CN113804654A - 基于光纤局部表面等离子共振的Hg2+生物传感器及其制备方法和应用 - Google Patents

基于光纤局部表面等离子共振的Hg2+生物传感器及其制备方法和应用 Download PDF

Info

Publication number
CN113804654A
CN113804654A CN202110916743.3A CN202110916743A CN113804654A CN 113804654 A CN113804654 A CN 113804654A CN 202110916743 A CN202110916743 A CN 202110916743A CN 113804654 A CN113804654 A CN 113804654A
Authority
CN
China
Prior art keywords
optical fiber
biosensor
solution
preparation
aptamer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110916743.3A
Other languages
English (en)
Inventor
朱胜虎
崔鹏景
颜辉
李信
李国权
陆平
熊锋
奚宽鹏
刘尚俊
朱杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Hengshun Vinegar Industry Co Ltd
Original Assignee
Jiangsu Hengshun Vinegar Industry Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Hengshun Vinegar Industry Co ltd filed Critical Jiangsu Hengshun Vinegar Industry Co ltd
Priority to CN202110916743.3A priority Critical patent/CN113804654A/zh
Publication of CN113804654A publication Critical patent/CN113804654A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N2021/5903Transmissivity using surface plasmon resonance [SPR], e.g. extraordinary optical transmission [EOT]

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了基于光纤局部表面等离子共振的Hg2+生物传感器及其制备方法和应用。本发明的整个检测装备的体积较小,助于携带,用于现场检测;本发明的光纤传感器中的光纤可以回收,经过简单的抛光后可以重复再利用,降低了成本,同时减少了对环境的污染;本发明的传感器价格较低,便于推广;容易开发相应的软件,实现自动化检测,降低了对检测人员的技术要求。本发明的生物传感器检测灵敏度高,检测限能到达0.04μM。

Description

基于光纤局部表面等离子共振的Hg2+生物传感器及其制备方 法和应用
技术领域
本发明属于食品生物技术领域,具体涉及基于光纤局部表面等离子共振的Hg2+生物传感器及其制备方法和应用。
背景技术
汞,也称为水银,常温下呈液态,是一种有毒金属元素。中国是世界上消耗汞金属量最多的国家,也是汞污染问题最严重的国家之一。
环境中的汞元素主要来源于人为排放和自然排放,人为排放指的是人类在生产活动中的汞排放,如一些化工制造、金属冶炼、汞的开采、垃圾焚烧、废弃电池等活动中的汞排放等。汞元素具有很强的积聚作用,主要存在于水生植物和动物体内,随后通过食物链进入人体。汞具有极强的毒性,能与机体组份中的蛋白质结合,主要作用于蛋白质的某些基团(如羧基、氨基、巯基等),丙酮酸激酶、琥珀酸脱氢酶和色素氧化酶的活性受到抑制,从而阻碍人体细胞的正常代谢,对肺、心脏、肝脏、肾脏等造成不可逆的损伤以及造成神经系统损害、免疫功能紊乱、听觉和语言障碍等。一旦人体中的汞含量超标,就很容易引起汞中毒。汞中毒的症状主要表现为牙龈肿胀、口腔麻木、肠胃恶心、腹痛、呕吐、肺炎、胸闷气短、咳嗽等症状,深度中毒者还会出现吞咽困难、运动瘫痪,甚至死亡。因此,食品中汞的含量直接影响到人类的生命安全,因此对食品中汞元素的检测极为重要。
传统的重金属检测方法主要有高效液相色谱法(HPLC)、光谱分析法、电化学检测法、核磁共振法等。HPLC的原理是根据样品各组份分配系数的不同使得有机化合物与目标金属离子形成络合物,利用高效液相色谱仪进行检测,此法灵敏度高,但是该方法面临着仪器价格高,检测时间长并且无法对不吸收紫外光的样品进行检测以及对溶剂的选择会受到限制等缺点。光谱法又分为红外光谱法、原子吸收光谱法(AAS)、分光光度法、原子发射光谱法(AES)、电感耦合等离子体质谱法(ICP-MS)等。这些方法不仅需要相应的大型设备如原子吸收光谱仪、分光光度仪、原子荧光光谱仪、原子发射光谱仪和电感耦合等离子体原子发射光谱仪等,对检测人员的技术水平要求较高,并且检测周期长。电化学法具有灵敏度高、分析速度快、选择性好、设备简单等优点,但是电化学法的电极多由重金属制得如铂丝电极等,价格昂贵且电极制备修饰过程复杂繁琐对环境的要求较高。因此,需要开发出一种便捷的检测方法。
生物传感器是一种根据生物物质浓度的改变引起输出信号的改变,从而达到对生物物质进行检测的传感器。生物传感器主要由信号识别、输出信号、信号放大、信号转换等元件组成。其中信号识别元件通常是由能够样品特异性结合(如抗原抗体、核糖核苷酸、蛋白质、微生物等)的物质构成;输出信号一般为生物物质间的相互反应导致的检测器的信号(如电信号、光学信号等)发生变化;信号放大装置用于提高传感器的灵敏度;生物传感器具有专一性强、分析速度快、准确度高、操作系统简单、成本低等优点。生物传感器可以对食品中的食品添加剂、食品成分、有害毒物等进行测定分析。
等离子体共振(SPR)是一种物理光学现象,当光在介质分界面发生全内反射时,界面附近的倏逝波可在金属介质表面激发表面等离子体波,在一定条件下倏逝波与表面等离子体波发生共振,入射光的能量耦合到表面等离子体波中,导致反射光能量下降从而在反射光谱上出现共振峰。SPR对金属表面介质折射率的变化非常敏感,当金属表面结构发生变化时,折射率发生变化,从而使等离子体共振波的波长发生变化,产生红移。表面等离子体共振传感器具有体积小、成本低、免标记、实时动态检测、灵敏度高、监测范围广等特点。已被用于监测DNA与蛋白质之间、蛋白质与蛋白质之间、药物与蛋白质之间、核酸与核酸之间、抗原与抗体之间、受体与配体之间等生物分子之间的相互作用。
传统的SPR传感器多以棱镜作为传感平台,此类传感器面临着体积大、处理过程复杂、无法现场检测等缺点。为解决此问题,人们将纳米技术与SPR相结合,开发出局部表面等离子共振(LSPR)传感器。近年来,光纤可以被改造成多种形状如U型、锥型、侧面抛光型,与LSPR技术结合,制备出相应的传感器。但U型、锥型、侧面抛光型传感器存在加工难度大,难回收重复利用等缺点。
发明内容
发明目的:为了解决食品或环境中汞元素的污染状况,本发明所要解决的技术问题在于提供了基于光纤局部表面等离子共振的Hg2+生物传感器的制备方法。
本发明还提供了上述制备方法获得的基于光纤局部表面等离子共振的Hg2+生物传感器。
本发明还提供了上述Hg2+生物传感器在食品或环境中检测Hg2+的应用。
技术方案:为了解决上述技术问题,本发明提供了基于光纤局部表面等离子共振的Hg2+生物传感器的制备方法,包括以下步骤:
1)选取多模祼光纤,两侧端面磨平、抛光,将一侧端面浸泡在食人鱼溶液中,以去除表面的有机物并使其纤芯表面羟基化,然后用超纯水冲洗彻底清洗干燥;
2)将步骤1)所得干净的光纤浸泡在3-巯基丙基三甲氧基硅烷的乙醇溶液,并使其反应9-18小时,随后乙醇冲洗,并在真空干燥器干燥8-16h以在光纤表面形成巯基基团;
3)巯基化的光纤在纳米金溶液中浸泡8-16h,在光纤表面上形成金属纳米颗粒亚单层,再使用乙醇冲洗固定了金纳米颗粒的光纤并用氮气吹干;
4)配置Hg2+适配体溶液,将已修饰有纳米金的光纤浸泡在适配体溶液中8-16h,修饰有巯基的适配体通过金硫键与光纤连接即得。
其中,所述步骤1)中的食人鱼溶液溶组成为硫酸与30%过氧化氢按体积比7:3。
其中,所述步骤2)3-巯基丙基三甲氧基硅烷的乙醇溶液的3-巯基丙基三甲氧基硅烷质量体积百分比为0.5-3%(g/100mL)。
其中,所述步骤4)的Hg2+适配体溶液是采用pH 7-9Tris-HCl配制而成,。
其中,所述步骤4)的Hg2+适配体溶液浓度为1-40μM。
其中,所述步骤4)的Hg2+适配体为5’-SH-TTATTTCTTAACTTGTTTGTTCAC。
本发明内容还包括所述的制备方法制备得到的Hg2+生物传感器。
其中,所述的Hg2+生物传感器在食品或环境中Hg2+检测中的应用。
其中,所述食品为西瓜、西芹、茭白或食醋等。
有益效果:与现有技术相比,本发明具备以下显著优点:本发明建立了基于光纤端面的制作方法,并通过分子交联技术,将金纳米粒子组装于光纤端面,并进一步将捕获Hg2+的组件组装于金纳米粒子表面,完成传感器的制备。相比于如U型、锥型、侧面抛光型,存在以下优点:
(1)制备方便,不需要去除光纤包层(U型)、侧面加工(锥型、侧面抛光型),本方法直接在端面上操作,少了侧面难以加工的工序,有利于提高产品的质量,整个检测装备的体积较小,助于携带,用于现场检测;
(2)采用本发明提供的分子组装技术,生产过程可控,制备的传感器质量高;
(3)本发明中使用的光纤传感器可以回收重利用,只需对端面进行研磨,去除光纤端面的组装层,即可用于新传感器的进行重复制备,能够降低生产成本,降低价格,对生产企业和消费都都有利。此外,由于光纤传感器可回复再利用,减少废弃物的产生,因而有利于环境保护。
(4)本发明的光纤传感器价格较低,便于推广;
(5)本发明容易开发相应的软件,实现自动化检测,降低了对检测人员的技术要求。
(6)本发明的生物传感器检测灵敏度高,检测限能到达0.04μM。
附图说明
图1、纳米金的紫外可见吸收光谱;
图2、纳米金的透射电镜图;
图3、清洗后光纤端面的电镜照片;
图4、光纤镀金前(左)后(右)的对比;
图5、镀金后光纤端面的电镜照片;
图6、Hg2+对数浓度与LSPR峰位移量的回归曲线;
图7、生物传感器对多种离子的选择性;
图8、实施例6的光纤LSPR传感器的LSPR图谱,LSPR峰偏移(虚线为原始光谱,实线为红移后光谱);
图9、实施例7光纤LSPR传感器的LSPR图谱,LSPR峰偏移(虚线为原始光谱,实线为红移后光谱);
图10、实施例10的光纤LSPR传感器的LSPR图谱,LSPR峰偏移(虚线为原始光谱,实线为红移后光谱)。
具体实施方式
下面结合实例,对本发明的技术方案进行详细说明。
实施例1
采用Frens法合成纳米金,将50mL 0.01%的氯金酸溶液加入三口烧瓶(使用前用王水浸泡,超纯水冲洗后干燥)中,加热至沸腾,向烧瓶中加入1mL 1%柠檬酸钠溶液并搅拌,反应为回流反应。30分钟后停止加热,待冷却至室温,4℃保存。柠檬酸钠既充当还原剂也作为保护剂。参见图1,所合成的纳米金呈酒红色,在525nm处有特征性吸收峰。参见图2,透射电镜下金纳米形态归整。
实施例2
选取多模祼光纤,两侧端面磨平、抛光,将一侧端面浸泡在鱼溶液(浓硫酸和30%过氧化氢的混合物(7:3))组成的混合物中30分钟,以去除表面的有机物并使其纤芯表面羟基化,然后用超纯水冲洗彻底清洗,干燥器中干燥。
用此方法清洗后,光纤端面非常干净,图3的电镜照片显示表面无污染。
实施例3
将清洗干净的光纤浸泡在2%(g/mL)的3-巯基丙基三甲氧基硅烷(MPTMS)的乙醇溶液中,使其反应12h,用乙醇、超纯水冲洗,并在真空干燥器干燥12h以在光纤表面形成巯基团。将巯基化的光纤在纳米金溶液中浸泡12h,在光纤表面上形成金属纳米颗粒亚单层。再使用乙醇冲洗固定了金纳米颗粒的光纤并用氮气吹干。通过此方法成功偶联上金纳米粒子,如图4,颜色变化明显。如图5端面的电镜显示均匀分布了大量的金纳米粒子,采用透反射的方法,测得光纤表面的金纳米粒子的吸光度为0.43。
实施例4
将清洗干净的光纤浸泡在0.5%(g/mL)的3-巯基丙基三甲氧基硅烷(MPTMS)的乙醇溶液,并使其反应18小时,用乙醇、超纯水冲洗,并在真空干燥器干燥16h以在光纤表面形成巯基团。巯基化的光纤在纳米金溶液中浸泡16h,在光纤表面上形成金属纳米颗粒亚单层。再使用乙醇冲洗固定了金纳米颗粒的光纤并用氮气吹干,得镀金光纤的吸光度为0.35。
实施例5
将清洗干净的光纤浸泡在3%(g/mL)的3-巯基丙基三甲氧基硅烷(MPTMS)的乙醇中的溶液,并使其反应9小时,用乙醇、超纯水冲洗,并在真空干燥器干燥8h以在光纤表面形成巯基团。巯基化的光纤在纳米金溶液中浸泡8h,在光纤表面上形成金属纳米颗粒亚单层。再使用乙醇冲洗固定了金纳米颗粒的光纤并用氮气吹干,采用透反射的方法,测得光纤表面的金纳米粒子的吸光度为0.33。
实施例6制备光纤LSPR传感器
使用50mM的pH 7Tris-HCl(10mM NaCl、5mM TCEP)配置浓度为1μM的Hg2+适配体(5’-SH-TTATTTCTTAACTTGTTTGTTCAC)溶液,最优条件(实施例3)制备的镀金光纤浸泡在适配体的溶液中8h,修饰有巯基的适配体通过金硫键与金纳米粒子连接,浸入100μM Hg2+溶液,如图8所示,LSPR峰红移了2.5nm(虚线为原始光谱,实线为红移后光谱)。
实施例7制备光纤LSPR传感器
使用50mM的pH 8Tris-HCl(10mM NaCl、5mM TCEP)配置浓度为10μM的Hg2+适配体(5’-SH-TTATTTCTTAACTTGTTTGTTCAC)溶液,最优条件(实施例3)制备的镀金光纤浸泡在适配体的溶液中12h,修饰有巯基的适配体通过金硫键与金纳米粒子连接,浸入100μM Hg2+溶液,如图9所示,LSPR峰红移了6.4nm(虚线为原始光谱,实线为红移后光谱)。
实施例8制备光纤LSPR传感器
使用50mM的pH 9Tris-HCl(10mM NaCl、5mM TCEP)配置浓度为40μM的Hg2+适配体(5’-SH-TTATTTCTTAACTTGTTTGTTCAC)溶液,最优条件(实施例3)制备的镀金光纤浸泡在适配体的溶液中16h,修饰有巯基的适配体通过金硫键与金纳米粒子连接,浸入100μM Hg2+溶液,LSPR峰红移了4.9nm。
实施例9
使用50mM的pH 9Tris-HCl(10mM NaCl、5mM TCEP)配置浓度为10μM的Hg2+适配体(5’-SH-TTATTTCTTAACTTGTTTGTTCAC)溶液,实施例5制备的镀金光纤浸泡适配体的溶液中112h,修饰有巯基的适配体通过金硫键与金纳米粒子连接,浸入100μM Hg2+溶液,LSPR峰红移了3.5nm,显著少于实施例7中的峰位偏移量。
实施例10
使用50mM的pH 8Tris-HCl(10mM NaCl、5mM TCEP)配置浓度为10μM的Hg2+适配体(5'-(C2H5)6-SH-ACC GAC CGT GCT GGA CTC TGG ACT GTT GTG GTA TTA TTT TTG GTTGTG CAG TAT GAG CGA GCG TTG CG-3’)溶液,最优条件(实施例3)制备的镀金光纤浸泡在适配体的溶液中12h,修饰有巯基的适配体通过金硫键与金纳米粒子连接,浸入100μM Hg2+溶液,如图10所示,LSPR峰红移了0.1nm(虚线为原始光谱,实线为红移后光谱)。
实施例11
将实施例7制备的光纤LSPR传感器分别浸入1μM、5μM、20μM、50μM、100μM、200μM的Hg2+溶液中。设置光谱仪的参数,扫描波长为400nm~650nm,积分时间25ms、扫描次数50次,进行光纤的LSPR吸收峰采集,建立回归方程。结果如图6所示,光纤表面LSPR位移量与汞离子对数浓度呈线性关系(R2=0.98),本试验检测限为0.04μM(按3倍信号标准差计算。)
实施例12
在相同条件下,将实施例7制备的光纤传感器分别检测浓度为100μM的Cd2+、Fe3+、Pb2+溶液,结果如图7所示。表明本传感器有很好的选择性。
实施例13
将实施例7制备制备的光纤LSPR适配体光纤传感器,对西瓜汁配制的汞离子浓度分别为50μM、100μM的西瓜汁/汞离子溶液分别进行检测,回收率为91%和96%。表明本方法有较好的回收率,能够用于西瓜中Hg2+含量的检测。
实施例14
将实施例7制备制备的光纤LSPR适配体光纤传感器,对西芹汁配制的汞离子浓度分别为50μM、100μM的西芹汁/汞离子溶液分别进行检测,回收率为102%和94%。表明本方法有较好的回收率,能够用于西芹中Hg2+含量的检测。
实施例15
将实施例7制备制备的光纤LSPR适配体光纤传感器,对茭白汁配制的汞离子浓度分别为50μM、100μM的茭白汁/汞离子溶液分别进行检测,回收率为88%和89%。表明本方法有较好的回收率,能够用于茭白中Hg2+含量的检测。
实施例16
取镇江恒顺醋业股份有限公司的镇江香醋50mL,用1.0M NaOH溶液调pH 8.0,然后用50.0mM pH 8.0Tris-HCl缓冲液定容到100mL,用此溶液配制的汞离子浓度分别为50μM、100μM的食醋/汞离子的待检液。用实施例7制备制备的光纤LSPR适配体光纤传感器进行检测,回收率为94.3%和103.5%。表明本方法有较好的回收率,能够用于镇江香醋中Hg2+含量的检测。
序列表
<110> 江苏恒顺醋业股份有限公司
<120> 基于光纤局部表面等离子共振的Hg2+生物传感器及其制备方法和应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ttatttctta acttgtttgt tcac 24
<210> 2
<211> 68
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
accgaccgtg ctggactctg gactgttgtg gtattatttt tggttgtgca gtatgagcga 60
gcgttgcg 68

Claims (8)

1.基于光纤局部表面等离子共振的Hg2+生物传感器的制备方法,其特征在于,包括以下步骤:
1)选取多模祼光纤,两侧端面磨平、抛光,将一侧端面浸泡在食人鱼溶液中,以去除表面的有机物并使其纤芯表面羟基化,然后用超纯水冲洗彻底清洗干燥;
2)将步骤1)所得干净的光纤浸泡在3-巯基丙基三甲氧基硅烷的乙醇溶液,并使其反应9-18小时,随后乙醇冲洗,并在真空干燥器干燥8-16 h以在光纤表面形成巯基基团;
3)巯基化的光纤在纳米金溶液中浸泡8-16 h,在光纤表面上形成金属纳米颗粒亚单层,再使用乙醇冲洗固定了金纳米颗粒的光纤并用氮气吹干;
4)配置Hg2+适配体溶液,将已修饰有纳米金的光纤浸泡在适配体溶液中8-16 h,修饰有巯基的适配体通过金硫键与光纤连接即得。
2.根据权利要求1所述的基于光纤局部表面等离子共振的Hg2+生物传感器的制备方法,其特征在于,所述步骤2)3-巯基丙基三甲氧基硅烷的乙醇溶液的3-巯基丙基三甲氧基硅烷质量体积百分比为0.5-3%(g/mL)。
3.根据权利要求1所述的基于光纤局部表面等离子共振的Hg2+生物传感器的制备方法,其特征在于,所述步骤4)的Hg2+适配体为5’-SH-TTATTTCTTAACTTGTTTGTTCAC。
4.根据权利要求1所述的基于光纤局部表面等离子共振的Hg2+生物传感器的制备方法,其特征在于,所述步骤4)的Hg2+适配体溶液是采用pH 7-9 Tris-HCl配制而成。
5.根据权利要求1所述的基于光纤局部表面等离子共振的Hg2+生物传感器的制备方法,其特征在于,所述步骤4)的Hg2+适配体溶液浓度为1-40 μM。
6.权利要求1-5任一项所述的制备方法制备得到的Hg2+生物传感器。
7.根据权利要求6所述的Hg2+生物传感器在食品或环境中Hg2+检测中的应用。
8.根据权利要求7所述的应用,其特征在于,所述食品为西瓜、西芹、茭白或食醋。
CN202110916743.3A 2021-08-11 2021-08-11 基于光纤局部表面等离子共振的Hg2+生物传感器及其制备方法和应用 Pending CN113804654A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110916743.3A CN113804654A (zh) 2021-08-11 2021-08-11 基于光纤局部表面等离子共振的Hg2+生物传感器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110916743.3A CN113804654A (zh) 2021-08-11 2021-08-11 基于光纤局部表面等离子共振的Hg2+生物传感器及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113804654A true CN113804654A (zh) 2021-12-17

Family

ID=78893480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110916743.3A Pending CN113804654A (zh) 2021-08-11 2021-08-11 基于光纤局部表面等离子共振的Hg2+生物传感器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113804654A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100092625A (ko) * 2009-02-13 2010-08-23 서울대학교산학협력단 표면 플라즈몬 공명 장치를 이용한 수은 이온 검출용 dna 기반 바이오센서
US20110014724A1 (en) * 2008-02-13 2011-01-20 Sungkyunkwan University Foundation For Corporate C Method of detecting bioproducts using localized surface plasmon resonance sensor of gold nanoparticles
KR20130001886A (ko) * 2011-06-28 2013-01-07 고려대학교 산학협력단 검출 감도가 향상된 금 나노로드의 국지화된 표면 플라즈몬 공명 센서, 이의 제조방법 및 이를 이용한 생체물질 검출방법
KR20150120003A (ko) * 2014-04-16 2015-10-27 서울대학교산학협력단 수은에 선택적인 감응성을 보이는 압타머가 도입된 그래핀을 채널로 사용하는 고감응성 전계 효과 트랜지스터 수은 센서의 제조방법
CN105866047A (zh) * 2016-03-30 2016-08-17 济南大学 一种检测二价汞离子的生物传感器及其制备方法
CN106841349A (zh) * 2017-01-18 2017-06-13 南京师范大学 一种用于汞离子检测的适配体传感器及其制备方法和应用
US20170199123A1 (en) * 2016-01-07 2017-07-13 Gwangju Institute Of Science And Technology Detection method of heavy metal ions and sensor using the same
KR20190013488A (ko) * 2017-07-28 2019-02-11 고려대학교 세종산학협력단 국소 표면 플라즈마 기반의 수은 이온 검출 프로브, 그 제조 방법 및 이를 이용한 수은 검출 방법
CN111024654A (zh) * 2018-10-09 2020-04-17 四川大学 一种光纤传感器制备方法及在细菌检测中的应用
CN111220672A (zh) * 2020-02-15 2020-06-02 江苏大学 基于能量共振转移检测Hg2+的自增强电化学发光适配体传感器的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014724A1 (en) * 2008-02-13 2011-01-20 Sungkyunkwan University Foundation For Corporate C Method of detecting bioproducts using localized surface plasmon resonance sensor of gold nanoparticles
KR20100092625A (ko) * 2009-02-13 2010-08-23 서울대학교산학협력단 표면 플라즈몬 공명 장치를 이용한 수은 이온 검출용 dna 기반 바이오센서
KR20130001886A (ko) * 2011-06-28 2013-01-07 고려대학교 산학협력단 검출 감도가 향상된 금 나노로드의 국지화된 표면 플라즈몬 공명 센서, 이의 제조방법 및 이를 이용한 생체물질 검출방법
KR20150120003A (ko) * 2014-04-16 2015-10-27 서울대학교산학협력단 수은에 선택적인 감응성을 보이는 압타머가 도입된 그래핀을 채널로 사용하는 고감응성 전계 효과 트랜지스터 수은 센서의 제조방법
US20170199123A1 (en) * 2016-01-07 2017-07-13 Gwangju Institute Of Science And Technology Detection method of heavy metal ions and sensor using the same
CN105866047A (zh) * 2016-03-30 2016-08-17 济南大学 一种检测二价汞离子的生物传感器及其制备方法
CN106841349A (zh) * 2017-01-18 2017-06-13 南京师范大学 一种用于汞离子检测的适配体传感器及其制备方法和应用
KR20190013488A (ko) * 2017-07-28 2019-02-11 고려대학교 세종산학협력단 국소 표면 플라즈마 기반의 수은 이온 검출 프로브, 그 제조 방법 및 이를 이용한 수은 검출 방법
CN111024654A (zh) * 2018-10-09 2020-04-17 四川大学 一种光纤传感器制备方法及在细菌检测中的应用
CN111220672A (zh) * 2020-02-15 2020-06-02 江苏大学 基于能量共振转移检测Hg2+的自增强电化学发光适配体传感器的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHUO JIA ET AL: "A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates", 《BIOSENSORS AND BIOELECTRONICS》, vol. 114, pages 15 - 21 *
XU, YC ET AL: "A portable optical fiber biosensor for the detection of zearalenone based on the localized surface plasmon resonance", 《SENSORS AND ACTUATORS: B. CHEMICAL》, vol. 336, pages 1 - 7 *
夏妮: "基于石墨烯氧化物-硫代磷酸化DNA传感器对汞离子高灵敏检测的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 02, pages 19 - 30 *

Similar Documents

Publication Publication Date Title
Wang et al. Water pollutants p-cresol detection based on Au-ZnO nanoparticles modified tapered optical fiber
CN110231297B (zh) 利用掺杂型碳量子点可视化测定过氧化氢含量的方法
Ma et al. Optical fiber SPR sensor with surface ion imprinting for highly sensitive and highly selective Ni 2+ detection
Luo et al. A portable Raman system for the identification of foodborne pathogenic bacteria
Duan et al. 4-mercaptopyridine modified fiber optic plasmonic sensor for sub-nM mercury (II) detection
Lei et al. Constructing the Au nanoparticle multimer on optical fiber end face to enhance the signal of localized surface plasmon resonance biosensors: A case study for deoxynivalenol detection
CN113777088B (zh) 一种基于碳点的乙酰胆碱酯酶的荧光检测方法
CN108250133A (zh) 一种用于检测锌离子的荧光-拉曼双探针材料及其制备方法
Li et al. Gold/zinc oxide nanoparticles functionalized tapered SMF-MMF-SMF-based sensor probe for uric acid detection
Verma et al. Single-drop and nanogram level determination of sulfite (SO32−) in alcoholic and nonalcoholic beverage samples based on diffuse reflectance fourier transform infrared spectroscopic (DRS-FTIR) analysis on KBr matrix
CN109781703B (zh) 一种表面增强拉曼散射活性纳米光纤及其检测水中亚硝酸盐含量的方法
Li et al. Selective and accurate detection of nitrate in aquaculture water with surface-enhanced raman scattering (SERS) using gold nanoparticles decorated with β-cyclodextrins
Ooi et al. L-cysteine grafted fiber-optic chemosensor for heavy metal detection
Badiya et al. Low-cost plasmonic carbon spacer for surface plasmon-coupled emission enhancements and ethanol detection: a smartphone approach
Fang et al. Prism SPR Glucose Sensor Based on Gold Nanoparticle/Gold Film Coupling Enhanced SPR
CN113804654A (zh) 基于光纤局部表面等离子共振的Hg2+生物传感器及其制备方法和应用
JPH0720055A (ja) シスジオールの測定方法、固体支持体および測定キット
Ghosh et al. A natural cyanobacterial protein C-phycoerythrin as an Hg 2+ selective fluorescent probe in aqueous systems
He et al. Preparation of biomass water‐soluble carbon quantum dots and their application in Cr (VI) ions detection
JP4517079B2 (ja) スラブ光導波路分光ケミカルセンサ
CN115165807A (zh) 基于AuNPs多聚体的FOLSPR适配体传感器及其制备方法与应用
Kurauchi et al. Fiber-optic sensor with a dye-modified chitosan/poly (vinyl alcohol) cladding for the determination of organic acids
Liu et al. A rapid Surface-Enhanced Raman scattering method for the determination of trace Hg2+ with tapered optical fiber probe
Wang et al. Preparation of cellulose-based flexible SERS and its application for rapid and ultra-sensitive detection of thiram on fruits and vegetables
Zhao et al. A fluorescent DNAzyme-based biosensor for the detection of lead ions using carbon quantum dots prepared from grapefruit peel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination