L4提供的正屈折力和第五透镜L5提供的负屈折力,从而有利于平衡光学系统100的球差,进而实现良好的成像品质。
光学系统100满足条件式:R3/R4=1.289;其中,R3为第二透镜L2的物侧面S3于光轴110处的曲率半径,R4为第二透镜L2的像侧面S4于光轴110处的曲率半径。满足上述条件式时,能够合理配置第二透镜L2的物侧面S3与像侧面S4于光轴110处的曲率半径的比值,有利于避免第二透镜L2表面曲率过强而产生难以补正的像差,影响镜头成像品质。在本实施例中,第二透镜L2的物侧面S3与像侧面S4于光轴110处的曲率半径都为正,满足上述条件式有利于降低第二透镜L2的敏感度,使得第二透镜L2的面型不会过度弯曲,从而有利于提高成型和组装良率。
光学系统100满足条件式:(T12+T23+T34+T45)/TT=0.265;其中,T12为第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴110上的距离,T23为第二透镜L2的像侧面S4至第三透镜L3的物侧面S5于光轴110上的距离,T34为第三透镜L3的像侧面S6至第四透镜L4的物侧面S7于光轴110上的距离,T45为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴110上的距离,TT为第一透镜L1的物侧面S1至第五透镜L5的像侧面S10于光轴110上的距离。满足上述条件式时,能够避免光学系统100中相邻两透镜之间的间距过小,使得各相邻透镜在组装时有足够的空间,避免各相邻透镜在组装时产生碰撞,提升组装良率;同时,在保证光学系统100有足够的总长以良好偏折光线,从而提升成像品质的前提下,还有利于最大程度地压缩各相邻透镜的空气间隔,从而缩短光学系统100的总长,进而实现小型化设计。
光学系统100满足条件式:SD12/SD21=1.007;其中,SD12为第一透镜L1的像侧面S2最大有效口径的一半,SD21为第二透镜L2的物侧面S3最大有效口径的一半。满足上述关系式,能够合理配置第一透镜L1的像侧面S2与第二透镜L2的物侧面S3的最大有效半口径的比值,有利于减小第一透镜L1与第二透镜L2之间的段差,从而使得光线能够在第一透镜L1与第二透镜L2之间平缓过渡,进而有利于修正离轴视场像差,提升成像品质。
光学系统100满足条件式:|SAG41|/CT4=0.613;其中,SAG41为第四透镜L4的物侧面S7于最大有效口径处的矢高,CT4为第四透镜L4于光轴110上的厚度。满足上述条件式时,有利于减小成像面S13上的主光线的入射角度,降低第四透镜L4对光学成像的敏感度;同时有效控制最大视场的边缘光线在最靠近成像面S13的透镜的物侧面的入射角;第四透镜L4物侧面S7斜率变化较大时,还有利于减小因镀膜不均导致的反射能量,减少杂散光。
光学系统100满足条件式:|R5/R6|=0.667;R5为第三透镜L3的物侧面S5于光轴110处的曲率半径,R6为第三透镜L3的像侧面S6于光轴110处的曲率半径。满足上述条件式时,能够合理配置第三透镜L3的物侧面S5与像侧面S6曲率半径的比值,从而使得第三透镜L3具有合适的负屈折力,有利于抵消相邻第四透镜L4正透镜产生的球差以及慧差像差,实现轴上良好像质。
光学系统100满足条件式:TTL/f1=1.245;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S13于光轴110上的距离,f1为第一透镜L1的有效焦距。满足上述条件式时,能够合理配置光学系统100的光学总长与第一透镜L1的有效焦距的比值,使得第一透镜L1提供的正屈折力能够有效汇聚光线,从而缩短光学系统100的总长,同时也有利于降低光学系统100的敏感度,提升成像质量。
光学系统100满足条件式:FFL=0.920mm;其中,FFL为第五透镜L5的像侧面S10至光学系统100的成像面S15于光轴110方向上的最短距离。满足上述条件式时,在缩短光学系统100的总长,实现小型化设计的同时,还有利于增大光学系统100的后焦,使得光学系统100具有足够的调焦范围,从而有利于提升成像质量。
光学系统100满足条件式:|Vd3-Vd4|=18.71;其中,Vd3为第三透镜L3的阿贝数,Vd4为第四透镜L4的阿贝数。满足上述条件式时,能够合理配置第三透镜L3和第四透镜L4的材料,使得第三透镜L3和第四透镜L4能够有效修正光学系统100的色差,提升光学系统100的成像清晰度,从而提升光学系统100的成像品质。
光学系统100满足条件式:f4/R7=1.058;其中,f4为第四透镜L4的有效焦距,R7为第四透镜L4的物侧面S7于光轴110处的曲率半径。满足上述条件式时,能够合理配置第四透镜L4的有效焦距和第四透镜L4的物侧面S7于光轴110处的曲率半径的比值,有利于有效控制光线入射到成像面S13的入射角,使得光学系统100能够更容易与感光元件匹配而获得良好的成像质量;同时也有利于合理配置第四透镜L4的形状,从而降低第四透镜L4的敏感度,改善光学系统100的场曲像差,实现成像品质的提升;另外,还有利于避免大角度光线在第四透镜L4内部发生全反射,从而减小鬼像以及杂散光对成像质量的影响。
光学系统100满足条件式:CT4/CT3=1.749;其中,CT4为第四透镜L4于光轴110上的厚度,CT3为第三透镜L3于光轴110上的厚度。满足上述条件式时,能够合理配置第四透镜L4与第三透镜L3的中心厚度的比值,有利于使得第三透镜L3与第四透镜L4的厚度均匀分布,同时有利于压缩光学系统100像侧端的体积,从而有利于光学系统100的小型化设计;另外也可避免第三透镜L3以及第四透镜L4中心厚度太薄,导致成型不良,影响制造良率。
另外,光学系统100的各项参数由表1给出。其中,由物面(图未示出)至成像面S13的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴110处的曲率半径。面序号S1和面序号S2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴110上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一表面于光轴110上的距离。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片L6,但此时第五透镜L5的像侧面S10至成像面S13的距离保持不变。
在第一实施例中,光学系统100的有效焦距f=3.26mm,光学总长TTL=3.970mm,最大视场角的一半HFOV=41.6deg,光圈数FNO=2.55。
需要说明的是,在一些实施例中,光学系统100可以匹配具有矩形感光面的感光元件,光学系统100的成像面S13与感光元件的感光面重合。此时,光学系统100成像面S13上有效像素区域具有水平方向以及对角线方向,则最大视场角FOV可以理解为光学系统100对角线方向的最大视场角。
且各透镜的焦距、折射率和阿贝数的参考波长均为587.5618nm,其他实施例也相同。
表1
Figure BDA0003441270020000101
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从S1-S10分别表示像侧面或物侧面S1-S10。而从上到下的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure BDA0003441270020000102
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴110的距离,c为非球面顶点的曲率,K为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
Figure BDA0003441270020000103
Figure BDA0003441270020000111
另外,图2包括光学系统100的纵向球差曲线图(Longitudinal SphericalAberration),纵向球差曲线表示不同波长的光线经由镜头后的汇聚焦点偏离,其中,纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示焦点偏移,即成像面S13到光线与光轴110交点的距离(单位为mm)。由纵向球差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学系统100的像散曲线图(ASTIGMATIC FIELD CURVES),其中,横坐标表示焦点偏移,纵坐标表示像高,单位为mm,且像散曲线图中的S曲线代表587.5618nm下的弧矢场曲,T曲线代表587.5618nm下的子午场曲。由图中可知,光学系统100的场曲较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像。图2还包括光学系统100的畸变曲线图(DISTORTION),畸变曲线表示不同视场角对应的畸变大小值,其中,横坐标表示畸变值,单位为%,纵坐标表示像高,单位为mm。由图中可知,由主光束引起的图像变形较小,系统的成像质量优良。
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图4由左至右依次为第二实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure BDA0003441270020000121
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
Figure BDA0003441270020000122
Figure BDA0003441270020000131
根据上述所提供的各参数信息,可推得以下数据:
ET1/CT1 0.789 FFL(mm) 0.920
f/f45 0.283 |Vd3-Vd4| 12.520
R3/R4 1.319 f4/R7 1.126
(T12+T23+T34+T45)/TT 0.248 CT4/CT3 1.419
TTL/f1 1.361 SD12/SD21 0.990
|SAG41|/CT4 0.411 |R5/R6| 0.677
另外,由图4中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图6由左至右依次为第三实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure BDA0003441270020000132
Figure BDA0003441270020000141
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
Figure BDA0003441270020000142
并且,根据上述所提供的各参数信息,可推得以下数据:
Figure BDA0003441270020000143
Figure BDA0003441270020000151
另外,由图6中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图8由左至右依次为第四实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure BDA0003441270020000152
Figure BDA0003441270020000161
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
Figure BDA0003441270020000162
并且,根据上述所提供的各参数信息,可推得以下数据:
ET1/CT1 0.774 FFL(mm) 0.820
f/f45 0.621 |Vd3-Vd4| 32.590
R3/R4 1.827 f4/R7 0.989
(T12+T23+T34+T45)/TT 0.255 CT4/CT3 1.777
TTL/f1 1.355 SD12/SD21 1.002
|SAG41|/CT4 0.204 |R5/R6| 4.151
另外,由图8中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图10由左至右依次为第五实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
Figure BDA0003441270020000171
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
Figure BDA0003441270020000172
Figure BDA0003441270020000181
并且,根据上述所提供的各参数信息,可推得以下数据:
ET1/CT1 0.854 FFL(mm) 0.620
f/f45 0.875 |Vd3-Vd4| 27.430
R3/R4 1.219 f4/R7 1.517
(T12+T23+T34+T45)/TT 0.289 CT4/CT3 1.988
TTL/f1 1.157 SD12/SD21 1.019
|SAG41|/CT4 0.088 |R5/R6| 1.142
另外,由图10中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第六实施例
请参见图11和图12,图11为第六实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图12由左至右依次为第六实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
Figure BDA0003441270020000191
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
Figure BDA0003441270020000192
Figure BDA0003441270020000201
并且,根据上述所提供的各参数信息,可推得以下数据:
ET1/CT1 0.853 FFL(mm) 0.667
f/f45 1.169 |Vd3-Vd4| 27.790
R3/R4 1.376 f4/R7 1.389
(T12+T23+T34+T45)/TT 0.276 CT4/CT3 1.751
TTL/f1 1.150 SD12/SD21 1.027
|SAG41|/CT4 0.125 |R5/R6| 1.252
另外,由图12中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
请参见图13,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学系统100的成像面S13。取像模组200还可设置有红外滤光片L6,红外滤光片L6设置于第五透镜L5的像侧面S10与成像面S13之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学系统100,能够实现小型化设计,同时也有利于实现小头部设计,从而有利于增大电子设备的屏占比。
请参见图13和图14,在一些实施例中,取像模组200可应用于电子设备300中,电子设备300包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。当电子设备300为智能手机时,壳体310可以为电子设备300的中框。在电子设备300中采用上述取像模组200,取像模组200能够实现小型化设计,有利于缩小电子设备300的体积,同时,取像模组200还能够实现小头部设计,当电子设备300采用屏下开孔设计时,有利于减小电子设备300的屏幕开孔尺寸,从而有利于提升电子设备300的屏占比。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

1.一种光学系统,所述光学系统为六片式系统,其特征在于,沿光轴由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面;
具有屈折力的第二透镜;
具有负屈折力的第三透镜,所述第三透镜的物侧面于近光轴处为凹面;
具有正屈折力的第四透镜,所述第四透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
具有负屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
且所述光学系统满足以下条件式:
0.75≤ET1/CT1≤0.9;
其中,ET1为所述第一透镜的物侧面最大有效口径处至像侧面最大有效口径处于光轴方向上的距离,CT1为所述第一透镜于光轴上的厚度。
2.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.1≤f/f45≤1.2;
其中,f为所述光学系统的有效焦距,f45为所述第四透镜和所述第五透镜的组合焦距。
3.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
1≤R3/R4≤2;
其中,R3为所述第二透镜的物侧面于光轴处的曲率半径,R4为所述第二透镜的像侧面于光轴处的曲率半径。
4.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.2≤(T12+T23+T34+T45)/TT≤0.3;
其中,T12为所述第一透镜的像侧面至所述第二透镜的物侧面于光轴上的距离,T23为所述第二透镜的像侧面至所述第三透镜的物侧面于光轴上的距离,T34为所述第三透镜的像侧面至所述第四透镜的物侧面于光轴上的距离,T45为所述第四透镜的像侧面至所第五透镜的物侧面于光轴上的距离,TT为所述第一透镜的物侧面至所述第五透镜的像侧面于光轴上的距离。
5.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.9≤SD12/SD21≤1.1;
其中,SD12为所述第一透镜的像侧面最大有效口径的一半,SD21为所述第二透镜的物侧面最大有效口径的一半。
6.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.05≤|SAG41|/CT4≤1.0;
其中,SAG41为所述第四透镜的物侧面于最大有效口径处的矢高,CT4为所述第四透镜于光轴上的厚度。
7.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0<|R5/R6|≤5;
R5为所述第三透镜的物侧面于光轴处的曲率半径,R6为所述第三透镜的像侧面于光轴处的曲率半径。
8.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.8≤f4/R7≤1.7;
其中,f4为所述第四透镜的有效焦距,R7为所述第四透镜的物侧面于光轴处的曲率半径。
9.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
1.2≤CT4/CT3≤2.2;
其中,CT4为所述第四透镜于光轴上的厚度,CT3为所述第三透镜于光轴上的厚度。
10.一种取像模组,其特征在于,包括感光元件以及权利要求1-9任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
11.一种电子设备,其特征在于,包括壳体以及权利要求10所述的取像模组,所述取像模组设置于所述壳体。
CN202111634286.5A 2021-12-29 2021-12-29 光学系统、取像模组及电子设备 Active CN114167587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111634286.5A CN114167587B (zh) 2021-12-29 2021-12-29 光学系统、取像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111634286.5A CN114167587B (zh) 2021-12-29 2021-12-29 光学系统、取像模组及电子设备

Publications (2)

Publication Number Publication Date
CN114167587A true CN114167587A (zh) 2022-03-11
CN114167587B CN114167587B (zh) 2023-11-24

Family

ID=80488533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111634286.5A Active CN114167587B (zh) 2021-12-29 2021-12-29 光学系统、取像模组及电子设备

Country Status (1)

Country Link
CN (1) CN114167587B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114895436A (zh) * 2022-05-24 2022-08-12 江西晶超光学有限公司 成像透镜组、摄像模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2629131A1 (en) * 2012-02-16 2013-08-21 LG Innotek Co., Ltd. Imaging lens
CN103592743A (zh) * 2013-10-30 2014-02-19 浙江舜宇光学有限公司 微型摄像镜头
KR20140076420A (ko) * 2012-12-12 2014-06-20 엘지이노텍 주식회사 촬상 렌즈
CN107065132A (zh) * 2017-03-03 2017-08-18 瑞声科技(新加坡)有限公司 摄像光学镜头
JP6501957B1 (ja) * 2017-11-17 2019-04-17 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
CN110488467A (zh) * 2019-08-27 2019-11-22 浙江舜宇光学有限公司 光学成像镜头
CN215181166U (zh) * 2021-06-04 2021-12-14 浙江舜宇光学有限公司 一种光学成像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2629131A1 (en) * 2012-02-16 2013-08-21 LG Innotek Co., Ltd. Imaging lens
KR20140076420A (ko) * 2012-12-12 2014-06-20 엘지이노텍 주식회사 촬상 렌즈
CN103592743A (zh) * 2013-10-30 2014-02-19 浙江舜宇光学有限公司 微型摄像镜头
CN107065132A (zh) * 2017-03-03 2017-08-18 瑞声科技(新加坡)有限公司 摄像光学镜头
JP6501957B1 (ja) * 2017-11-17 2019-04-17 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
CN110488467A (zh) * 2019-08-27 2019-11-22 浙江舜宇光学有限公司 光学成像镜头
CN215181166U (zh) * 2021-06-04 2021-12-14 浙江舜宇光学有限公司 一种光学成像镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114895436A (zh) * 2022-05-24 2022-08-12 江西晶超光学有限公司 成像透镜组、摄像模组及电子设备
CN114895436B (zh) * 2022-05-24 2023-09-05 江西晶超光学有限公司 成像透镜组、摄像模组及电子设备

Also Published As

Publication number Publication date
CN114167587B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
CN113138458B (zh) 光学系统、取像模组及电子设备
CN113805310A (zh) 光学系统、取像模组及电子设备
CN113552696A (zh) 光学系统、取像模组及电子设备
CN114114654A (zh) 光学系统、取像模组及电子设备
CN113900235A (zh) 光学系统、取像模组、电子设备及载具
CN113741005B (zh) 光学系统、取像模组及电子设备
CN113156612B (zh) 光学系统、取像模组及电子设备
CN112987256B (zh) 光学系统、摄像模组及电子设备
CN113900222A (zh) 光学系统、取像模组及电子设备
CN113189748A (zh) 光学系统、取像模组及电子设备
CN112987259A (zh) 光学系统、取像模组及电子设备
CN114167587B (zh) 光学系统、取像模组及电子设备
CN218272885U (zh) 光学系统、摄像模组及电子设备
CN114675407B (zh) 光学系统、镜头模组及电子设备
CN114326052B (zh) 光学系统、取像模组及电子设备
CN114326019B (zh) 光学系统、取像模组及电子设备
CN113866943B (zh) 光学系统、取像模组及电子设备
CN113219628B (zh) 光学系统、取像模组及电子设备
CN112925086B (zh) 光学系统、取像模组及电子设备
CN115586621A (zh) 光学镜头、摄像模组及电子设备
CN113741008A (zh) 光学系统、取像模组及电子设备
CN114740596A (zh) 光学系统、取像模组及电子设备
CN114019659A (zh) 光学系统、取像模组及电子设备
CN113376810A (zh) 光学系统、取像模组及电子设备
CN113900226A (zh) 光学系统、取像模组及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant