CN113791139A - 用于复合材料机匣检测的多工位超声穿透法自动扫描系统 - Google Patents

用于复合材料机匣检测的多工位超声穿透法自动扫描系统 Download PDF

Info

Publication number
CN113791139A
CN113791139A CN202111095848.3A CN202111095848A CN113791139A CN 113791139 A CN113791139 A CN 113791139A CN 202111095848 A CN202111095848 A CN 202111095848A CN 113791139 A CN113791139 A CN 113791139A
Authority
CN
China
Prior art keywords
composite material
ultrasonic
transducer
unit
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111095848.3A
Other languages
English (en)
Inventor
刘菲菲
刘松平
罗云烽
傅天航
杨玉森
李乐刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Composite Corp Ltd
Original Assignee
AVIC Composite Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Composite Corp Ltd filed Critical AVIC Composite Corp Ltd
Priority to CN202111095848.3A priority Critical patent/CN113791139A/zh
Publication of CN113791139A publication Critical patent/CN113791139A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明涉及一种用于复合材料机匣检测的多工位超声穿透法自动扫描系统,每个多轴扫描机构通过对应的C形工装与对应的换能器连接,超声单元用于通过换能器发射宽带窄脉冲超声波并接收复合材料机匣的透射宽带窄脉冲超声波,控制单元用于控制对应的多轴扫描机构并获取对应的两个换能器的扫描位置信号,成像单元用于将接收到的透射宽带窄脉冲超声波及扫描位置信号进行重构以实现超声检测结果的成像和分析;柔性工作台用于放置复合材料机匣,水耦合单元用于为每个换能器与复合材料机匣之间提供水耦合。该用于复合材料机匣检测的多工位超声穿透法自动扫描系统的目的是解决复合材料机匣无损检测的准确性、可靠性及检测效率较低的问题。

Description

用于复合材料机匣检测的多工位超声穿透法自动扫描系统
技术领域
本发明涉及无损检测技术领域,具体涉及一种用于复合材料机匣检测的多工位超声穿透法自动扫描系统。
背景技术
复合材料因其具有优越的比性能,不断在航空航天领域得到应用。由于质量和安全原因,复合材料制件的质量检测与内部缺陷表征、评估与无损检测非常重要,特别批量生产中的复合材料制件的质量控制与自动化无损检测尤为重要。复合材料机匣是目前在航空发动机中得到批量装机的重要复合材料制件,超声是目前复合材料机匣主要无损检测方法,对于手工检测,目前主要是采用采用超声反射法检测,以手动扫查检测为主,检测结果主要由检测人员通过检测仪器屏幕显示的超声回波信号进行缺陷。在复合材料机匣批量制造阶段,急需通过采用专门的超声自动扫描检测技术、检测设备、检测方法等,实现复合材料机匣的自动化扫描检测,同时还急需要提到复合材料机匣的自动化扫描检测的效率。
手动超声检测方法是目前采用的复合材料机匣主要方法,其不足是:需要大量的检测用工,检测效率低,检测结果不能成像显示和记录,不能实现自动化检测,检测结果容易受检测人员的主管因素影响,容易造成漏检,从而使检测的可靠性下降,难以满足批产过程中的复合材料机匣的无损检测要求。作为一种改进,采用超声自动扫描检测方法,但目前可用于复合材料机匣超声自动扫描检测的装置的主要不足是:仅考虑了单个超声检测工位,检测效率低,工作台采用刚性设计,缺乏灵活性,难以实现不同高度的复合材料机匣的超声自动扫描检测,从而不利于实现批产过程中的复合材料机匣的超声自动扫描检测。
因此,发明人提供了一种用于复合材料机匣检测的多工位超声穿透法自动扫描系统。
发明内容
(1)要解决的技术问题
本发明实施例提供了一种用于复合材料机匣检测的多工位超声穿透法自动扫描系统,解决了复合材料机匣无损检测的准确性、可靠性及检测效率较低的技术问题。
(2)技术方案
本发明提供了一种用于复合材料机匣检测的多工位超声穿透法自动扫描系统,包括多轴扫描机构、控制单元、超声单元、成像单元、柔性工作台、换能器、C形工装和水耦合单元;
所述多轴扫描机构、所述控制单元、所述换能器及所述C形工装均至少为两个,所述C形工装的开口端两侧均设有所述换能器;同一个C形工装上的两个换能器且分别位于复合材料机匣的内侧及外侧,其中的一个用于发射宽带窄脉冲超声波,另一个用于接收所述宽带窄脉冲超声波;
每个所述多轴扫描机构通过对应的C形工装与对应的换能器连接,所述超声单元用于通过所述换能器发射宽带窄脉冲超声波并接收所述复合材料机匣的透射宽带窄脉冲超声波,每个所述控制单元用于控制对应的多轴扫描机构并获取对应的两个换能器的扫描位置信号,所述成像单元用于将接收到的所述透射宽带窄脉冲超声波及所述扫描位置信号进行重构以实现超声检测结果的成像和分析;
所述柔性工作台用于放置所述复合材料机匣,所述水耦合单元用于为每个换能器与所述复合材料机匣之间提供水耦合。
进一步地,所述柔性工作台包括回水盘、零件支撑板、升降杆、旋转轴、旋转电机、支持底盘、支架、升降电机、传动轴、齿轮传动组件及连接件;
所述零件支撑板设于所述回水盘上且用于放置所述复合材料机匣,所述回水盘设于所述支持底盘上,所述零件支撑板通过所述连接件与所述旋转轴连接,所述旋转轴穿设于所述支持底盘且与所述旋转电机连接,所述支持底盘的下端设有多个所述齿轮传动组件,每个所述齿轮传动组件与对应的升降杆连接,所述升降电机通过所述传动轴与每个所述齿轮传动组件连接,所述升降电机及多个所述齿轮传动组件均安装在所述支架上。
进一步地,所述柔性工作台还包括防护罩,所述防护罩罩设于所述支架。
进一步地,所述柔性工作台还包括滚轮及自锁装置,所述支架的底部设有多个所述滚轮,每个所述滚轮通过对应的自锁装置完成自锁。
进一步地,所述换能器包括壳体以及设于所述壳体内的压电单元、进水口、喷水腔及出水口,所述喷水腔的两端分别与所述进水口、所述出水口连通,所述压电单元设于所述喷水腔远离所述出水口的一端。
进一步地,所述C形工装包括法兰连接头、横杆及连接器,所述法兰连接头与所述横杆连接,所述横杆的两端均连接与所述连接器的一端连接,所述连接器的另一端用于安装所述换能器。
进一步地,所述连接器包括第一连接杆、第二连接杆、连接套及安装座;
所述第一连接杆的第一端通过所述连接套与所述第二连接杆的第一端连接,所述第一连接杆的第二端与所述横杆连接,所述第二连接杆的第二端与所述安装座连接,所述安装座用于安装所述换能器。
进一步地,所述多轴扫描机构为具有多轴自由度的机器人。
进一步地,所述超声单元为多通道超声单元。
进一步地,所述换能器为复合材料宽带窄脉冲超声换能器。
(3)有益效果
综上,本发明利用宽带超声脉冲声波在复合材料机匣中具有不同的声学传播行为,显著地提高了复合材料机匣的检测效率和自动化检测程度,同时又具有很好的检测分辨率和缺陷检出灵敏度,更有利于提高复合材料机匣内部缺陷的超声检出能力和检测可靠性,更加适合批产过程中的复合材料机匣的快速超声自动检测与缺陷评定。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种用于复合材料机匣检测的多工位超声穿透法自动扫描系统的结构示意图;
图2是本发明实施例提供的一种用于复合材料机匣检测的多工位超声反射法自动扫描系统中柔性工作台的立视图;
图3是本发明实施例提供的一种用于复合材料机匣检测的多工位超声反射法自动扫描系统中柔性工作台的左视图;
图4是图3中A-A面的剖视图;
图5是本发明实施例提供的一种用于复合材料机匣检测的多工位超声反射法自动扫描系统中换能器的结构示意图;
图6是本发明实施例提供的一种用于复合材料机匣检测的多工位超声反射法自动扫描系统中C形工装的结构示意图。
图中:
1-多轴扫描机构;2-控制单元;3-超声单元;4-成像单元;5-柔性工作台;501-回水盘;502-零件支撑板;503-升降杆;504-旋转轴;505-旋转电机;506-支持底盘;507-支架;508-升降电机;509-传动轴;510-齿轮传动组件;511-连接件;512-防护罩;513-滚轮;514-自锁装置;6-换能器;601-壳体;602-压电单元;603-进水口;604-喷水腔;605-出水口;7-C形工装;701-法兰接头;702-横杆;703-连接器;7031-第一连接杆;7032-第二连接杆;7033-连接套;7034-安装座;8-水耦合单元;100-复合材料机匣。
具体实施方式
下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本发明的原理,但不能用来限制本发明的范围,即本发明不限于所描述的实施例,在不脱离本发明的精神的前提下覆盖了零件、部件和连接方式的任何修改、替换和改进。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参照附图并结合实施例来详细说明本申请。
图1是本发明实施例提供的一种用于复合材料机匣检测的多工位超声穿透法自动扫描系统的结构示意图,包括多轴扫描机构1、控制单元2、超声单元3、成像单元4、柔性工作台5、换能器6、C形工装7和水耦合单元8;
多轴扫描机构1、控制单元2、换能器6及C形工装7均至少为两个,C形工装7的开口端两侧均设有换能器6;同一个C形工装7上的两个换能器且分别位于复合材料机匣100的内侧及外侧,其中的一个用于发射宽带窄脉冲超声波,另一个用于接收宽带窄脉冲超声波;
每个多轴扫描机构1通过对应的C形工装7与对应的换能器6连接,超声单元3用于通过换能器6发射宽带窄脉冲超声波并接收复合材料机匣100的透射宽带窄脉冲超声波,每个控制单元2用于控制对应的多轴扫描机构1并获取对应的两个换能器6的扫描位置信号,成像单元4用于将接收到的透射宽带窄脉冲超声波及扫描位置信号进行重构以实现超声检测结果的成像和分析;
柔性工作台5用于放置复合材料机匣100,水耦合单元8用于为每个换能器6与复合材料机匣100之间提供水耦合。
在上述实施方式中,以两个多轴扫描机构为例,如图1所示,超声双透射法自动扫描系统包括第一超声发射法扫描工位和第二超声发射法扫描工位,其中:
1)超声自动扫描工位构成
第一超声扫描工位、第二超声扫描工位均由多轴扫描机构1、控制单元2、两个换能器6和C形工装7构成,且分别位于柔性工作台5的两侧;
第一超声扫描工位的换能器布置与声学耦合:两个换能器6中的一个用于发射宽带脉冲超声波,另一个用于接收宽带脉冲超声波,两个换能器6分别位于复合材料机匣100的两侧,两个换能器6与复合材料机匣100之间采用水耦合,耦合由水耦合单元8和柔性工作台5提供。
第二超声扫描工位的换能器布置与声学耦合与第一超声扫描工位是相同的,在此不做赘述。
2)超声波的发射和接收
第一超声扫描工位的超声波发射与接收:通过超声单元3和与其连接的换能器6发射宽带脉冲超声波,通过超声单元3和与其连接的另一换能器6接收来自复合材料机匣100中的透射宽带脉冲超声波
Figure BDA0003269109720000071
反之亦然,这里,
Figure BDA0003269109720000072
分别表示透射宽带脉冲超声波
Figure BDA0003269109720000073
的幅值、相位和传播时间;
第二超声扫描工位的超声波发射与接收:通过超声单元3和与其连接的换能器6发射宽带脉冲超声波,通过超声单元3和与其连接的另一换能器6接收来自复合材料机匣100中的透射宽带脉冲超声波
Figure BDA0003269109720000074
反之亦然,这里,
Figure BDA0003269109720000075
分别表示透射宽带脉冲超声波
Figure BDA0003269109720000076
的幅值、相位和传播时间;
由超声单元3分别将
Figure BDA0003269109720000081
Figure BDA0003269109720000082
转换为数字信号,送成像单元4进行成像显示;
3)位置信号的获取
第一超声扫描工位的位置信号的获取:通过控制单元2分别获取两个换能器6的扫描位置信号
Figure BDA0003269109720000083
这里,
Figure BDA0003269109720000084
分别表示透射宽带脉冲超声波在复合材料机匣100中的当前坐标位置;
第二超声扫描工位的位置信号的获取:通过控制单元2分别获取两个换能器6的扫描位置信号
Figure BDA0003269109720000085
这里,
Figure BDA0003269109720000086
分别表示透射宽带脉冲超声波在复合材料机匣100中的当前坐标位置;
Figure BDA0003269109720000087
Figure BDA0003269109720000088
分别送成像单元4进行成像显示;
4)成像显示
通过成像单元4对
Figure BDA0003269109720000089
Figure BDA00032691097200000810
进行重构和成像第一超声扫描工位的超声检测结果的成像和分析;通过成像单元4对
Figure BDA00032691097200000811
Figure BDA00032691097200000812
进行重构和成像第二超声扫描工位的超声检测结果的成像和分析。
柔性工作台5采用喷水和水浸两种方式,实现满足不同高度的被检测的复合材料机匣100的超声检测要求。
图2-4是本发明实施例提供的一种用于复合材料机匣检测的多工位超声反射法自动扫描系统中柔性工作台的结构示意图,该柔性工作台5可以包括回水盘501、零件支撑板502、升降杆503、旋转轴504、旋转电机505、支持底盘506、支架507、升降电机508、传动轴509、齿轮传动组件510及连接件511;
零件支撑板502设于回水盘501上且用于放置复合材料机匣100,回水盘501设于支持底盘506上,零件支撑板502通过连接件511与旋转轴504连接,旋转轴504穿设于支持底盘506且与旋转电机505连接,支持底盘506的下端设有多个齿轮传动组件510,每个齿轮传动组件510与对应的升降杆503连接,升降电机508通过传动轴509与每个齿轮传动组件510连接,升降电机508及多个齿轮传动组件510均安装在支架507上。
在上述实施方式中,检测过程中,旋转电机505带动零件支撑板502旋转,从而带动固支在零件支撑板502上的复合材料机匣100旋转,实现复合材料机匣100的旋转扫描运动,通过升降电机508的正反向运动,带动升降杆503升或降,实现支持底盘506升降,从而实现固定在零件支撑板502上的复合材料机匣100进行升降,根据被检测的复合材料机匣100的周向覆盖检测要求,通过旋转轴504和旋转电机505进行0-360°旋转;根据被检测的复合材料机匣100的高度方向的覆盖检测要求,通过升降杆503及其配套升降电机508、传动轴509、齿轮传动组件510进行升降,满足不同高度的被检测的复合材料机匣100的检测。
在一些可选的实施例中,如图2-4所示,柔性工作台5还包括防护罩512,防护罩512罩设于支架507。其中,防护罩512的设置是为了对放置在支架507的各零部件进行防护。
在一些可选的实施例中,如图2-4所示,柔性工作台5还包括滚轮513及自锁装置514,支架507的底部设有多个滚轮513,每个滚轮513通过对应的自锁装置514完成自锁。其中,滚轮513及自锁装置514的设置有助于柔性工作台5的自由移动并固定位置。
在一些可选的实施例中,如图5所示,换能器6包括壳体601以及设于壳体601内的压电单元602、进水口603、喷水腔604及出水口605,喷水腔604的两端分别与进水口603、出水口605连通,压电单元602设于喷水腔604远离出水口605的一端。其中,扫描检测过程中,由外部供水系统通过进水口603提供超声耦合用水。
在一些可选的实施例中,如图6所示,C形工装7包括法兰连接头701、横杆702及连接器703,法兰连接头701与横杆702连接,横杆702的两端均连接与连接器702的一端连接,连接器702的另一端用于安装换能器6。
具体地,C形工装7通过法兰连接头701与对应的多轴扫描机构1连接,两个换能器6之间的距离通过连接器703调节。
在一些可选的实施例中,如图6所示,连接器703包括第一连接杆7031、第二连接杆7032、连接套7033及安装座7034;第一连接杆7031的第一端通过连接套7033与第二连接杆7032的第一端连接,第一连接杆7031的第二端与横杆702连接,第二连接杆7032的第二端与安装座7034连接,安装座7034用于安装换能器6。
具体地,换能器6安装在安装座7034中,并通过安装座7034侧面锁紧螺栓锁紧。
在一些可选的实施例中,多轴扫描机构1为具有多轴自由度的机器人。具体地,该结构的设置能够满足不同曲面的被检测的复合材料机匣100的超声自动扫描检测要求,根据实际检测要求可以配备多组多轴扫描机构1,构建更多的超声扫描检测工位,提高超声反射法自动扫描检测效率。
在一些可选的实施例中,超声单元3为多通道超声单元。其中,多通道超声单元可以满足多个超声换能器的发射/接收信号要求。
在一些可选的实施例中,换能器6为复合材料宽带窄脉冲超声换能器。具体地,换能器6设计采用专门的复合材料宽带窄脉冲超声换能器,超声单元3的通道数和换能器6的数量与多轴扫描机构数量匹配,构成多个超声检测工位,满足复合材料机匣的高效检测要求。
可选的,成像单元4的设计采用双工作站构成,实现被检测的复合材料机匣100的扫描建模和仿真、检测结果的显示与缺陷评定。
在利用中航复合材料有限责任公司的CUS-21R超声检测系统基础上,构成多个多轴扫描机构,选择复合材料机匣,分别采用超声喷水和水浸两种耦合方式,分别对复合材料机匣进行了系列的双工位超声穿透法自动扫描检测,利用其中的超声单元获取扫描过程中的超声信号
Figure BDA0003269109720000111
Figure BDA0003269109720000112
利用其中的控制单元获取位置信号
Figure BDA0003269109720000113
Figure BDA0003269109720000114
通过其中的成像单元对每个超声扫描工位的检测结果进行成像和分析,结果表明,取得了较好的实际检测效果,可以显著提高有效复合材料机匣自动化检测程度、检测效率和检测结果的可靠性。
需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。本发明并不局限于上文所描述并在图中示出的特定步骤和结构。并且,为了简明起见,这里省略对已知方法技术的详细描述。
以上仅为本申请的实施例而已,并不限制于本申请。在不脱离本发明的范围的情况下对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围内。

Claims (10)

1.一种用于复合材料机匣检测的多工位超声穿透法自动扫描系统,其特征在于,包括多轴扫描机构(1)、控制单元(2)、超声单元(3)、成像单元(4)、柔性工作台(5)、换能器(6)、C形工装(7)和水耦合单元(8);
所述多轴扫描机构(1)、所述控制单元(2)、所述换能器(6)及所述C形工装(7)均至少为两个,所述C形工装(7)的开口端两侧均设有所述换能器(6);同一个C形工装(7)上的两个换能器且分别位于复合材料机匣(100)的内侧及外侧,其中的一个用于发射宽带窄脉冲超声波,另一个用于接收所述宽带窄脉冲超声波;
每个所述多轴扫描机构(1)通过对应的C形工装(7)与对应的换能器(6)连接,所述超声单元(3)用于通过所述换能器(6)发射宽带窄脉冲超声波并接收所述复合材料机匣(100)的透射宽带窄脉冲超声波,每个所述控制单元(2)用于控制对应的多轴扫描机构(1)并获取对应的两个换能器(6)的扫描位置信号,所述成像单元(4)用于将接收到的所述透射宽带窄脉冲超声波及所述扫描位置信号进行重构以实现超声检测结果的成像和分析;
所述柔性工作台(5)用于放置所述复合材料机匣(100),所述水耦合单元(8)用于为每个换能器(6)与所述复合材料机匣(100)之间提供水耦合。
2.根据权利要求1所述的用于复合材料机匣检测的多工位超声穿透法自动扫描系统,其特征在于,所述柔性工作台(5)包括回水盘(501)、零件支撑板(502)、升降杆(503)、旋转轴(504)、旋转电机(505)、支持底盘(506)、支架(507)、升降电机(508)、传动轴(509)、齿轮传动组件(510)及连接件(511);
所述零件支撑板(502)设于所述回水盘(501)上且用于放置所述复合材料机匣(100),所述回水盘(501)设于所述支持底盘(506)上,所述零件支撑板(502)通过所述连接件(511)与所述旋转轴(504)连接,所述旋转轴(504)穿设于所述支持底盘(506)且与所述旋转电机(505)连接,所述支持底盘(506)的下端设有多个所述齿轮传动组件(510),每个所述齿轮传动组件(510)与对应的升降杆(503)连接,所述升降电机(508)通过所述传动轴(509)与每个所述齿轮传动组件(510)连接,所述升降电机(508)及多个所述齿轮传动组件(510)均安装在所述支架(507)上。
3.根据权利要求2所述的用于复合材料机匣检测的多工位超声穿透法自动扫描系统,其特征在于,所述柔性工作台(5)还包括防护罩(512),所述防护罩(512)罩设于所述支架(507)。
4.根据权利要求2所述的用于复合材料机匣检测的多工位超声穿透法自动扫描系统,其特征在于,所述柔性工作台(5)还包括滚轮(513)及自锁装置(514),所述支架(507)的底部设有多个所述滚轮(513),每个所述滚轮(513)通过对应的自锁装置(514)完成自锁。
5.根据权利要求1所述的用于复合材料机匣检测的多工位超声穿透法自动扫描系统,其特征在于,所述换能器(6)包括壳体(601)以及设于所述壳体(601)内的压电单元(602)、进水口(603)、喷水腔(604)及出水口(605),所述喷水腔(604)的两端分别与所述进水口(603)、所述出水口(605)连通,所述压电单元(602)设于所述喷水腔(604)远离所述出水口(605)的一端。
6.根据权利要求1所述的用于复合材料机匣检测的多工位超声穿透法自动扫描系统,其特征在于,所述C形工装(7)包括法兰连接头(701)、横杆(702)及连接器(703),所述法兰连接头(701)与所述横杆(702)连接,所述横杆(702)的两端均连接与所述连接器(702)的一端连接,所述连接器(702)的另一端用于安装所述换能器(6)。
7.根据权利要求6所述的用于复合材料机匣检测的多工位超声穿透法自动扫描系统,其特征在于,所述连接器(703)包括第一连接杆(7031)、第二连接杆(7032)、连接套(7033)及安装座(7034);
所述第一连接杆(7031)的第一端通过所述连接套(7033)与所述第二连接杆(7032)的第一端连接,所述第一连接杆(7031)的第二端与所述横杆(702)连接,所述第二连接杆(7032)的第二端与所述安装座(7034)连接,所述安装座(7034)用于安装所述换能器(6)。
8.根据权利要求1所述的用于复合材料机匣检测的多工位超声穿透法自动扫描系统,其特征在于,所述多轴扫描机构(1)为具有多轴自由度的机器人。
9.根据权利要求1所述的用于复合材料机匣检测的多工位超声穿透法自动扫描系统,其特征在于,所述超声单元(3)为多通道超声单元。
10.根据权利要求1所述的用于复合材料机匣检测的多工位超声穿透法自动扫描系统,其特征在于,所述换能器(6)为复合材料宽带窄脉冲超声换能器。
CN202111095848.3A 2021-09-18 2021-09-18 用于复合材料机匣检测的多工位超声穿透法自动扫描系统 Pending CN113791139A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111095848.3A CN113791139A (zh) 2021-09-18 2021-09-18 用于复合材料机匣检测的多工位超声穿透法自动扫描系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111095848.3A CN113791139A (zh) 2021-09-18 2021-09-18 用于复合材料机匣检测的多工位超声穿透法自动扫描系统

Publications (1)

Publication Number Publication Date
CN113791139A true CN113791139A (zh) 2021-12-14

Family

ID=78878910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111095848.3A Pending CN113791139A (zh) 2021-09-18 2021-09-18 用于复合材料机匣检测的多工位超声穿透法自动扫描系统

Country Status (1)

Country Link
CN (1) CN113791139A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759570A (zh) * 2012-07-04 2012-10-31 北京理工大学 单机械手自动化超声无损检测装置
CN103926320A (zh) * 2013-12-04 2014-07-16 中航复合材料有限责任公司 一种基于自动扫描的非线性超声成像检测方法
CN205333574U (zh) * 2016-01-27 2016-06-22 三峡大学 一种多工位超声检测装置
CN208773158U (zh) * 2018-08-30 2019-04-23 湖南鈊耐自动工装系统发展有限公司 一种旋转分度工作台
CN213580791U (zh) * 2020-10-30 2021-06-29 朱少农 一种柱状空心产品粘接面无损检测机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759570A (zh) * 2012-07-04 2012-10-31 北京理工大学 单机械手自动化超声无损检测装置
CN103926320A (zh) * 2013-12-04 2014-07-16 中航复合材料有限责任公司 一种基于自动扫描的非线性超声成像检测方法
CN205333574U (zh) * 2016-01-27 2016-06-22 三峡大学 一种多工位超声检测装置
CN208773158U (zh) * 2018-08-30 2019-04-23 湖南鈊耐自动工装系统发展有限公司 一种旋转分度工作台
CN213580791U (zh) * 2020-10-30 2021-06-29 朱少农 一种柱状空心产品粘接面无损检测机构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
夏纪真: "《工业无损检测技术 超声检测》", 中山大学出版社, pages: 147 *

Similar Documents

Publication Publication Date Title
JP6676736B2 (ja) ストリンガの非破壊検査のための装置
US7021143B2 (en) Cylindrically-rotating ultrasonic phased array inspection method for resistance spot welds
US7587942B2 (en) Ultrasonic inspection crawler and method for inspecting welds of jet pumps in a nuclear reactor vessel
EP1744157B1 (en) Ultrasonic inspection system and method
TWI275104B (en) Working device and working method
CN105891335A (zh) 一种可调节的相控阵管道环焊缝检测装置
US8082793B2 (en) Adjustable probe for ultrasonic testing
CN103156641A (zh) 超声诊断装置的探测器
WO2010101670A1 (en) Low profile ultrasound inspection scanner
JP5689481B2 (ja) 磁気ばねバランス式ストリンガプローブを備える非破壊検査装置
CN113791139A (zh) 用于复合材料机匣检测的多工位超声穿透法自动扫描系统
Kappes et al. Application of new front-end electronics for non-destructive testing of railroad wheel sets
CN108245188A (zh) 乳腺超声检测系统
CN108535359B (zh) 基于超声技术的电连接器微动磨损检测装置及其运行方法
CN113720913A (zh) 用于复合材料机匣检测的多工位超声反射法自动扫描系统
JP2007003400A (ja) 制御棒貫通孔部材検査装置
CN108562651A (zh) 笔式超声探头姿态闭环调节装置及方法
CN113866270A (zh) 用于复合材料叶片检测的超声穿透法自动扫描系统
CN113866271A (zh) 用于复合材料叶片检测的超声双反射法自动扫描系统
CN109856240B (zh) 多功能高精度的超声扫查成像装置
CN113855071B (zh) 一种改进的超声诊断设备和显示超声图像的方法
CN115389628A (zh) 一种离合式盘件超声相控阵自动成像检测装置和方法
CN112461167B (zh) 一种扭振减振器阻尼层厚度无损检测装置
EP1798550A1 (en) Method for inspecting the interior of a material and portable inspection device for use therein
US4868798A (en) Contact ultrasonic transducer head

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination