CN113845360A - 一种包覆式高频磁介材料及其制备方法 - Google Patents
一种包覆式高频磁介材料及其制备方法 Download PDFInfo
- Publication number
- CN113845360A CN113845360A CN202111196848.2A CN202111196848A CN113845360A CN 113845360 A CN113845360 A CN 113845360A CN 202111196848 A CN202111196848 A CN 202111196848A CN 113845360 A CN113845360 A CN 113845360A
- Authority
- CN
- China
- Prior art keywords
- magnetic
- dielectric material
- frequency
- scmno
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2608—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
- C04B35/2633—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62826—Iron group metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/0302—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
- H01F1/0311—Compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3268—Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
- C04B2235/3274—Ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Iron (AREA)
Abstract
一种包覆式高频磁介材料,属于电子材料领域。所述磁介材料为Ba3Co2Fe24O41‑xScMnO3六角晶型磁介复合材料;其中,x=0.02~0.10。本发明提供的一种包覆式高频磁介材料,为核壳式包覆结构,内部为溶胶凝胶法制备的ScMnO3高频纳米介电材料,外部为水热法制备的高频Ba3Co2Fe24O41磁性材料,通过水热法和烧结工艺制备出包覆结构,得到了包覆结构良好、均匀性好、性能优良的磁介复合材料。本发明磁介复合材料为包覆结构,有效降低了不同材料的晶界效应对磁介损耗的影响,保证了在高频下良好的磁特性和介电特性,可用作微带天线的基板材料。
Description
技术领域
本发明属于电子材料领域,具体涉及一种包覆式高频磁介材料及其制备方法。
背景技术
随着5G无线通信领域的高速发展,用于无线通信的设备正向更小更轻更薄的方向发展,这使得无线通信设备的小型化成为一个重要的研究问题。其中天线的尺寸在无线通信设备中占有很大的比例,研究天线的基板材料,仿真设计小型化天线成为国际热点问题。用磁介材料作为天线基板,正是基于材料的电磁参数对天线尺寸的影响而产生的。磁介复合材料是一类磁电介质材料,同时具有较大的磁导率和介电常数,可以满足小型化天线的应用需求。同时,随着5G天线通信的发展,高频特性也是需求的迫切方向之一,因此,本发明针对以上需求,进行高频磁介材料的设计和制备。
因为天线的性能,比如辐射效率、带宽和增益,会受到天线尺寸的影响,导致实现天线的小型化十分困难。目前,为了实现天线的小型化,通常采用以下方法:一是通过修正优化天线的几何形状来实现天线小型化,比如弯曲折叠辐射单元、在辐射单元上开缝隙、在辐射单元馈电口附近引出一条接地线等等;另一种是使用具有高折射率的材料作为天线的基板来实现天线小型化,其中μr,εr分别为基板材料的相对磁导率和相对介电常数,比较流行的是选择高相对介电常数的材料实现高折射率。在高折射率材料中,磁介材料因为同时具有良好的磁性能和介电性能而引起微波研究人员的关注,用磁介材料作为天线基板材料的技术,是基于材料的电磁参数对天线尺寸的影响而产生的。其更大的相对介电常数和磁导率不仅可以有效减小天线尺寸,还可以对天线性能产生更小的影响,进而可以被应用于解决天线小型化问题。因此,设计高频下的高介电常数的磁介材料,可以很好的提高材料的高折射率,进而有效减小天线辐射的能量反射,提高天线的辐射效率。因此,研究新型天线基板,尤其是高频、高介电的磁介基板,是制备小型化、高性能的天线的重要途径之一。
在天线基板材料中,最常用的是低损耗的介电陶瓷材料,低损耗高频磁介材料的研究较少。李强等2017年申请的中国发明专利《一种镁铁氧体基磁介材料及其制备方法》(CN106587976B),采用传统的固相烧结法制备了Cd掺杂的Mg铁氧体材料,实现了等磁介特性,但磁介的应用频率只有0.1MHz~10MHz。郭莉等2019年申请的中国发明专利《一种镁铁氧体基低损耗磁介材料及其制备方法》(申请号:CN201910362184.9)中,采用Pr掺杂的Mg铁氧体材料,虽然实现了低损耗的特性,但是应用频率较低,仅在几百MHz的应用频段。荆玉兰等2013年申请的中国发明专利《一种铁氧体基复合磁介天线基板材料及其制备方法》(申请号:CN201310275973.1),在Ba~Sr的Co2Z铁氧体的基础上,采用了缺铁配方,通过添加聚酰亚胺有机物调整了磁介特性,应用频率较高(300MHz以上),磁导率在2.5~4.5,但是介电常数只有7~9之间,限制了器件高性能化使用。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种包覆式高频磁介材料及其制备方法。本发明包覆式高频磁介材料为核壳式包覆结构,内部为溶胶凝胶法制备的ScMnO3高频纳米介电材料,外部为水热法制备的高频Ba3Co2Fe24O41磁性材料,通过水热法和烧结工艺制备出包覆结构材料。本发明包覆式高频磁介材料能够在10MHz~2.6GHz范围内实现高介电常数(ε=15~30)和高频磁导率(μ=2~5),该高频磁介材料应用于天线基板中,可以很好的实现天线的小型化和高频化,且有利于天线的传输效率,实现天线的高性能化,为高频和集成化的小尺寸天线通信设备的应用提供了新的选择。
为实现上述目的,本发明采用的技术方案如下:
一种包覆式高频磁介材料,其特征在于,所述磁介材料为Ba3Co2Fe24O41-xScMnO3六角晶型磁介复合材料;其中,x=0.02~0.10。
进一步的,所述包覆式高频磁介材料为核壳结构,包括ScMnO3纳米介电材料,和包覆于ScMnO3纳米介电材料表面的Ba3Co2Fe24O41磁性材料;其中,ScMnO3纳米介电材料和Ba3Co2Fe24O41磁性材料的摩尔比为(0.02~0.10):1。
进一步的,所述包覆式高频磁介材料是首先采用溶胶凝胶法制备ScMnO3纳米介电材料,然后采用水热法制备Ba3Co2Fe24O41磁性材料,并在水热反应时加入ScMnO3纳米介电材料,一步水热法实现了Ba3Co2Fe24O41磁性材料的制备以及Ba3Co2Fe24O41磁性材料包覆ScMnO3介电材料的磁介材料的制备。
一种包覆式高频磁介材料的制备方法,其特征在于,包括以下步骤:
步骤1、以Sc(NO3)3、Mn(NO3)2为原料,按照ScMnO3的化学计量比,称取原料;
步骤2、将步骤1称取的原料加入去离子水中,搅拌溶解,然后加入柠檬酸,在60~90℃下搅拌4~8h,再加入氨水调节pH值至7~8,得到混合液A;其中,所述柠檬酸与ScMnO3的摩尔比为(3~8):1;
步骤3、将步骤2得到的混合液A在60~90℃下持续搅拌,直至形成湿凝胶状态,然后转移至鼓风干燥箱内,在100~120℃温度下烘干,得到干凝胶;
步骤4、将步骤3得到的干凝胶置于烧结炉内,在空气气氛下1100~1250℃下烧结1~4h,得到ScMnO3纳米介电材料;
步骤5、以CoCl2、BaCl2、FeCl3作为原料,按照Ba3Co2Fe24O41的化学计量比称取原料,加入去离子水中,搅拌溶解后,得到混合液B;然后按照摩尔比ScMnO3:Ba3Co2Fe24O41=(0.02~0.10):1的比例向混合液B中加入步骤4制备得到的ScMnO3纳米介电材料,再滴加2mol/L的NaOH溶液,调节pH值为12~13,得到混合液C;
步骤6、将步骤5得到的混合液C转移至聚四氟乙烯反应釜中,在180~200℃下水热反应1~4h;反应完成后,自然冷却至室温,得到的产物经去离子水洗涤2~4次、无水乙醇洗涤1~2次,以去除残余的Cl~离子以及多余杂质,在40~60℃下干燥;干燥完成后,转移至烧结炉内,在900~1100℃下烧结2~6h,烧结完成后,随炉自然冷却至室温,得到所述包覆式高频磁介材料。
本发明还提供了上述包覆式高频磁介材料作为小型化天线基板的应用。
与现有技术相比,本发明的有益效果为:
1、本发明提供的一种包覆式高频磁介材料,为核壳式包覆结构,内部为溶胶凝胶法制备的ScMnO3高频纳米介电材料,外部为水热法制备的高频Ba3Co2Fe24O41磁性材料,通过水热法和烧结工艺制备出包覆结构,得到了包覆结构良好、均匀性好、性能优良的磁介复合材料。本发明磁介复合材料为包覆结构,有效降低了不同材料的晶界效应对磁介损耗的影响,保证了在高频下良好的磁特性和介电特性,可用作微带天线的基板材料。
2、本发明包覆式高频磁介材料在10MHz~2.6GHz范围内实现高介电常数(ε=15~30)和高频磁导率(μ=2~5)。
3、本发明磁介材料作为天线基板材料时,可以很好的实现天线的小型化和高频化,且有利于天线的传输效率,实现天线的高性能化,为高频和集成化的小尺寸天线通信设备的应用提供了新的材料。
附图说明
图1为本发明包覆式高频磁介材料的制备方法流程图。
图2为本发明包覆式高频磁介材料的包覆结构示意图。
图3为本发明实施例2采用溶胶凝胶法制备的ScMnO3材料(a)与最终得到的包覆式磁介材料(b)的SEM图。
图4为本发明实施例1得到的包覆式磁介材料的磁导率(a)和介电常数(b)测试图。
图5为本发明实施例2得到的包覆式磁介材料的磁导率(a)和介电常数(b)测试图。
图6为本发明实施例3得到的包覆式磁介材料的磁导率(a)和介电常数(b)测试图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
一种包覆式高频磁介材料的制备方法,具体包括以下步骤:
步骤1、按照ScMnO3的化学计量比,称取原料Sc(NO3)3 20.7g、Mn(NO3)214.9g;
步骤2、将步骤1称取的原料加入去离子水中,搅拌溶解,然后加入57.6g柠檬酸,在80℃下搅拌6h,再加入氨水调节pH值至8,得到混合液A;
步骤3、将步骤2得到的混合液A在80℃下持续搅拌,直至形成湿凝胶状态,然后转移至鼓风干燥箱内,在120℃温度下烘干,得到干凝胶;
步骤4、将步骤3得到的干凝胶置于烧结炉内,在空气气氛下1200℃下烧结2h,得到ScMnO3纳米介电材料;
步骤5、按照Ba3Co2Fe24O41的化学计量比,称取2.58gCoCl2、6.24gBaCl2、38.88gFeCl3加入去离子水中,搅拌溶解后,得到混合液B;然后按照摩尔比ScMnO3:Ba3Co2Fe24O41=0.02的比例向混合液B中加入0.51g步骤4制备得到的ScMnO3纳米介电材料,再滴加2mol/L的NaOH溶液,调节pH值为12,得到混合液C;
步骤6、将步骤5得到的混合液C转移至聚四氟乙烯反应釜中,在180℃下水热反应3h;反应完成后,自然冷却至室温,得到的产物经去离子水洗涤4次、无水乙醇洗涤2次,以去除残余的Cl~离子以及多余杂质,在60℃下真空干燥;干燥完成后,转移至烧结炉内,在1000℃下烧结4h,烧结完成后,随炉自然冷却至室温,得到所述包覆式高频磁介材料。
实施例2
本实施例与实施例1相比,区别在于:步骤5的过程为:按照Ba3Co2Fe24O41的化学计量比,称取2.58gCoCl2、6.24gBaCl2、38.88gFeCl3加入去离子水中,搅拌溶解后,得到混合液B;然后按照摩尔比ScMnO3:Ba3Co2Fe24O41=0.04的比例向混合液B中加入1.02g步骤4制备得到的ScMnO3纳米介电材料,再滴加2mol/L的NaOH溶液,调节pH值为12,得到混合液C。其余步骤与实施例1相同。
实施例3
本实施例与实施例1相比,区别在于:步骤5的过程为:按照Ba3Co2Fe24O41的化学计量比,称取2.58gCoCl2、6.24gBaCl2、38.88gFeCl3加入去离子水中,搅拌溶解后,得到混合液B;然后按照摩尔比ScMnO3:Ba3Co2Fe24O41=0.06的比例向混合液B中加入1.53g步骤4制备得到的ScMnO3纳米介电材料,再滴加2mol/L的NaOH溶液,调节pH值为12,得到混合液C。其余步骤与实施例1相同。
图3为本发明实施例2采用溶胶凝胶法制备的ScMnO3材料(a)与最终得到的包覆式磁介材料(b)的SEM图。由图3可知,溶胶凝胶法制备的ScMnO3材料为纳米粉颗粒,最终得到的包覆式磁介材料为包覆结构的材料,晶粒尺寸在500nm以上,未发现有ScMnO3纳米颗粒,表明Ba3Co2Fe24O41制备过程中很好的包覆了ScMnO3材料。
实施例1、实施例2和实施例3得到的包覆式磁介材料的测试结果如图4、图5和图6所示,根据图4、图5和图6可知,实施例制得的磁介材料在10MHz-2.6GHz频率下,具有良好的磁导率和介电常数特性,可以作为小型化高性能的天线基板。
Claims (5)
1.一种包覆式高频磁介材料,其特征在于,所述磁介材料为Ba3Co2Fe24O41-xScMnO3六角晶型磁介复合材料;其中,x=0.02~0.10。
2.根据权利要求1所述的包覆式高频磁介材料,其特征在于,所述包覆式高频磁介材料是首先采用溶胶凝胶法制备ScMnO3纳米介电材料,然后采用水热法制备Ba3Co2Fe24O41磁性材料,并在水热反应时加入ScMnO3纳米介电材料,在制备Ba3Co2Fe24O41磁性材料的同时实现了Ba3Co2Fe24O41磁性材料对ScMnO3介电材料的包覆,得到了所述包覆式高频磁介材料。
3.一种包覆式高频磁介材料的制备方法,其特征在于,包括以下步骤:
步骤1、以可溶性钪盐、可溶性锰盐为原料,按照ScMnO3的化学计量比,称取原料;
步骤2、将步骤1称取的原料溶解于去离子水中,然后加入柠檬酸,在60~90℃下搅拌4~8h,再加入碱调节pH值至7~8,得到混合液A;其中,所述柠檬酸与ScMnO3的摩尔比为(3~8):1;
步骤3、将步骤2得到的混合液A在60~90℃下持续搅拌,直至形成湿凝胶,然后干燥,得到干凝胶;
步骤4、将步骤3得到的干凝胶置于烧结炉内,在1100~1250℃下烧结1~4h,得到ScMnO3纳米介电材料;
步骤5、以可溶性钴盐、可溶性钡盐、可溶性铁盐作为原料,按照Ba3Co2Fe24O41的化学计量比称取原料,加入去离子水中,搅拌溶解,得到混合液B;然后按照摩尔比ScMnO3:Ba3Co2Fe24O41=0.02~0.10的比例向混合液B中加入步骤4制备得到的ScMnO3纳米介电材料,调节pH值至12~13,得到混合液C;
步骤6、将步骤5得到的混合液C转移至反应釜中,在180~200℃下水热反应1~4h;反应完成后,自然冷却至室温,得到的产物经清洗、干燥后,转移至烧结炉内,在900~1100℃下烧结2~6h,烧结完成后,随炉自然冷却至室温,得到所述包覆式高频磁介材料。
4.权利要求1或2所述包覆式高频磁介材料作为小型化天线基板的应用。
5.权利要求3所述方法得到的包覆式高频磁介材料作为小型化天线基板的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111196848.2A CN113845360B (zh) | 2021-10-14 | 2021-10-14 | 一种包覆式高频磁介材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111196848.2A CN113845360B (zh) | 2021-10-14 | 2021-10-14 | 一种包覆式高频磁介材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113845360A true CN113845360A (zh) | 2021-12-28 |
CN113845360B CN113845360B (zh) | 2022-08-02 |
Family
ID=78978323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111196848.2A Active CN113845360B (zh) | 2021-10-14 | 2021-10-14 | 一种包覆式高频磁介材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113845360B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001119144A (ja) * | 1999-10-21 | 2001-04-27 | Murata Mfg Co Ltd | 多層セラミック基板およびその製造方法 |
JP2010100511A (ja) * | 2008-09-26 | 2010-05-06 | Kyocera Corp | 磁性体と誘電体との複合焼結体およびlc複合電子部品 |
CN103304186A (zh) * | 2013-07-03 | 2013-09-18 | 电子科技大学 | 一种铁氧体基复合磁介天线基板材料及其制备方法 |
CN111029080A (zh) * | 2019-12-30 | 2020-04-17 | 上海三爱富新材料科技有限公司 | 高频用磁性材料及其制备方法 |
US20210261433A1 (en) * | 2020-02-21 | 2021-08-26 | Rogers Corporation | Z-type hexaferrite having a nanocrystalline structure |
-
2021
- 2021-10-14 CN CN202111196848.2A patent/CN113845360B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001119144A (ja) * | 1999-10-21 | 2001-04-27 | Murata Mfg Co Ltd | 多層セラミック基板およびその製造方法 |
JP2010100511A (ja) * | 2008-09-26 | 2010-05-06 | Kyocera Corp | 磁性体と誘電体との複合焼結体およびlc複合電子部品 |
CN103304186A (zh) * | 2013-07-03 | 2013-09-18 | 电子科技大学 | 一种铁氧体基复合磁介天线基板材料及其制备方法 |
CN111029080A (zh) * | 2019-12-30 | 2020-04-17 | 上海三爱富新材料科技有限公司 | 高频用磁性材料及其制备方法 |
US20210261433A1 (en) * | 2020-02-21 | 2021-08-26 | Rogers Corporation | Z-type hexaferrite having a nanocrystalline structure |
Non-Patent Citations (2)
Title |
---|
任慧等: "纳米铁氧体复合材料制备及吸波性能研究", 《稀有金属材料与工程》 * |
黄生祥等: "溶胶-凝胶法制备W型Ba_1Co_(0.9)Zn_(1.1)Fe_(16)O_(27)铁氧体及其吸波特性", 《粉末冶金材料科学与工程》 * |
Also Published As
Publication number | Publication date |
---|---|
CN113845360B (zh) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103304186B (zh) | 一种铁氧体基复合磁介天线基板材料及其制备方法 | |
Gan et al. | Low loss, enhanced magneto-dielectric properties of Bi2O3 doped Mg-Cd ferrites for high frequency antennas | |
CN114390884A (zh) | 一种轻质铁镍合金基磁性的复合吸波材料及制备方法 | |
CN111484080B (zh) | 一种钕掺杂的镨锰氧化物吸波粉体材料及其制备方法 | |
CN113620349B (zh) | 一种金属有机框架衍生的一维铁基吸波材料及其制备方法 | |
CN114956192A (zh) | 一种镧钴共掺杂钡铁氧体双波段吸波粉体材料及其制备方法 | |
Guo et al. | Cd-substituted NiZnCo ferrite with high dielectric constant and low coercivity for high-frequency electronic devices | |
Asif et al. | Synthesis and characterization of Tb doped Ni–Zn nano ferrites as substrate material for dual band MIMO antenna | |
CN113845360B (zh) | 一种包覆式高频磁介材料及其制备方法 | |
CN116496096B (zh) | 一种增强软磁/硬磁复合铁氧体吸波性能的方法 | |
CN114094301B (zh) | 一种磁介电复合材料介质谐振器的制备方法及小型化天线 | |
CN113045304A (zh) | 一种混合尖晶石结构的铁氧体吸波材料与制备方法 | |
CN114644365B (zh) | 一种微波吸收材料rGO/SiC/CoFe2O4的制备方法 | |
CN111302706B (zh) | 一种高柔韧性磁介复合基板材料及其制备方法和应用 | |
CN113573561B (zh) | 一种钙钛矿型电磁波吸收材料及其制备方法 | |
CN115520901A (zh) | 一种中空碳棒复合四氧化三铁核-壳材料及其制备和应用 | |
CN113264759B (zh) | 一种低损耗高频磁介材料及其制备方法 | |
He et al. | Design and preparation of low-loss Ba (CoTi) M-spinel hybrid ferrites for broadband magnetic-dielectric resonator antenna application | |
CN102838346A (zh) | 一种以尖晶石铁氧体为母体的天线基板材料及其制备方法 | |
Prasath et al. | Miniaturization of patch antennas using magneto-dielectric materials | |
CN105542156A (zh) | 一种导电聚苯胺纳米复合微波吸收材料的制备方法 | |
Sharma et al. | Development of radar absorbing nano crystals under thermal irradiation | |
CN117326859A (zh) | 高磁导率与高介电常数的低线宽铁氧体材料及其制备方法 | |
CN115491178B (zh) | 一种CoFe2O4介孔型碳核壳吸波材料的制备及应用 | |
CN113613479B (zh) | 核壳纺锤体阵列组装微米管微波吸收材料及其制备和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |