CN113832610A - 一种柔性超拉伸超疏水电子器件基底及其制备方法和应用 - Google Patents

一种柔性超拉伸超疏水电子器件基底及其制备方法和应用 Download PDF

Info

Publication number
CN113832610A
CN113832610A CN202111135613.2A CN202111135613A CN113832610A CN 113832610 A CN113832610 A CN 113832610A CN 202111135613 A CN202111135613 A CN 202111135613A CN 113832610 A CN113832610 A CN 113832610A
Authority
CN
China
Prior art keywords
super
electronic device
solution
flexible
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111135613.2A
Other languages
English (en)
Other versions
CN113832610B (zh
Inventor
李祎
肖淞
唐炬
张晓星
潘成
曾福平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202111135613.2A priority Critical patent/CN113832610B/zh
Publication of CN113832610A publication Critical patent/CN113832610A/zh
Application granted granted Critical
Publication of CN113832610B publication Critical patent/CN113832610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/021Moisture-responsive characteristics hydrophobic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/18Physical properties including electronic components

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Multicomponent Fibers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种柔性超拉伸超疏水电子器件基底及其制备方法和应用。制备方法如下:(1)将苯乙烯‑异戊二烯‑苯乙烯嵌段共聚物(SIS)溶于溶剂中形成溶液A;(2)将氟化二氧化硅纳米颗粒(F‑SiO2NPs)在乙醇溶液中超声分散,形成分散液B;(3)将溶液A和分散液B基于共轭静电纺丝并经收集器收集后制备得到超拉伸超疏水电子器件基底。本发明提供的柔性电子器件基底具有拉伸率高、疏水性良好,可应用于制作电子器件基底薄膜,具有较大的应用前景和应用价值。本发明的原材料成本低廉,共轭静电纺丝加工方法具备大规模工业化应用的潜力。

Description

一种柔性超拉伸超疏水电子器件基底及其制备方法和应用
技术领域
本发明属于柔性电子器件技术领域,特别涉及一种柔性超拉伸超疏水电子器件基底及其制备方法和应用。
背景技术
柔性电子器件具有良好的机械顺从性、鲁棒性,在可穿戴电子等领域具有广泛的应用前景。对于柔性电子器件,具有超拉伸、超疏水、透气等特性将进一步拓展其工作环境的适应性。超拉伸能力赋予了器件在极端形变下保持正常工况的能力;超疏水性则有助于提升器件防水性能,避免其在潮湿等环境下性能及使用寿命衰减;透气性则有助于提升可穿戴电子器件的舒适性,同时对于依靠气体释放、汗液等作为检测标志物的传感器具有更为重要的意义,能够在维持舒适穿戴性的同时保证器件工作不受影响。
目前,电子器件的超拉伸能力与透气性、疏水性很难兼得。现有的超拉伸电子器件多基于致密的弹性体薄膜基底,如PDMS、EVA、TPU等,尽管上述基底能够满足拉伸需求,但其致密特性导致其透气性极差,长期贴合皮肤易引发红肿、过敏等;同时,致密柔性基底粗糙度交叉,表面也缺乏微纳结构,导致薄膜的疏水性较差。
因此,亟需一种柔性超拉伸、超疏水、透气性良好的基底,提升柔性电子器件穿戴舒适性、环境兼容性。
发明内容
针对现有技术存在的不足,本发明提出了一种柔性超拉伸超疏水电子器件基底及其制备方法和应用。
为了解决上述技术问题,本发明提供的技术方案如下:
本发明第一方面提供一种柔性超拉伸超疏水电子器件基底的制备方法,包括以下步骤
(1)将苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)溶于溶剂中形成溶液A;
(2)将氟化二氧化硅纳米颗粒(F-SiO2 NPs)在乙醇溶液中超声分散,形成分散液B;
(3)将溶液A和分散液B装入注射器,采用共轭静电纺丝法加工并经收集器收集微米纤维,制备得到超拉伸超疏水电子器件基底。
进一步,所述步骤(1)中溶剂为甲苯和二甲基甲酰胺混合形成的混合溶剂,甲苯和二甲基甲酰胺的体积比为85:15。
进一步,所述苯乙烯-异戊二烯-苯乙烯嵌段共聚物的分子量为70000-90000,其中苯乙烯的质量分数为22%;苯乙烯-异戊二烯-苯乙烯嵌段共聚物在溶液A中质量分数为20%-25%。
进一步,所述步骤(2)中氟化二氧化硅纳米颗粒在分散液B中的含量为2mg/ml-10mg/ml,氟化二氧化硅纳米颗粒粒径为20-30nm。
进一步,所述溶液A和分散液B共轭纺丝的泵出速率保持一致,速率为1.5ml/h-2mL/h。
进一步,所述溶液A和分散液B泵出口相对地泵出进行纺丝。
更进一步,溶液A和分散液B通过注射器泵出,并通过微流量控制泵控制流速。
进一步,所述静电纺丝施加电压为负极性-2kV,正极性20kV。
本发明第二方面提供利用第一方面所述方法制备的柔性超拉伸超疏水电子器件基底。
本发明第二方面提供第一方面所述的柔性超拉伸超疏水电子器件基底作为柔性电子器件基底的应用。
本发明提供的方法能够制备得到超拉伸柔性电子器件基底,其原理在于:通过优选的甲苯和二甲基甲酰胺混合溶剂,尤其是少量二甲基甲酰胺的加入能够提升苯乙烯-异戊二烯-苯乙烯嵌段共聚物溶液的可电纺性;同时由于其高沸点和低饱和蒸气压,经静电纺丝得到的苯乙烯-异戊二烯-苯乙烯嵌段共聚物纤维在收集器上还含有少量溶剂残留,能够实现纤维与纤维结点间的自焊接,提升了纤维结点的牢固性;同时共轭纺丝另一端的氟化二氧化硅纳米颗粒在电场力作用下能够自组装嵌入苯乙烯-异戊二烯-苯乙烯嵌段共聚物纤维中形成复合结构,氟化二氧化硅纳米颗粒具有低表面能同时也增加了纤维粗糙度,进而能够实现超疏水。
与现有技术相比,本发明具有以下有益效果:
1、本发明能够通过共轭纺丝实现超拉伸超疏水柔性电子器件基底的加工,其中弹性体纤维结点间能够实现自焊接;纳米颗粒能够实现与纤维的自组装;最终形成机械性能和疏水性优异的薄膜;
2、本发明的原材料成本低廉,共轭静电纺丝加工方法具备大规模工业化应用的潜力。
3、本发明提供的柔性电子器件基底具有拉伸率高、疏水性良好,可应用于制作电子器件基底薄膜,具有较大的应用前景和应用价值。
附图说明
图1为实施例1制备得到的柔性超拉伸超疏水电子器件基底薄膜;
图2为实施例1制备得到的柔性超拉伸超疏水电子器件基底薄膜的超疏水特性;
图3为实施例1制备得到的柔性超拉伸超疏水电子器件基底薄膜的透气性测试;
图4为实施例1制备得到的柔性超拉伸超疏水电子器件基底薄膜的微观形貌图;
图5为实施例1制备得到的柔性超拉伸超疏水电子器件基底薄膜在1000%拉伸应变下的微观形貌。
具体实施方式
下面通过实施例进一步阐述本发明,本发明的内容完全不限于此。
实施例1
制备柔性超拉伸超疏水电子器件基底薄膜,步骤如下:
1)称取2g苯乙烯-异戊二烯-苯乙烯嵌段共聚物弹性体,装入放有磁力搅拌子的20ml玻璃瓶中;将1.5ml二甲基甲酰胺和7.5ml甲苯加入到玻璃瓶中,磁力搅拌4h得到苯乙烯-异戊二烯-苯乙烯嵌段共聚物电纺溶液;
2)称取100mg氟化二氧化硅纳米颗粒,装入20ml玻璃瓶中;加入10ml乙醇;将玻璃瓶放入超声机中,超声分散1小时,得到氟化二氧化硅分散液;
3)将氟化二氧化硅分散液和苯乙烯-异戊二烯-苯乙烯嵌段共聚物电纺溶液分别转移至两个20ml注射器中,注射器经管道连接电纺针头,注射器放入推送泵中;
4)将两个注射器针头面对面安装在静电纺丝机移动端端子,使用铝箔覆盖静电纺丝机滚筒;启动注射器推送泵和静电纺丝机电源,开展共轭静电纺丝;两者的泵出速率均为2ml/h。
5)共轭静电纺丝持续4h,结束后取下铝箔覆盖的滚筒收集器上的薄膜,得到柔性超拉伸超疏水薄膜,可以用作电子器件基底。
实施例2
制备柔性超拉伸超疏水电子器件基底薄膜,步骤如下:
1)称取2g苯乙烯-异戊二烯-苯乙烯嵌段共聚物弹性体,装入放有磁力搅拌子的20ml玻璃瓶中;将1.5ml二甲基甲酰胺和7.5ml甲苯加入到玻璃瓶中,磁力搅拌4h得到苯乙烯-异戊二烯-苯乙烯嵌段共聚物电纺溶液;
2)称取20mg氟化二氧化硅纳米颗粒,装入20ml玻璃瓶中;加入10ml乙醇;将玻璃瓶放入超声机中,超声分散1小时,得到氟化二氧化硅分散液;
3)将氟化二氧化硅分散液和苯乙烯-异戊二烯-苯乙烯嵌段共聚物电纺溶液分别转移至两个20ml注射器中,注射器经管道连接电纺针头,注射器放入推送泵中;
4)将两个注射器针头面对面安装在静电纺丝机移动端端子,使用铝箔覆盖静电纺丝机滚筒;启动注射器推送泵和静电纺丝机电源,开展共轭静电纺丝;两者的泵出速率均为2ml/h。
5)共轭静电纺丝持续4h,结束后取下铝箔覆盖的滚筒收集器上的薄膜,得到柔性超拉伸超疏水薄膜,可以用作电子器件基底。
实施例3
制备柔性超拉伸超疏水电子器件基底薄膜,步骤如下:
1)称取2g苯乙烯-异戊二烯-苯乙烯嵌段共聚物弹性体,装入放有磁力搅拌子的20ml玻璃瓶中;将1.5ml二甲基甲酰胺和7.5ml甲苯加入到玻璃瓶中,磁力搅拌4h得到苯乙烯-异戊二烯-苯乙烯嵌段共聚物电纺溶液;
2)称取60mg氟化二氧化硅纳米颗粒,装入20ml玻璃瓶中;加入10ml乙醇;将玻璃瓶放入超声机中,超声分散1小时,得到氟化二氧化硅分散液;
3)将氟化二氧化硅分散液和苯乙烯-异戊二烯-苯乙烯嵌段共聚物电纺溶液分别转移至两个20ml注射器中,注射器经管道连接电纺针头,注射器放入推送泵中;
4)将两个注射器针头面对面安装在静电纺丝机移动端端子,使用铝箔覆盖静电纺丝机滚筒;启动注射器推送泵和静电纺丝机电源,开展共轭静电纺丝;两者的泵出速率均为1.5ml/h。
5)共轭静电纺丝持续4h,结束后取下铝箔覆盖的滚筒收集器上的薄膜,得到柔性超拉伸超疏水薄膜,可以用作电子器件基底。
实施例4
性能测试:
1、表观形态
图1为实施例1制备得到的柔性超拉伸超疏水电子器件基底薄膜,薄膜整体呈白色,在横向拉伸1000%时仍保持良好的机械结构稳定性(无破洞出现)。
2、疏水性能测试
图2为实施例1制备得到的柔性超拉伸超疏水电子器件基底薄膜的超疏水特性,薄膜的静态接触角达到了152°,属于超疏水膜。
3、透气性测试
图3为实施例1制备得到的柔性超拉伸超疏水电子器件基底薄膜的透气性测试。将基底覆盖在装有热水的内烧杯中,内烧杯外套置一大烧杯,可以看到水蒸气能够透过所制备的超拉伸超疏水基底,到达外烧杯内壁并发生凝结形成小水珠,证明了所制备的薄膜具有良好的透气性。
4、微观形貌
图4为实施例1制备得到的柔性超拉伸超疏水电子器件基底薄膜的微观形貌图,可以看到氟化二氧化硅纳米颗粒均匀分布于苯乙烯-异戊二烯-苯乙烯嵌段共聚物纤维表面,且能够嵌入到纤维中,证实了本实施例加工得到的为纤维-纳米颗粒复合材料。
图5为实施例1制备得到的柔性超拉伸超疏水电子器件基底薄膜在1000%拉伸应变下的微观形貌,可以看到苯乙烯-异戊二烯-苯乙烯嵌段共聚物纤维沿拉伸方向排列,且纤维未发生断裂,氟化二氧化硅纳米颗粒未发生脱落,证实了所制备基底的强抗拉性和结构稳定性。
以上所述,仅为本发明较佳的具体实施方式,但本发明保护的范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内所做的任何修改,等同替换和改进等,均应包含在发明的保护范围之内。

Claims (9)

1.一种柔性超拉伸超疏水电子器件基底的制备方法,其特征在于,包括以下步骤
(1)将苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)溶于溶剂中形成溶液A;
(2)将氟化二氧化硅纳米颗粒(F-SiO2 NPs)在乙醇溶液中超声分散,形成分散液B;
(3)将溶液A和分散液B装入注射器,采用共轭静电纺丝法加工并经收集器收集微米纤维,制备得到超拉伸超疏水电子器件基底。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中溶剂为甲苯和二甲基甲酰胺混合形成的混合溶剂,甲苯和二甲基甲酰胺的体积比为85:15。
3.根据权利要求1所述的制备方法,其特征在于,所述苯乙烯-异戊二烯-苯乙烯嵌段共聚物的分子量为70000-90000,其中苯乙烯的质量分数为22%;苯乙烯-异戊二烯-苯乙烯嵌段共聚物在溶液A中质量分数为20%-25%。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中氟化二氧化硅纳米颗粒在分散液B中的含量为2mg/ml-10mg/ml,氟化二氧化硅纳米颗粒粒径为20-30nm。
5.根据权利要求1所述的制备方法,其特征在于,所述溶液A和分散液B共轭纺丝的泵出速率保持一致,速率为1.5ml/h-2ml/h。
6.根据权利要求1所述的制备方法,其特征在于,所述溶液A和分散液B泵出口相对,溶液A经静电纺丝产生超拉伸微米纤维,分散液B经静电喷淋产生纳米颗粒。
7.根据权利要求1所述的制备方法,其特征在于,所述共轭静电纺丝施加电压为负极性-2kV,正极性20kV。
8.权利要求1-7任一项所述方法制备的柔性超拉伸超疏水电子器件基底。
9.权利要求8所述的柔性超拉伸超疏水电子器件基底作为柔性电子器件基底的应用。
CN202111135613.2A 2021-09-27 2021-09-27 一种柔性超拉伸超疏水电子器件基底及其制备方法和应用 Active CN113832610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111135613.2A CN113832610B (zh) 2021-09-27 2021-09-27 一种柔性超拉伸超疏水电子器件基底及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111135613.2A CN113832610B (zh) 2021-09-27 2021-09-27 一种柔性超拉伸超疏水电子器件基底及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113832610A true CN113832610A (zh) 2021-12-24
CN113832610B CN113832610B (zh) 2022-12-16

Family

ID=78970762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111135613.2A Active CN113832610B (zh) 2021-09-27 2021-09-27 一种柔性超拉伸超疏水电子器件基底及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113832610B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0512629D0 (en) * 2005-06-21 2005-07-27 Univ Sheffield Electrospinning of fibres
CN104593895A (zh) * 2013-11-01 2015-05-06 林晓 一种功能纤维基材及制备方法
WO2015084266A1 (en) * 2013-12-05 2015-06-11 Nanyang Technological University A composite nanofiber membrane for membrane distillation and a method of fabrication thereof
CN106167551A (zh) * 2016-08-04 2016-11-30 华南理工大学 一种抗水冲刷超疏水复合膜及其制法和应用
CN107700075A (zh) * 2017-11-13 2018-02-16 大连理工大学 一种具有自交联结构的静电纺丝纤维膜的制备方法
CN108939952A (zh) * 2018-09-28 2018-12-07 蔡菁菁 一种油水分离用pmia超疏水纳米纤维膜及制备方法
CN110067035A (zh) * 2019-05-14 2019-07-30 中国科学院沈阳应用生态研究所 一种疏水石墨烯复合高分子纤维的静电纺丝及其制备方法
CN111041820A (zh) * 2019-11-22 2020-04-21 华南理工大学 一种高导电稳定性超弹性纱线及其制备方法与应用
US20210062410A1 (en) * 2019-08-30 2021-03-04 Soonchunhyang University Industry Academy Cooperation Foundation Fiber comprising thermoplastic elastomer and silica nanoparticle, stretchable hydrophobic fiber article prepared therewith, and method for preparing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0512629D0 (en) * 2005-06-21 2005-07-27 Univ Sheffield Electrospinning of fibres
CN104593895A (zh) * 2013-11-01 2015-05-06 林晓 一种功能纤维基材及制备方法
WO2015084266A1 (en) * 2013-12-05 2015-06-11 Nanyang Technological University A composite nanofiber membrane for membrane distillation and a method of fabrication thereof
CN106167551A (zh) * 2016-08-04 2016-11-30 华南理工大学 一种抗水冲刷超疏水复合膜及其制法和应用
CN107700075A (zh) * 2017-11-13 2018-02-16 大连理工大学 一种具有自交联结构的静电纺丝纤维膜的制备方法
CN108939952A (zh) * 2018-09-28 2018-12-07 蔡菁菁 一种油水分离用pmia超疏水纳米纤维膜及制备方法
CN110067035A (zh) * 2019-05-14 2019-07-30 中国科学院沈阳应用生态研究所 一种疏水石墨烯复合高分子纤维的静电纺丝及其制备方法
US20210062410A1 (en) * 2019-08-30 2021-03-04 Soonchunhyang University Industry Academy Cooperation Foundation Fiber comprising thermoplastic elastomer and silica nanoparticle, stretchable hydrophobic fiber article prepared therewith, and method for preparing the same
CN111041820A (zh) * 2019-11-22 2020-04-21 华南理工大学 一种高导电稳定性超弹性纱线及其制备方法与应用

Also Published As

Publication number Publication date
CN113832610B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
CN109586608B (zh) 一种柔性可拉伸单电极摩擦纳米发电机及其制备方法
Mi et al. High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing
Cao et al. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring
Li et al. Advances in electrospun nanofibers for triboelectric nanogenerators
CN104392845B (zh) 一种可拉伸的线状超级电容器和锂离子电池制备方法
Sun et al. 3D micro-nanostructure based waterproof triboelectric nanogenerator as an outdoor adventure power source
CN111249638B (zh) 一种基于全纤维驻极体发电机的高效防护口罩及其制备方法
Haghayegh et al. Recent advances in stretchable, wearable and bio-compatible triboelectric nanogenerators
CN104963089A (zh) 一种柔软透气的电极薄膜材料、触觉传感器及其制备方法
CN115452205A (zh) 一种基于共轭取向静电纺丝技术的导电柔性压力传感器及其制备方法
CN104695129A (zh) 一种聚偏氟乙烯取向排列压电纤维膜及其制备方法
Wang et al. Direct-writing organic three-dimensional nanofibrous structure
CN113832610B (zh) 一种柔性超拉伸超疏水电子器件基底及其制备方法和应用
CN113604964A (zh) 一种有序复合纤维膜及其制备方法与应用
CN109639175B (zh) 摩擦纳米发电机、可穿戴传感器及其制备方法
CN107059248A (zh) 一种氧化石墨烯单分子层修饰聚丙烯腈纳米纤维膜的制备方法
CN109183277A (zh) 一种导电纤维柔性膜及其制备方法
CN106003875B (zh) 一种弹性导电复合织物及其制备方法
CN115267922A (zh) MXene界面耦合增强式人机界面传感器及制备方法
Liu et al. Advancements in electrospun nanofibrous membranes for improved waterproofing and breathability
Yang et al. Control of the morphology of micro/nanostructures of polycarbonate via electrospinning
Song et al. Design of a stable wearable piezoresistive sensor with a laminated pattern for simultaneous anti-wetting and self-power
CN211730493U (zh) 一种新型柔性智能织物传感器
CN108383972A (zh) 一种纤维素基自愈合凝胶的制备方法
CN105420927A (zh) 一种高效可调的混合液体分离纤维膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant