CN113789584A - 一种团簇状磁性聚苯胺超细纳米纤维及其制备方法、应用 - Google Patents
一种团簇状磁性聚苯胺超细纳米纤维及其制备方法、应用 Download PDFInfo
- Publication number
- CN113789584A CN113789584A CN202110881122.6A CN202110881122A CN113789584A CN 113789584 A CN113789584 A CN 113789584A CN 202110881122 A CN202110881122 A CN 202110881122A CN 113789584 A CN113789584 A CN 113789584A
- Authority
- CN
- China
- Prior art keywords
- cluster
- polyaniline
- shaped magnetic
- magnetic polyaniline
- nanofiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/88—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
- D01F6/94—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/262—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28009—Magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/285—Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/02—Polyamines
- C08G73/026—Wholly aromatic polyamines
- C08G73/0266—Polyanilines or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/46—Materials comprising a mixture of inorganic and organic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4806—Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4812—Sorbents characterised by the starting material used for their preparation the starting material being of organic character
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
- C08K2003/2275—Ferroso-ferric oxide (Fe3O4)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/01—Magnetic additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
本发明公开了一种团簇状磁性聚苯胺超细纳米纤维的制备方法,包括如下步骤:在苯胺中浸泡纳米磁性粉体,然后与酸性物质的溶液混匀,加入引发剂,反应共聚得到团簇状磁性聚苯胺超细纳米纤维。本发明还公开了一种团簇状磁性聚苯胺超细纳米纤维,按照上述团簇状磁性聚苯胺超细纳米纤维的制备方法制得。本发明还公开了上述团簇状磁性聚苯胺超细纳米纤维在吸附重金属、有机染料中的应用。本发明所述团簇状磁性聚苯胺纳米纤维,其直径很小,形貌可控,方法简单,并且具有良好的吸附性能。
Description
技术领域
本发明涉及聚苯胺技术领域,尤其涉及一种团簇状磁性聚苯胺超细纳米纤维及其制备方法、应用。
背景技术
聚苯胺是导电高分子领域最有价值的物质。它不仅具有导电性和金属加工性能,而且具有很高的导电性。它也具有金属和塑料所不具备的化学和电化学特性。可广泛应用于电子化工、造船、石化、国防等领域,附加值高,应用范围广,商机巨大,是全球研发斗争中最受欢迎的材料之一。
磁性聚苯胺是一种具有特殊电学和光学特性的聚合化合物,并且在掺杂后可以具有后掺杂和电化学性能。磁性聚苯胺的合成包括化学聚合和电化学聚合。目前,磁性聚苯胺的制备已被广泛报道,合成磁性聚苯胺纳米复合材料最常用的方法是化学法氧化聚合。例如,马丽丽,聚苯胺掺杂的研究与发展[J],山东化工,2017,46(01):65-67中公开了在四氧化三铁纳米粒子以及表面活性剂的存在下,苯胺单体原位聚合得到了聚苯胺/纳米四氧化三铁核壳结构的复合材料。还有文献报道了合成分散良好的聚苯胺/四氧化三铁纳米粒子的方法等。
然而,目前制得的磁性聚苯胺的形貌多样,并不可控,多为壳核颗粒,而形貌不同会进而影响其导电、吸附等性能。目前用一种简单有效的方法来控制聚苯胺/纳米粒子复合材料的形貌仍然具有科学挑战性。
发明内容
基于背景技术存在的技术问题,本发明提出了一种团簇状磁性聚苯胺超细纳米纤维及其制备方法、应用,本发明所述磁性聚苯胺纳米纤维,其直径很小,形貌可控,方法简单,并且具有良好的吸附性能。
本发明提出了一种团簇状磁性聚苯胺超细纳米纤维的制备方法,包括如下步骤:在苯胺中浸泡纳米磁性粉体,然后与酸性物质的溶液混匀,加入引发剂,反应共聚得到团簇状磁性聚苯胺超细纳米纤维。
上述反应共聚后,固液分离,依次用温水、乙醇洗涤固体,然后干燥得到团簇状磁性聚苯胺超细纳米纤维。
上述纳米磁性粉体为纳米四氧化铁。
优选地,浸泡1-8h。
优选地,引发剂的加入速度为1.2-1.6g/min。
上述引发剂可以水溶液形式加入,引发剂水溶液的浓度优选0.25g/ml。
酸性物质的溶液的浓度优选0.01-0.1g/ml,酸性物质的溶液的溶剂优选水。
优选地,酸性物质包括:对甲苯磺酸、樟脑磺酸、盐酸、硫酸、硝酸中的至少一种。
优选地,引发剂包括:过硫酸铵、过硫酸钠、过硫酸钾中的至少一种。
优选地,反应温度为-30~60℃,反应时间为8-12h。
优选地,纳米磁性粉体与苯胺的重量比为1-5:10。
优选地,苯胺、酸性物质、引发剂的重量比为1-10:1-10:1-100。
上述水均为去离子水。
本发明还提出了一种团簇状磁性聚苯胺超细纳米纤维,按照上述团簇状磁性聚苯胺超细纳米纤维的制备方法制得。
本发明还提出了上述团簇状磁性聚苯胺超细纳米纤维在吸附重金属、有机染料中的应用。
优选地,重金属为镍。
优选地,有机染料为刚果红或罗丹明-B。
有益效果:
本发明选用合适的方法制得了形貌可控的磁性聚苯胺超细纳米纤维(直径<60nm,长度约2μm),超细纳米纤维组合形成团簇状的结构;超细纳米纤维具有较大的比表面积,对离子/物质的吸附和束缚性能比粗纤维或壳核结构更好,另外超细纳米纤维形成团簇状的结构,其具有笼状结构,可以锁住有机物和金属离子;通过超细纳米纤维和团簇状结构二者的结合,使得本发明所述团簇状磁性聚苯胺超细纳米纤维具有良好的吸附性能;可以用于吸附污水中的金属离子和有机染料,并且本发明具有磁性容易回收;另外本发明制备方法简单,所得磁性聚苯胺形貌可控。
附图说明
图1为实施例1制得团簇状磁性聚苯胺超细纳米纤维的扫描电镜图。
图2为实施例1制得团簇状磁性聚苯胺超细纳米纤维的扫描电镜图的局部放大图。
图3为实施例1-4制得的团簇状磁性聚苯胺超细纳米纤维的红外图谱,其中,10:1为实施例1,10:2为实施例2,10:3为实施例3,10:4为实施例4。
图4为经实施例1制得的团簇状磁性聚苯胺超细纳米纤维吸附前后的氯化镍原液、滤液的吸光度图。
图5为不同pH时,团簇状磁性聚苯胺超细纳米纤维对镍离子的去除率结果。
图6为不同镍离子浓度时,团簇状磁性聚苯胺超细纳米纤维对镍离子的去除率结果。
图7为不同温度时,团簇状磁性聚苯胺超细纳米纤维对刚果红的去除率结果。
图8为不同温度时,团簇状磁性聚苯胺超细纳米纤维对罗丹明-B的去除率结果。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
一种团簇状磁性聚苯胺超细纳米纤维的制备方法,包括如下步骤:
取100ml苯胺与10g的纳米四氧化三铁粉体混合,磁力搅拌混匀,然后浸泡3h记为溶液A;
准备适当的反应容器,在容器内部装满5000ml水,在容器的外底部外围放置冰袋(为了防止反应放热发生爆沸,需要对其进行适当的降温),然后向容器内部加入含有100g对甲苯磺酸的水溶液300ml,打开电动搅拌棒,开始进行搅拌;然后加入溶液A混匀;
接着滴加浓度为0.25g/ml的过硫酸铵水溶液1000ml(控制过硫酸铵的加入速度为1.4g/min,在3h左右滴加完毕);保持温度为10℃,持续搅拌10h,抽滤,用60℃温水洗涤固体,至滤液从深黄色变为无色为止,然后用乙醇洗涤固体去除对甲苯磺酸,接着于60℃的烘箱干燥得到团簇状磁性聚苯胺超细纳米纤维。
实施例2
纳米四氧化三铁粉体的用量为20g,其他同实施例1。
实施例3
纳米四氧化三铁粉体的用量为30g,其他同实施例1。
实施例4
纳米四氧化三铁粉体的用量为40g,其他同实施例1。
实施例5
纳米四氧化三铁粉体的用量为50g,其他同实施例1。
实施例6
一种团簇状磁性聚苯胺超细纳米纤维的制备方法,包括如下步骤:
取100ml苯胺与30g的纳米四氧化三铁粉体混合,磁力搅拌混匀,然后浸泡1h记为溶液A;
准备适当的反应容器,在容器内部装满5000ml水,在容器的外底部外围放置冰袋(为了防止反应放热发生爆沸,需要对其进行适当的降温),然后向容器内部加入含有100g樟脑磺酸的水溶液300ml,打开电动搅拌棒,开始进行搅拌;然后加入溶液A混匀;
接着滴加浓度为1g/ml的过硫酸钠水溶液1000ml(控制过硫酸钠的加入速度为1.2g/min);保持温度为-30℃,持续搅拌12h,抽滤,用60℃温水洗涤固体,至滤液从深黄色变为无色为止,然后用乙醇洗涤固体去除对甲苯磺酸,接着于60℃的烘箱干燥得到团簇状磁性聚苯胺超细纳米纤维。
实施例7
一种团簇状磁性聚苯胺超细纳米纤维的制备方法,包括如下步骤:
取100ml苯胺与20g的纳米四氧化三铁粉体混合,磁力搅拌混匀,然后浸泡8h记为溶液A;
准备适当的反应容器,在容器内部装满5000ml水,在容器的外底部外围放置冰袋(为了防止反应放热发生爆沸,需要对其进行适当的降温),然后向容器内部加入含有100g盐酸(盐酸中HCl的质量分数为5wt%)的水溶液300ml,打开电动搅拌棒,开始进行搅拌;然后加入溶液A混匀;
接着滴加浓度为0.1g/ml的过硫酸钾水溶液1000ml(控制过硫酸钾的加入速度为1.6g/min);保持温度为60℃,持续搅拌8h,抽滤,用60℃温水洗涤固体,至滤液从深黄色变为无色为止,然后用乙醇洗涤固体去除对甲苯磺酸,接着于60℃的烘箱干燥得到团簇状磁性聚苯胺超细纳米纤维。
实验1
取实施例1制得的团簇状磁性聚苯胺超细纳米纤维进行检测,结果参照图1-2。
图1为实施例1制得团簇状磁性聚苯胺超细纳米纤维的扫描电镜图;图2为实施例1制得团簇状磁性聚苯胺超细纳米纤维的扫描电镜图的局部放大图。
由图1-2可以看出,本发明制得的磁性聚苯胺超细纳米纤维组合形成团簇状结构,具有笼状结构,且磁性聚苯胺超细纳米纤维,直径<60nm,有的直径甚至达到30nm,纤维很细。
实验2
取实施例1-4制得的团簇状磁性聚苯胺超细纳米纤维进行检测,结果参见图3;图3为实施例1-4制得的团簇状磁性聚苯胺超细纳米纤维的红外图谱,其中,10:1为实施例1,10:2为实施例2,10:3为实施例3,10:4为实施例4。
由图3可以看出,四氧化三铁掺杂的聚苯胺一共有5个吸收峰,每个峰都有它们所对应的基团。查阅相关参考文献知,1569.4cm-1与1487.0cm-1处的吸收峰是苯环的特征峰。将其与本征态聚苯胺的红外吸收图谱比较,我们发现掺杂态聚苯胺衍射峰所处的位置其波数降低了,也就是说发生了所谓的蓝移,分析原因是由于掺杂态聚苯胺中有部分聚苯胺被氧化,所以出现共轭结构,降低了电子云密度降低,发生蓝移。四氧化三铁纳米复合材料的特征峰包括:3449cm-1处的尖峰是由羧基和羟基所构成的,在1608cm-1表明羰基是由葡萄糖氧化形成的以碳为壳层的四氧化三铁核。在559cm-1处的振动频带服从Fe=O键。对于聚苯胺四氧化三铁纳米复合材料,除了Fe3O4纳米复合材料的特征峰外,在3208cm-1是由于聚苯胺的伸缩振动形成的,在1565cm-1来自醌环的C伸缩振动,在1490cm-1是由于伸缩振动的苯环,1294cm-1苯环的N伸缩振动和1128cm-1(C=H)收缩震动所产生的。通过红外谱图基本可以确定本发明所制备的团簇状磁性聚苯胺超细纳米纤维具备相应的基团,证明实验成功。
实验3
取实施例1-5制得的团簇状磁性聚苯胺超细纳米纤维各50g,使用研钵将其分别研磨成细小的粉状;选取一块磁性大小适宜的磁铁,分别对各组粉体进行吸附测试,通过计算各组粉体的吸附量,来判定各组的磁力大小。结果如表1所示。
表1磁性检测结果
分组 | 实施例1 | 实施例2 | 实施例3 | 实施例4 | 实施例5 |
吸附量(g) | 6.0356 | 11.7943 | 17.8547 | 20.4063 | 23.3004 |
吸附率(%) | 12.0712 | 23.5886 | 35.7094 | 40.8126 | 46.6008 |
由表1可以看出,随着四氧化三铁的不断加入,制备得到的团簇状磁性聚苯胺超细纳米纤维的磁力是不断增强的。
实验4
取实施例1制得的团簇状磁性聚苯胺超细纳米纤维,检测其对重金属Ni的吸附性能;具体检测方法如下:
(1)测试过程:配制不同浓度的镍离子标准液,浓度分别为2.00g/l、2.50g/l、3.33g/l、5.00g/l、10.00g/l。在团簇状磁性聚苯胺超细纳米纤维质量一定并且溶液体积一定情况下采用过柱子的方法对镍离子进行吸附,在大气压力下溶液与吸附剂充分接触并滤出,取滤液测量其最大吸光度并且对吸光度与浓度的关系进行线性拟合,得到在镍离子最大吸光度波长394nm处,吸光度与镍离子浓度的拟合公式为y=0.02476x-0.00352,其中,y为吸光度,x为镍离子浓度,g/l。
(2)计算吸附量:室温下,配制一定浓度的氯化镍溶液100ml,在pH为中性条件下,用20g实施例1制得的团簇状磁性聚苯胺超细纳米纤维进行吸附,检测原液和滤液的吸光度,然后通过步骤(1)中的拟合公式计算原液中镍离子浓度C0、滤液中镍离子浓度Ce,通过公式计算吸附量Qe=(C0-Ce)V/M,其中,V为氯化镍溶液体积,M为吸附剂质量;去除率R=(C0-Ce)/C0*100%。
结果参照图4,图4为经实施例1制得的团簇状磁性聚苯胺超细纳米纤维吸附前后的氯化镍原液、滤液的吸光度图。
由图4可以看出,波长在394nm处,原液、滤液对应的吸光度分别为0.5831、0.0343。代入拟合公式得过滤前后浓度分别为23.6922g/l、1.5275g/l,经计算得去除率为93.55%,一次过滤吸附量达到110mg/g。
取实施例1制得团簇状磁性聚苯胺超细纳米纤维,按照步骤(1)-(2)的方法,用1mol/l盐酸调节pH,考察在不同pH时,团簇状磁性聚苯胺超细纳米纤维对镍离子的去除率;结果参照图5;图5为不同pH时,团簇状磁性聚苯胺超细纳米纤维对镍离子的去除率结果。
由图5可知,PH=4时去除率最大达93.82%。由此可得出团簇状磁性聚苯胺超细纳米纤维吸附镍离子在弱酸环境下效果最好。可能的原因是在酸性条件下氢离子较多,团簇状磁性聚苯胺超细纳米纤维所具有的亚铵根离子很容易质子化形成带正点的铵根离子与金属阳离子存在静电排斥力作用导致去除率降低,而弱酸性条件下氢离子含量少铵根离子去质子化增强了与金属阳离子的络合反应去除率得到升高,而在碱性条件下容易形成碱化物沉淀降低其去除率,所以弱酸性条件下有利于吸附进行。
取实施例1制得团簇状磁性聚苯胺超细纳米纤维,按照步骤(1)-(2)的方法,考察在不同镍离子浓度时(pH均为4),团簇状磁性聚苯胺超细纳米纤维对镍离子的去除率;结果参照图6,图6为不同镍离子浓度时,团簇状磁性聚苯胺超细纳米纤维对镍离子的去除率结果。
由图6可知在团簇状磁性聚苯胺超细纳米纤维质量一定情况下,去除率随着镍离子初始浓度的增加而增加,镍离子初始浓度从15g/l至20g/l,其去除率从78.27%迅速升高到91.78%,这是因为可用吸附位点与离子充分接触导致的,之后浓度增大去除率变化很小是因为有效吸附位点降低的原因。
取实施例1制得团簇状磁性聚苯胺超细纳米纤维,按照步骤(1)-(2)的方法,考察在不同温度时(pH均为4,氯化镍溶液浓度相同,团簇状磁性聚苯胺超细纳米纤维用量相同),团簇状磁性聚苯胺超细纳米纤维对镍离子的去除率;结果如表2所示。
表2不同温度时,团簇状磁性聚苯胺超细纳米纤维对镍离子的去除率
由表2可以看出,30-70℃时,团簇状磁性聚苯胺超细纳米纤维对镍离子的去除率达到90-94%。
实验5
取实施例1制得的团簇状磁性聚苯胺超细纳米纤维,检测其对有机染料刚果红的吸附性能;具体检测方法如下:
(1)测试过程:配制一定浓度的刚果红溶液,浓度分别为50mg/l、25mg/l、12.5mg/l、10mg/l、8.33mg/l、5mg/l。分别测定不同浓度的刚果红溶液的紫外吸收峰,判断其峰值出现的波长,对浓度与吸光度进行线性拟合找出拟合关系式。在刚果红最大吸光度波长498nm处,吸光度与刚果红浓度的拟合公式为y=0.01919x+0.00508,y为吸光度,x为刚果红浓度,mg/l。
(2)配制50ml 10mg/l的刚果红溶液,分别用质量为0.01、0.02、0.03、0.04、0.05g的团簇状磁性聚苯胺超细纳米纤维分别做吸附试验,在固定转速的情况下磁力搅拌30min,离心取上层清液测得在498nm处的吸光度并计算浓度,结果如表3所示。
表3不同团簇状磁性聚苯胺超细纳米纤维质量,对应的吸光度
由表3可以看出,随着团簇状磁性聚苯胺超细纳米纤维质量的增加,去除率先增大后降低,在团簇状磁性聚苯胺超细纳米纤维质量为0.03g时去除率达到最大99.15%,可能的原因是在前半段随着团簇状磁性聚苯胺超细纳米纤维质量的增加吸附位点增多去除率也随之增大,后面去除率降低可能是吸附位点的团聚造成的。
配制10mg/l的刚果红溶液50ml,实施例1制得团簇状磁性聚苯胺超细纳米纤维的质量固定为0.03g,温度作为变量,分别为20、40、60、80、100℃,在恒温水浴锅中搅拌吸附20min,之后离心取上层清液测吸光度并计算浓度和去除率,结果参照图7;图7为不同温度时,团簇状磁性聚苯胺超细纳米纤维对刚果红的去除率结果。
由图7可以看出,团簇状磁性聚苯胺超细纳米纤维吸附刚果红受温度的影响,温度越高去除率越大,由此可得吸附是吸热的过程,升高温度对吸附过程有利。
实验6
取实施例1制得的团簇状磁性聚苯胺超细纳米纤维,检测其对有机染料罗丹明-B的吸附性能;具体检测方法如下:
(1)测试过程:配制一定浓度的罗丹明-B溶液,浓度分别为20mg/l、30mg/l、35mg/l、40mg/l、50mg/l,分别测定不同浓度的罗丹明-B溶液的紫外吸收峰,判断其峰值出现的波长,对浓度与吸光度进行线性拟合找出拟合关系式。在罗丹明-B最大吸光度波长554nm处,吸光度与罗丹明-B浓度的拟合公式为y=2.54831x+0.01077,y为吸光度,x为罗丹明-B浓度,mg/l。
(2)配制50ml 10mg/l的罗丹明-B溶液,分别用质量为0.01、0.02、0.03、0.04、0.05g的团簇状磁性聚苯胺超细纳米纤维分别做吸附试验,在固定转速的情况下磁力搅拌30min,离心取上层清液测得在554nm处的吸光度并计算浓度,如表4所示。
表4不同团簇状磁性聚苯胺超细纳米纤维质量,对应的吸光度
由表4可以看出,随着团簇状磁性聚苯胺超细纳米纤维质量的增加,去除率先增大后降低,在团簇状磁性聚苯胺超细纳米纤维质量为0.04g时去除率达到最大96.05%,可能的原因是在前半段随着团簇状磁性聚苯胺超细纳米纤维质量的增加吸附位点增多去除率也随之增大,后面去除率降低可能是吸附位点的团聚造成的。
配制10mg/l的罗丹明-B溶液50ml,实施例1制得团簇状磁性聚苯胺超细纳米纤维的质量固定为0.04g,温度作为变量,分别为20、40、60、80、100℃,在恒温水浴锅中搅拌吸附20min,之后离心取上层清液测吸光度并计算浓度和去除率,结果参照图8;图8为不同温度时,团簇状磁性聚苯胺超细纳米纤维对罗丹明-B的去除率结果。
由图8可以看出,团簇状磁性聚苯胺超细纳米纤维吸附有机染料罗丹明-B受温度的影响,温度越高去除率越大,由此可得吸附是吸热的过程,升高温度对吸附过程有利。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
Claims (10)
1.一种团簇状磁性聚苯胺超细纳米纤维的制备方法,其特征在于,包括如下步骤:在苯胺中浸泡纳米磁性粉体,然后与酸性物质的溶液混匀,加入引发剂,反应共聚得到团簇状磁性聚苯胺超细纳米纤维。
2.根据权利要求1所述团簇状磁性聚苯胺超细纳米纤维的制备方法,其特征在于,浸泡1-8h。
3.根据权利要求1或2所述团簇状磁性聚苯胺超细纳米纤维的制备方法,其特征在于,引发剂的加入速度为1.2-1.6g/min。
4.根据权利要求1-3任一项所述团簇状磁性聚苯胺超细纳米纤维的制备方法,其特征在于,酸性物质包括:对甲苯磺酸、樟脑磺酸、盐酸、硫酸、硝酸中的至少一种。
5.根据权利要求1-4任一项所述团簇状磁性聚苯胺超细纳米纤维的制备方法,其特征在于,引发剂包括:过硫酸铵、过硫酸钠、过硫酸钾中的至少一种。
6.根据权利要求1-5任一项所述团簇状磁性聚苯胺超细纳米纤维的制备方法,其特征在于,反应温度为-30~60℃,反应时间为8-12h。
7.根据权利要求1-6任一项所述团簇状磁性聚苯胺超细纳米纤维的制备方法,其特征在于,纳米磁性粉体与苯胺的重量比为1-5:10。
8.根据权利要求1-7任一项所述团簇状磁性聚苯胺超细纳米纤维的制备方法,其特征在于,苯胺、酸性物质、引发剂的重量比为1-10:1-10:1-100。
9.一种团簇状磁性聚苯胺超细纳米纤维,其特征在于,按照权利要求1-8任一项所述团簇状磁性聚苯胺超细纳米纤维的制备方法制得。
10.一种如权利要求9所述团簇状磁性聚苯胺超细纳米纤维在吸附重金属、有机染料中的应用;优选地,重金属为镍;优选地,有机染料为刚果红或罗丹明-B。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110881122.6A CN113789584B (zh) | 2021-08-02 | 2021-08-02 | 一种团簇状磁性聚苯胺超细纳米纤维及其制备方法、应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110881122.6A CN113789584B (zh) | 2021-08-02 | 2021-08-02 | 一种团簇状磁性聚苯胺超细纳米纤维及其制备方法、应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113789584A true CN113789584A (zh) | 2021-12-14 |
CN113789584B CN113789584B (zh) | 2022-10-21 |
Family
ID=79181260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110881122.6A Active CN113789584B (zh) | 2021-08-02 | 2021-08-02 | 一种团簇状磁性聚苯胺超细纳米纤维及其制备方法、应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113789584B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115155531A (zh) * | 2022-06-09 | 2022-10-11 | 陶玉仑 | 一种聚苯胺/Fe3O4/CuO纤维及其制备方法、应用 |
CN116116392A (zh) * | 2022-11-23 | 2023-05-16 | 安徽理工大学 | 聚苯胺纳米纤维及其制备方法、应用,勘探碘矿的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102199287A (zh) * | 2011-04-12 | 2011-09-28 | 中国科学院长春应用化学研究所 | 一种聚苯胺纳米纤维的制备方法 |
CN104818542A (zh) * | 2015-04-13 | 2015-08-05 | 昆明理工大学 | 一种聚苯胺及其衍生物纳米纤维的制备方法 |
CN113019340A (zh) * | 2021-03-04 | 2021-06-25 | 上海理工大学 | 一种聚苯胺核壳磁性介孔纳米材料的吸附剂制备方法 |
-
2021
- 2021-08-02 CN CN202110881122.6A patent/CN113789584B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102199287A (zh) * | 2011-04-12 | 2011-09-28 | 中国科学院长春应用化学研究所 | 一种聚苯胺纳米纤维的制备方法 |
CN104818542A (zh) * | 2015-04-13 | 2015-08-05 | 昆明理工大学 | 一种聚苯胺及其衍生物纳米纤维的制备方法 |
CN113019340A (zh) * | 2021-03-04 | 2021-06-25 | 上海理工大学 | 一种聚苯胺核壳磁性介孔纳米材料的吸附剂制备方法 |
Non-Patent Citations (3)
Title |
---|
QI XIAO等: "《Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel Pickering emulsion route》", 《SYNTHETIC METALS》 * |
刘友勋等: "磁性Fe_3O_4/聚苯胺纳米纤维的制备及其固定漆酶研究", 《生物技术通报》 * |
熊冬柏等: "PAn/Fe_3O_4网状纳米复合物的合成表征及吸波性能", 《纳米科技》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115155531A (zh) * | 2022-06-09 | 2022-10-11 | 陶玉仑 | 一种聚苯胺/Fe3O4/CuO纤维及其制备方法、应用 |
CN115155531B (zh) * | 2022-06-09 | 2024-04-09 | 陶玉仑 | 一种聚苯胺/Fe3O4/CuO纤维及其制备方法、应用 |
CN116116392A (zh) * | 2022-11-23 | 2023-05-16 | 安徽理工大学 | 聚苯胺纳米纤维及其制备方法、应用,勘探碘矿的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113789584B (zh) | 2022-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113789584B (zh) | 一种团簇状磁性聚苯胺超细纳米纤维及其制备方法、应用 | |
Zhang et al. | Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption | |
Li et al. | Facile synthesis of poly (1, 8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization | |
Jing et al. | Sonochemical synthesis of polyaniline nanofibers | |
Zhang et al. | Facile and large-scale synthesis of functional poly (m-phenylenediamine) nanoparticles by Cu 2+-assisted method with superior ability for dye adsorption | |
Tayebi et al. | Synthesis of polyaniline/Fe3O4 magnetic nanoparticles for removal of reactive red 198 from textile waste water: kinetic, isotherm, and thermodynamic studies | |
Ding et al. | Label-free ultrasensitive colorimetric detection of copper (II) ions utilizing polyaniline/polyamide-6 nano-fiber/net sensor strips | |
Sabzroo et al. | Synthesis and characterization of magnetic poly (acrylonitrile-co-acrylic acid) nanofibers for dispersive solid phase extraction and pre-concentration of malachite green from water samples | |
Ebrahimpour et al. | Poly (indole-co-thiophene)@ Fe3O4 as novel adsorbents for the extraction of aniline derivatives from water samples | |
Yang et al. | Magnetic mixed hemimicelles dispersive solid-phase extraction based on ionic liquid-coated attapulgite/polyaniline-polypyrrole/Fe3O4 nanocomposites for determination of acaricides in fruit juice prior to high-performance liquid chromatography-diode array detection | |
CN104892935A (zh) | 一种合成聚苯胺纳米管的方法 | |
Xiao et al. | Synthesis and physical properties of electromagnetic polypyrrole composites via addition of magnetic crystals | |
Wu et al. | Water-dispersible hyperbranched conjugated polymer nanoparticles with sulfonate terminal groups for amplified fluorescence sensing of trace TNT in aqueous solution | |
CN106146694B (zh) | 一种聚苯胺纳米复合材料及其制备方法和应用 | |
Mehrani et al. | Using PVA/CA/Au NPs electrospun nanofibers as a green nanosorbent to preconcentrate and determine Pb 2+ and Cu 2+ in rice samples, water sources and cosmetics | |
Shah et al. | Synthesis, charecterization and chelation ion-exchange studies of a resin copolymer derived from 8-hydroxyquinoline-formaldehyde-catechol | |
Wang et al. | Extraction of phthalate esters in environmental water samples using layered-carbon magnetic hybrid material as adsorbent followed by their determination with HPLC | |
CN112121753A (zh) | 一种磁性吸附材料的制备方法与应用 | |
CN101157756B (zh) | 一种聚1,5-萘二胺的合成方法 | |
CN112619617A (zh) | 一种基于纳米金的离子印迹聚合物材料的制备方法其用途 | |
Stejskal et al. | Polyaniline dispersions 10. Coloured microparticles of variable density prepared using stabilizer mixtures | |
CN113731381B (zh) | 一种毒品检测磁性纳米材料及制备方法和应用 | |
CN112225880B (zh) | 一种Hg2+荧光探针及制备方法 | |
CN101070383A (zh) | 聚1,5-萘二胺纳米管的制备方法 | |
Maimaiti et al. | A Highly Selective and Sensitive Fluorescent Turn-Off Probe for Al 3+ Based on Polypyrimidine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |