CN113801639B - 一种相变储能材料及其制备方法 - Google Patents

一种相变储能材料及其制备方法 Download PDF

Info

Publication number
CN113801639B
CN113801639B CN202111066716.8A CN202111066716A CN113801639B CN 113801639 B CN113801639 B CN 113801639B CN 202111066716 A CN202111066716 A CN 202111066716A CN 113801639 B CN113801639 B CN 113801639B
Authority
CN
China
Prior art keywords
energy storage
phase change
storage material
change energy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111066716.8A
Other languages
English (en)
Other versions
CN113801639A (zh
Inventor
汪双凤
丘文娟
白羽
陈伟程
方玉堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111066716.8A priority Critical patent/CN113801639B/zh
Publication of CN113801639A publication Critical patent/CN113801639A/zh
Application granted granted Critical
Publication of CN113801639B publication Critical patent/CN113801639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种相变储能材料及其制备方法。本发明的相变储能材料包括以下质量份的组分:水合硫酸铝盐:50份~65份;赤藓糖醇:35份~50份;膨胀石墨:5份~20份;水合硫酸铝盐和赤藓糖醇合计100份。本发明的相变储能材料的制备方法包括以下步骤:1)将水合硫酸铝盐和赤藓糖醇混合后加热至完全熔化,得到熔融混合物;2)将膨胀石墨加入熔融混合物中,进行混合,即得相变储能材料。本发明的相变储能材料具有相变焓值高、过冷度小、无相分离、热导率较高等优点,且成本低廉、原料绿色安全、制备条件温和、操作简单,可以用于清洁供暖、工业废余热回收和太阳能光热转化等领域。

Description

一种相变储能材料及其制备方法
技术领域
本发明涉及相变蓄能技术领域,具体涉及一种相变储能材料及其制备方法。
背景技术
潜热储能又称相变储能,是一种利用材料在相变时吸热或释热来进行储能或释能的高新储能技术。潜热储能可以解决能源供需时间和空间上的不平衡问题,是现阶段极具应用前景的储能方式之一,在太阳能利用、冷链物流、建筑节能、电力“移峰填谷”、工业废热回收利用等领域均有应用。
相变材料是潜热储能技术的核心,其性能直接关系到热能利用效率。相变材料在实际应用中要想保证能源高效利用,其相变温度要与应用环境温度相一致,但由于相变材料种类有限且单一相变材料的熔点固定,往往容易出现应用温度和相变温度不一致的问题。无机水合盐(例如:十二水合硫酸铝盐,相变温度范围为91℃~94℃,相变焓值约250kJ/kg,是极具应用前景的一类无机水合盐)是典型的固-液相变材料,熔点大多处于0℃~150℃之间,具有相变温度合适、储能密度较高、成本低廉等优点,备受关注。然而,无机水合盐易出现“过冷”、“相分离”、“液相泄漏”、“热导率较低”等问题,且储热性能会随着循环次数增加而变差,应用推广受到了很大限制。
发明内容
本发明的目的在于提供一种相变储能材料及其制备方法。
本发明所采取的技术方案是:
一种相变储能材料,其包括以下质量份的组分:
水合硫酸铝盐:50份~65份;
赤藓糖醇:35份~50份;
膨胀石墨:5份~20份;
水合硫酸铝盐和赤藓糖醇合计100份。
优选的,所述水合硫酸铝盐为十二水硫酸铝钾、十二水硫酸铝铵、十八水硫酸铝中的至少一种。
优选的,所述膨胀石墨(EG)的粒径≤25μm,膨胀率≥99%。
优选的,所述膨胀石墨进行过干燥处理。
进一步优选的,所述膨胀石墨在60℃~100℃下进行过4h~10h的干燥处理。
上述相变储能材料的制备方法包括以下步骤:
1)将水合硫酸铝盐和赤藓糖醇混合后加热至完全熔化,得到熔融混合物;
2)将膨胀石墨加入熔融混合物中,进行混合,即得相变储能材料。
优选的,步骤1)所述混合的方式为机械搅拌,搅拌速度为300r/min~500r/min。
优选的,步骤1)所述加热在85℃~95℃下进行,加热时间为1h~2h。
优选的,步骤2)所述混合在85℃~95℃下进行,混合时间为6h~8h。
优选的,步骤2)所述混合的方式为间歇式机械搅拌,每搅拌5min~30min后停止搅拌1h~2h,搅拌速度为300r/min~500r/min。
优选的,步骤2)所述混合在抽真空条件下进行。
本发明的有益效果是:本发明的相变储能材料具有相变焓值高、过冷度小、无相分离、热导率较高等优点,且成本低廉、原料绿色安全、制备条件温和、操作简单,可以用于清洁供暖、工业废余热回收和太阳能光热转化等领域。
具体来说:
1)本发明的相变储能材料具有可控的相变温度,相变温度范围为70℃~75℃,能够满足不同的应用温度需求;
2)本发明的相变储能材料的相变焓值高,相变焓值为188.0kJ/kg~235.0kJ/kg,热导率较高,热导率为2.650W/(m·K)~10.960W/(m·K);
3)本发明的相变储能材料中添加有膨胀石墨,其具有多孔结构,可以通过物理作用吸附相变材料水合硫酸铝盐和赤藓糖醇,防止相变过程中材料发生液漏,使得到的相变储能材料在80℃~90℃下均表现出良好的防液漏效果,液漏率低至0.02%;
4)本发明的相变储能材料中添加有膨胀石墨,其可以作为成核位点在结晶过程中加速晶体成核过程,从而可以降低得到的相变储能材料的过冷度;
5)本发明的相变储能材料中添加有赤藓糖醇,其可以解决膨胀石墨亲水性较弱、对水合硫酸铝盐吸附性不佳的问题,避免了相分离,增加了膨胀石墨对水合硫酸铝盐的吸附效果,更有效地防止了液漏。
附图说明
图1为实施例1的相变储能材料和十二水硫酸铝钾的单向差示扫描量热图。
图2为实施例2的相变储能材料的单向差示扫描量热图。
图3为实施例3的相变储能材料的单向差示扫描量热图。
图4为实施例4的相变储能材料和十二水合硫酸铝铵的单向差示扫描量热图。
图5为实施例5的相变储能材料的单向差示扫描量热图。
图6为实施例6的相变储能材料的单向差示扫描量热图。
具体实施方式
下面结合具体实施例对本发明作进一步的解释和说明。
实施例1:
一种相变储能材料,其制备方法包括以下步骤:
1)将19.5g的十二水硫酸铝钾和10.5g的赤藓糖醇加入密封玻璃瓶中,搅拌均匀,再升温至90℃恒温搅拌2h,搅拌速度控制在500r/min,得到熔融混合物;
2)将4.5g粒径为25μm、膨胀率为99%的膨胀石墨80℃干燥6h后加入熔融混合物中,抽真空条件下90℃恒温搅拌8h,搅拌的方式为间歇式机械搅拌,每次搅拌5min后停止搅拌2h,搅拌速度控制在500r/min,室温冷却,即得相变储能材料。
性能测试:
1)本实施例的相变储能材料(记为Alum-E/EG)和十二水硫酸铝钾(记为Alum)的单向差示扫描量热图如图1所示。
由图1可知:本实施例的相变储能材料的相变温度为73.33℃,相变焓值为233.6kJ/kg,热导率为8.360W/(m·K),而十二水硫酸铝钾的相变温度为91.44℃,相变焓值为246.38kJ/kg,热导率为0.550W/(m·K)。
2)将本实施例的相变储能材料用模具压制成直径3cm的饼状,再放在滤纸上置于玻璃瓶中,密封,置于烘箱中分别于90℃和80℃下恒温8h,称量计算得到液漏率分别为0.59%和0.02%。
实施例2:
一种相变储能材料,其制备方法包括以下步骤:
1)将16.5g的十二水硫酸铝钾和13.5g的赤藓糖醇加入密封玻璃瓶中,搅拌均匀,再升温至90℃恒温搅拌2h,搅拌速度控制在500r/min,得到熔融混合物;
2)将3.0g粒径为25μm、膨胀率为99%的膨胀石墨80℃干燥6h后加入熔融混合物中,抽真空条件下90℃恒温搅拌8h,搅拌的方式为间歇式机械搅拌,每次搅拌10min后停止搅拌1h,搅拌速度控制在500r/min,室温冷却,即得相变储能材料。
性能测试:
本实施例的相变储能材料的单向差示扫描量热图如图2所示。
由图2可知:本实施例的相变储能材料的相变温度为72.31℃,相变焓值为232.0kJ/kg,热导率为6.386W/(m·K)。
实施例3:
一种相变储能材料,其制备方法包括以下步骤:
1)将18.0g的十二水硫酸铝钾和12.0g的赤藓糖醇加入密封玻璃瓶中,搅拌均匀,再升温至90℃恒温搅拌1.5h,搅拌速度控制在500r/min,得到熔融混合物;
2)将6.0g粒径为25μm、膨胀率为99%的膨胀石墨80℃干燥6h后加入熔融混合物中,抽真空条件下90℃恒温搅拌6h,搅拌的方式为间歇式机械搅拌,每次搅拌5min后停止搅拌1.5h,搅拌速度控制在500r/min,室温冷却,即得相变储能材料。
性能测试:
本实施例的相变储能材料的单向差示扫描量热图如图3所示。
由图3可知:本实施例的相变储能材料的相变温度为72.19℃,相变焓值为208.1kJ/kg,热导率为10.960W/(m·K)。
综合实施例1~3可知:实施例1~3的相变储能材料的相变温度低至72.19℃,低于十二水硫酸铝钾的91.44℃,且相变焓值高,能够充分拓展其应用领域,且热导率均远高于十二水硫酸铝钾,蓄/放热速率快。
实施例4:
一种相变储能材料,其制备方法包括以下步骤:
1)将18.9g的十二水硫酸铝铵和11.1g的赤藓糖醇加入密封玻璃瓶中,搅拌均匀,再升温至85℃恒温搅拌2h,搅拌速度控制在500r/min,得到熔融混合物;
2)将1.5g粒径为25μm、膨胀率为99%的膨胀石墨80℃干燥6h后加入熔融混合物中,抽真空条件下85℃恒温搅拌6h,搅拌的方式为间歇式机械搅拌,每次搅拌10min后停止搅拌1h,搅拌速度控制在500r/min,室温冷却,即得相变储能材料。
性能测试:
本实施例的相变储能材料(记为AAS-E/EG)和十二水硫酸铝铵(记为AAS)的单向差示扫描量热图如图4所示。
由图4可知:本实施例的相变储能材料的相变温度为71.93℃,相变焓值为235.0kJ/kg,热导率为2.650W/(m·K),而十二水硫酸铝铵的相变温度为94.69℃,相变焓值为275.8kJ/kg,热导率为0.550W/(m·K)。
实施例5:
一种相变储能材料,其制备方法包括以下步骤:
1)将18.9g的十二水硫酸铝铵和11.1g的赤藓糖醇加入密封玻璃瓶中,搅拌均匀,再升温至90℃恒温搅拌2h,搅拌速度控制在500r/min,得到熔融混合物;
2)将4.5g粒径为25μm、膨胀率为99%的膨胀石墨80℃干燥6h后加入熔融混合物中,抽真空条件下85℃恒温搅拌8h,搅拌的方式为间歇式机械搅拌,每次搅拌5min后停止搅拌1.5h,搅拌速度控制在500r/min,室温冷却,即得相变储能材料。
性能测试:
1)本实施例的相变储能材料的单向差示扫描量热图如图5所示。
由图5可知:本实施例的相变储能材料的相变温度为70.62℃,相变焓值为188.0kJ/kg,热导率为10.671W/(m·K)。
2)将本实施例的相变储能材料用模具压制成直径3cm的饼状,再放在滤纸上置于玻璃瓶中,密封,置于烘箱中80℃下恒温8h,称量计算得到液漏率为0.08%。
实施例6:
一种相变储能材料,其制备方法包括以下步骤:
1)将19.5g的十二水硫酸铝铵和10.5g的赤藓糖醇加入密封玻璃瓶中,搅拌均匀,再升温至90℃恒温搅拌1.5h,搅拌速度控制在500r/min,得到熔融混合物;
2)将4.5g粒径为25μm、膨胀率为99%的膨胀石墨80℃干燥6h后加入熔融混合物中,抽真空条件下85℃恒温搅拌8h,搅拌的方式为间歇式机械搅拌,每次搅拌10min后停止搅拌1h,搅拌速度控制在500r/min,室温冷却,即得相变储能材料。
性能测试:
本实施例的相变储能材料的单向差示扫描量热图如图6所示。
由图6可知:本实施例的相变储能材料的相变温度为72.21℃,相变焓值为213.5kJ/kg,热导率为5.569W/(m·K)。
综合实施例4~6可知:实施例4~6的相变储能材料的相变温度低至70.62℃,低于十二水硫酸铝铵的94.69℃,且相变焓值高,能够充分拓展其应用领域,且热导率均远高于十二水硫酸铝铵,蓄/放热速率快。
对比例1:
一种相变材料,其为Ba(OH)2·8H2O-KCl/EG(相变材料中Ba(OH)2·8H2O-KCl的质量百分含量为80%,Ba(OH)2·8H2O和KCl的质量比为90:10)。
经测试,Ba(OH)2·8H2O-KCl/EG的相变温度为66.32℃,相变焓值为175.3kJ/kg。
对比例2:
一种相变材料,其为Ba(OH)2·8H2O-KNO3/EG(相变材料中Ba(OH)2·8H2O-KNO3的质量百分含量为95%,Ba(OH)2·8H2O和KNO3的质量比为88:12)。
经测试,Ba(OH)2·8H2O-KNO3/EG的相变温度为66.42℃,相变焓值为201.6kJ/kg。
对比例3:
一种相变材料,其为KAl(SO4)2·12H2O-尿素/EG(相变材料中KAl(SO4)2·12H2O-尿素的质量百分含量为70%,KAl(SO4)2·12H2O和尿素的质量比为98:2)。
经测试,KAl(SO4)2·12H2O-尿素/EG的相变温度为78.15℃,相变焓值为135.3kJ/kg。
对比例4:
一种相变材料,其为KAl(SO4)2·12H2O-丙氨酸/EG(相变材料中KAl(SO4)2·12H2O-丙氨酸的质量百分含量为90%,KAl(SO4)2·12H2O和丙氨酸的质量比为90:10)。
经测试,KAl(SO4)2·12H2O-丙氨酸/EG的相变温度为75.50℃,相变焓值为123.5kJ/kg。
对比例5:
一种相变材料,其为Mg(NO3)2·6H2O-MgCl2·6H2O(Mg(NO3)2·6H2O和MgCl2·6H2O的质量比为93:7)。
经测试,Mg(NO3)2·6H2O-MgCl2·6H2O的相变温度为78.00℃,相变焓值为152.4kJ/kg。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种相变储能材料,其特征在于,其包括以下质量份的组分:
水合硫酸铝盐:50份~65份;
赤藓糖醇:35份~50份;
膨胀石墨:5份~20份;
水合硫酸铝盐和赤藓糖醇合计100份;
所述水合硫酸铝盐为十二水硫酸铝钾、十二水硫酸铝铵、十八水硫酸铝中的至少一种;
所述膨胀石墨的粒径≤25μm,膨胀率≥99%。
2.根据权利要求1所述的相变储能材料,其特征在于:所述膨胀石墨进行过干燥处理。
3.权利要求1或2所述的相变储能材料的制备方法,其特征在于,包括以下步骤:
1)将水合硫酸铝盐和赤藓糖醇混合后加热至完全熔化,得到熔融混合物;
2)将膨胀石墨加入熔融混合物中,进行混合,即得相变储能材料。
4.根据权利要求3所述的相变储能材料的制备方法,其特征在于:步骤1)所述混合的方式为机械搅拌,搅拌速度为300r/min~500r/min。
5.根据权利要求3或4所述的相变储能材料的制备方法,其特征在于:步骤1)所述加热在85℃~95℃下进行,加热时间为1h~2h。
6.根据权利要求3所述的相变储能材料的制备方法,其特征在于:步骤2)所述混合在85℃~95℃下进行,混合时间为6h~8h。
7.根据权利要求3、4和6中任意一项所述的相变储能材料的制备方法,其特征在于:步骤2)所述混合的方式为间歇式机械搅拌,每搅拌5min~30min后停止搅拌1h~2h,搅拌速度为300r/min~500r/min。
8.根据权利要求3、4和6中任意一项所述的相变储能材料的制备方法,其特征在于:步骤2)所述混合在抽真空条件下进行。
CN202111066716.8A 2021-09-13 2021-09-13 一种相变储能材料及其制备方法 Active CN113801639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111066716.8A CN113801639B (zh) 2021-09-13 2021-09-13 一种相变储能材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111066716.8A CN113801639B (zh) 2021-09-13 2021-09-13 一种相变储能材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113801639A CN113801639A (zh) 2021-12-17
CN113801639B true CN113801639B (zh) 2022-10-25

Family

ID=78895143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111066716.8A Active CN113801639B (zh) 2021-09-13 2021-09-13 一种相变储能材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113801639B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827584A (zh) * 2012-08-31 2012-12-19 河南科技大学 一种高相变热定型相变材料及其制备方法
CN104845592B (zh) * 2015-05-07 2017-12-29 长沙理工大学 一种高导热中温定形相变材料及其制备方法
CN106967390A (zh) * 2017-03-30 2017-07-21 华南理工大学 一种低温无机复合相变储热材料及其制备方法
CN106947434B (zh) * 2017-04-14 2020-07-14 华南理工大学 一种水合盐-改性膨胀石墨复合相变材料及其制备方法
CN107603571B (zh) * 2017-09-26 2020-08-28 华北电力大学 定型膨胀石墨基赤藓糖醇中温复合相变储热材料的制备
CN109880597A (zh) * 2019-03-13 2019-06-14 华南理工大学 一种改性十二水合硫酸铝钾/膨胀石墨复合相变蓄热材料及其制备方法
CN112409995A (zh) * 2020-10-27 2021-02-26 青海爱能森新材料科技有限公司 一种中温有机相变储热材料及其制备方法

Also Published As

Publication number Publication date
CN113801639A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN103194182B (zh) 一种梯级多孔异质复合相变材料的制备方法
CN110713728B (zh) 一种石蜡-sebs热塑性弹性体复合相变材料的制备方法
CN101560377B (zh) 泡沫金属基高温相变蓄热复合材料及其制备方法
CN102604599A (zh) 一种无机相变储能材料
Prabhu et al. Review of phase change materials for thermal energy storage applications
CN105838331B (zh) 一种硅藻土基复合相变储热球、制备方法和用途
CN101560376B (zh) 一种定形复合相变材料及其制备方法
CN109777373B (zh) 中温跨季储热材料
CN110862805A (zh) 一种恒温相变储能材料及其制备方法
CN113801639B (zh) 一种相变储能材料及其制备方法
CN108383491B (zh) 高岭土基储热陶瓷及其制备方法
CN113136174A (zh) 一种太阳能无机储能材料及其制备方法和应用
CN104357023A (zh) 一种无机水合盐储热材料及其制备方法
CN112080255A (zh) 低温复合相变储能材料及其制备方法
CN208170767U (zh) 一种储热装置及储热系统
CN104357022A (zh) 一种无机相变储热材料及其制备方法
CN105567174B (zh) 一种矿物基化学储热复合材料及其制备方法
CN105623618A (zh) 一种无机水合盐复合相变储热材料及其制备方法
CN108467712A (zh) 一种熔盐储热材料
CN114736658A (zh) 一种基于三水醋酸钠的有机-无机共熔混合物相变蓄热材料及制备方法
CN104130752A (zh) 一种硫酸镁铵复盐/多孔沸石复合材料及其制备方法和应用
CN106854456A (zh) 一种具有调温节能作用的定形复合相变材料及其制备方法
CN105154019A (zh) 一种无机定型相变储热材料及其制备方法
Jia et al. Recent advances in energy storage and applications of form‐stable phase change materials with recyclable skeleton
CN103289655B (zh) 膨胀石墨复合蓄热材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant