CN113788796B - 千金二萜烷分子拼合衍生物及其制备方法和用途 - Google Patents

千金二萜烷分子拼合衍生物及其制备方法和用途 Download PDF

Info

Publication number
CN113788796B
CN113788796B CN202111239445.1A CN202111239445A CN113788796B CN 113788796 B CN113788796 B CN 113788796B CN 202111239445 A CN202111239445 A CN 202111239445A CN 113788796 B CN113788796 B CN 113788796B
Authority
CN
China
Prior art keywords
derivative
diterpene
preparation
molecule
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111239445.1A
Other languages
English (en)
Other versions
CN113788796A (zh
Inventor
陈丽霞
李华
王望
李雨桐
孙德娟
宋卓芮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Pharmaceutical University
Original Assignee
Shenyang Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Pharmaceutical University filed Critical Shenyang Pharmaceutical University
Priority to CN202111239445.1A priority Critical patent/CN113788796B/zh
Publication of CN113788796A publication Critical patent/CN113788796A/zh
Application granted granted Critical
Publication of CN113788796B publication Critical patent/CN113788796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/24Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • C07C233/25Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/47Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/40Succinic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • C07D209/38Oxygen atoms in positions 2 and 3, e.g. isatin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/32Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by aldehydo- or ketonic radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/30Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/32All rings being cycloaliphatic the ring system containing at least eleven carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/38Ortho- or ortho- and peri-condensed systems containing three rings containing rings with at least nine members

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种千金二萜烷分子拼合衍生物及其制备方法和用途,属于医药技术领域,涉及一种通式(I)或通式(II)所示的千金二萜烷分子拼合衍生物、或其药学上可接受的盐或溶剂化物,以及含有该千金二萜烷分子拼合衍生物的药物组合物。还涉及该千金二萜烷分子拼合衍生物的制备方法以及在制备治疗和/或预防炎症药物中的应用。其中,通式(I)或通式(II)中的R如权利要求书和说明书所述。

Description

千金二萜烷分子拼合衍生物及其制备方法和用途
技术领域
本发明属于医药技术领域,涉及一种千金二萜烷分子拼合衍生物及其制备方法和用途,具体涉及一种新的千金二萜烷分子拼合衍生物、其药学上可接受的盐或溶剂化物,以及含有该千金二萜烷分子拼合衍生物的药物组合物。还涉及该千金二萜烷分子拼合衍生物的制备方法以及在制备治疗和/或预防炎症药物中的应用。
背景技术
拼合原理(Combination principles)主要是指将两种药物的结构拼合在一个分子内,或将两者的药效基团兼容在一个分子中,称之为杂交分子(Hybridmolecules)。研究人员希望通过这种策略使新形成的杂交分子或兼具两者的性质,强化药理作用,减小各自相应的毒副作用;或使两者取长补短,发挥各自的药理活性,协同地完成治疗过程。目前国内外许多制药公司和研究所,正致力于应用拼合原理研发新药。由于应用已知疗效的药物拼合新药,基于原料药的药理作用不难预测出拼合出的新药的药理活性,这就使新药研发具有一定的目的性和基础,从而缩短了新药研发的进程。药物拼合已经作为发现新药的快速和有效手段,成功地应用在多种药物的合成中。药物拼合方法对现有药物的作用机理和生物化学的改良提供了新的见解和理论,在此理论指导下设计、开发、研究的许多新的药物或进入临床实验或进入市场,新的药物能够产生快速的作用时间、好的疗效、好的治疗耐受性,因此具有较少的副作用、少的代谢抑制。而且药物拼合,使得新药的研发进程大大缩短,节省了大量的人力、物力、财力。目前世界各大医药公司和研究所都致力于应用拼合原理研发新药。
千金子为大戟科(Euphorbiaceae)大戟属(Euphorbia)植物续随子(Euphorbialathyris L.)的干燥成熟种子,是我国的传统中药材之一。现代药理学研究表明,千金子具有致泻、抗肿瘤、抗肿瘤多药耐药、美白淡斑和镇痛抗炎等作用。近年来,国内外学者陆续报道了千金子中新的二萜类化学成分及其相应的药理学活性研究,研究结果表明千金子中的二萜类成分结构新颖丰富,具有潜在的药理学研究价值。
根据前期研究(Chem.Biodiversity 2020,17,e1900531;J.Nat.Prod.2019,82,756–764),发现千金子中的千金二萜烷型化合物大戟因子L1和大戟因子L3具有明显的抗炎活性,并且对正常细胞基本没有毒性。这表明大戟因子L1和大戟因子L3是一种潜在的新型抗炎药物,值得进行进一步的研究与开发。我们希望通过将千金二萜烷结构和一些活性基团用不同的连接子拼合在一起,从而得到抗炎活性更好的杂交分子。
发明内容
本发明的目的是寻找并开发具有良好抗炎活性的千金二萜烷分子拼合衍生物,具体提供了一种千金二萜烷分子拼合衍生物及其制备方法和用途,其以大戟因子L1和L3为原料制得环氧续随子醇和续随子醇,再进行衍生,以得到抗炎活性更好的千金二萜烷分子拼合衍生物以及含有该千金二萜烷分子拼合衍生物的药物组合物,并且研究发现,这些药物可用于制备治疗/或预防炎症疾病的药物。
本发明的具体技术方案如下:
本发明提供了一种通式(I)或通式(II)所示的千金二萜烷分子拼合衍生物、或其药学上可接受的盐或溶剂化物:
其中,R为以下结构的一种:
其中,R1为氢原子、C1-C6烃基、5-6元芳基或杂芳基中的一种或两种,所述C1-C6烃基更优选为C1-C6烷基或C2-C6烯基,所述芳基或杂芳基可以被一个或多个取代基取代,所述取代基为羟基、C1-C6烷基、卤素、硝基、C1-C4烷氧基苯基、羧基、胺基、5-10元芳基或杂芳基中的一种或几种;所述的杂芳基含有1-3个N、O或S的杂原子;
X为以下结构的一种:
本发明的部分千金二萜烷分子拼合衍生物结构如下:
本发明进一步提供了上述部分千金二萜烷分子拼合衍生物的制备方法,但不仅限于下述制备方法:
根据R-X的结构选用原料,在根据以下步骤进行;
方法1:续随子醇和环氧续随子醇与氯乙酸发生酯化后,分别得到中间体2和中间体4;中间体2和中间体4分别与叠氮化钠发生取代反应,用叠氮基取代氯原子,得到中间体3和中间体5;然后用具有活泼氢的化合物与溴丙炔发生取代反应得到一系列的中间体1,中间体1再分别与中间体3和中间5发生click反应,得到系列1化合物。其中续随子醇和环氧续随子醇分别由大戟因子L3和大戟因子L1在碱性条件下水解得到。
方法2:续随子醇和环氧续随子醇分别和丁二酸酐发生酰化反应得到中间体6和中间体7,再分别和具有活泼氢的化合物R-H反应得到系列2化合物。
方法3:具有活泼氢的化合物R-H与二溴丙烷发生取代反应得到中间体8;中间体8再与叠氮钠反应得到中间体9。续随子醇和环氧续随子醇分别和溴丙炔反应生成中间体10和中间体11,然后再分别和中间体10反应得到系列3化合物。
方法4:具有活泼氢的化合物R-H与溴乙酸乙酯发生取代反应再水解得到中间体12;续随子醇和环氧续随子醇分别和中间体12发生酯化反应得到系列4化合物。
方法5:具有活泼氢的化合物R-H与Boc-甘氨酸发生反应得到中间体13;中间体6和中间体7分别和中间体14发生酯化反应得到系列5化合物。
本发明所述的千金二萜烷分子拼合衍生物的药学上可接受的盐为千金二萜烷分子拼合衍生物和盐类的混合物,其中盐类为有机酸盐、无机酸盐、有机碱盐或无机碱盐中的一种,其中有机酸盐采用的有机酸选用乙酸、甲磺酸、柠檬酸、富马酸、马来酸、乙醇酸、乳酸、水杨酸、琥珀酸、对甲苯磺酸、酒石酸、甲磺酸、丙二酸、硫辛酸中的一种;无机酸盐采用的无机酸选用盐酸、氢溴酸、硝酸、硫酸、磷酸中的一种;有机碱盐采用的有机碱选用葡甲胺和/或氨基葡萄糖;无机碱盐为碱金属的化合物,如钠、钾、钡、钙、镁、锌的碱性化合物。
本发明的一种千金二萜烷分子拼合衍生物,其抗炎性相比于原化合物大戟因子L3和大戟因子L1,以及续随子醇和环氧续随子醇有明显提高,其中活性最好的化合物对RAW264.7细胞生成NO的抑制活性是阳性对照地塞米松的9倍。
本发明还提供了一种药物组合物,是以上通式(I)和通式(II)的千金二萜烷分子拼合衍生物或其药学上可接受的盐作为活性成分。
本发明的一种药物组合物,具体的为千金二萜烷分子拼合衍生物或其药学上可接受的盐可与药学上可接受的稀释剂、辅助剂、载体中的一种或几种混合,制成临床上需要的药用组合物。
当本发明的药物组合物应用于临床时,可将其配制成若干种剂型,如:口服制剂(如片剂,胶囊剂,锭剂,溶液或混悬液);可注射的制剂(如可注射的溶液或混悬液,或者是可注射的干燥粉末,在注射前加入注射用水可立即使用);局部制剂(如软膏或溶液)。用于本发明的药物组合物的载体是药学领域可得到的常见载体,包括:口服制剂用的粘合剂、润滑剂、崩解剂、助溶剂、稀释剂、稳定剂、悬浮剂、无色素、矫味剂等;可注射制剂用的防腐剂、加溶剂、稳定剂等;局部制剂用的基质、稀释剂、润滑剂、防腐剂等。药物制剂可以经口服或胃肠外方式(例如静脉内、皮下、腹膜内或局部)给药,如果某些药物在胃部条件下是不稳定的,可将其配制成肠衣片剂。
本发明的千金二萜烷分子拼合衍生物或所述的药用组合物用于制备治疗和/或预防炎症药物中的应用。
本发明的千金二萜烷分子拼合衍生物及其制备方法和用途,与最接近的现有技术相比,具有以下优点:
(1)首次提供了一种新的抗炎千金二萜烷分子拼合衍生物、其异构体或其药学上可接受的盐,其抗炎活性更强,值得在临床推广使用。
(2)本发明进一步对部分千金二萜烷分子拼合衍生物进行了对巨噬细胞NO生成的影响实验,实验结果表明本发明千金二萜烷分子拼合衍生物对供试巨噬细胞NO生成有良好的抑制作用,部分千金二萜烷分子拼合衍生物活性强于阳性对照药地塞米松,且对细胞未显示明显毒性,表现出良好的治疗指数,结果见表1。部分衍生物的活性相比于两种原料化合物有了大幅提高,说明分子拼合策略对千金二萜烷化合物抗炎活性的提高很有效。
(3)本发明上述千金二萜烷分子拼合衍生物的制备工艺简单,药品纯度高、收率高、质量稳定,易于进行大规模生产。
附图说明
图1为本发明实施例1制备的千金二萜烷分子拼合衍生物1的1H-NMR谱图;
图2为本发明实施例1制备的千金二萜烷分子拼合衍生物1的13C-NMR谱图;
图3为本发明实施例1制备的千金二萜烷分子拼合衍生物2的1H-NMR谱图;
图4为本发明实施例1制备的千金二萜烷分子拼合衍生物2的13C-NMR谱图。
具体实施方式
以下通过实施例形式的具体实施方式,对本发明的上述内容做进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下实施例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
以下实施例中,实施例1~13对应上述方法1,实施例14-15对应上述方法2,实施例16-17对应上述方法3,实施例18-19对应上述方法4;实施例20-21对应上述方法5。
实施例1
本实施例为千金二萜烷分子拼合衍生物1的制备,千金二萜烷分子拼合衍生物1的结构式为:
千金二萜烷分子拼合衍生物1的制备方法,包括以下步骤:
续随子醇的合成:将大戟因子L3(5g,9.6mmol)在KOH的质量分数为5%的氢氧化钾/甲醇溶液(100mL)中在室温搅拌6小时。完成后,减压除去溶剂,并将残余物用乙酸乙酯溶解,分别用饱和食盐水和饱和碳酸钾溶液洗涤3次,水相用乙酸乙酯洗一次。有机相干燥,旋干,开放硅胶柱色谱纯化,即可得到续随子醇,为白色固体(82%收率)。对其进行检测,核磁共振氢谱分析如下:1H NMR(400MHz,CDCl3)δ5.98(dd,J=10.5,1.1Hz,1H),5.04(t,J=1.4Hz,1H),4.90(s,1H),4.46(s,1H),4.38(s,1H),4.30(q,J=3.4Hz,1H),3.41(d,J=3.6Hz,1H),3.32(d,J=3.8Hz,1H),2.73(dd,J=14.8,9.8Hz,1H),2.46(dd,J=14.1,7.9Hz,1H),2.20(t,J=3.5Hz,1H),2.10(ddd,J=10.1,6.7,3.2Hz,1H),1.91(d,J=1.2Hz,3H),1.82–1.56(m,4H),1.33(dd,J=10.5,8.3Hz,1H),1.14(d,J=6.9Hz,3H),1.12(s,3H),1.10(s,3H)。对续随子醇进行核磁共振碳谱分析如下:13C NMR(100MHz,CDCl3)δ206.69,147.80,139.93,136.99,110.93,87.84,76.59,69.55,53.16,46.82,38.04,34.83,33.62,28.57,26.00,23.97,23.17,15.46,13.87,13.61。
中间体1的合成:在乙酰水杨酸(400mg)的N,N-二甲基甲酰胺(DMF,4mL)溶液中加入1.5倍当量(eq)的无水碳酸钾549mg,反应体系搅拌30分钟后滴加溴丙炔(274μL,1.2eq)。反应体系60℃条件下搅拌10小时。待反应完全后,加入乙酸乙酯,合并的有机层用水洗多次后,用饱和食盐水洗涤一次,无水硫酸钠干燥,减压蒸干,柱色谱纯化,即可得到中间体1。对中间体1进行核磁共振氢谱检测,其分析结果为:1H NMR(400MHz,CDCl3)δ8.17(dd,J=7.9,1.6Hz,1H),7.70(td,J=8.0,1.7Hz,1H),7.44(td,J=7.8,1.1Hz,1H),7.23(dd,J=8.1,0.9Hz,1H),4.99(d,J=2.5Hz,2H),2.64(t,J=2.5Hz,1H),2.49(s,3H).
中间体2的合成:用3mL二氯甲烷溶解氯乙酸(0.23mmol)和1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDCI,44mg,0.23mmol),20分钟后,加入续随子醇(40mg,0.15mmol),对二甲氨基吡啶(DMAP,催化量)。室温反应8-10个小时。反应结束后,反应液用饱和氯化铵溶液洗一次,饱和食盐水洗一次。用无水硫酸钠干燥,过滤,蒸干,即可得到中间体2的粗品,白色固体,无需进一步纯化即可进行下一步。
中间体3的合成:在中间体2(50mg,1.23mmol,1.0eq)的DMF(1.5mL)溶液中室温条件下加入叠氮化钠(96mg,1.48mmol,1.2eq),反应体系加热至60℃后反应8个小时。待体系冷却至室温后加入乙酸乙酯,合并有机层后水洗几次除去DMF,无水硫酸钠干燥,过滤,蒸干,柱色谱纯化,即可得到中间体3。对中间体3进行核磁共振氢谱检测,其分析结果为:1HNMR(400MHz,CDCl3)δ6.72(s,1H),5.96(d,J=10.1Hz,1H),4.94(d,J=12.4Hz,2H),4.20(s,1H),4.12(d,J=7.0Hz,1H),3.87(q,J=17.0Hz,2H),2.98(dd,J=14.5,10.2Hz,1H),2.58(s,1H),2.53(dd,J=10.1,3.1Hz,1H),2.28–2.12(m,2H),1.97–1.87(m,2H),1.84(s,3H),1.68–1.58(m,2H),1.53(ddd,J=15.0,7.5,4.0Hz,1H),1.43(dd,J=11.4,8.7Hz,1H),1.28–1.22(m,2H),1.20(d,J=8.2Hz,3H),1.17–1.11(m,6H).
在中间体3(50mg,0.12mmol,1.0eq)和中间体1(27mg,0.14mmol,1.2eq)的四氢呋喃(THF,1mL)和水(0.3mL)的混合体系中加入维生素C钠(23mg,0.36mmol,3.0eq)和无水硫酸铜(19mg,0.12mmol,1.0eq)。反应体系在室温条件下过夜反应。待反应结束后,过滤除去固体,滤液减压蒸干后经柱层析分离得到目标千金二萜烷分子拼合衍生物1。
对本实施例制备的千金二萜烷分子拼合衍生物1进行核磁共振氢谱检测,其谱图见图1,具体分析如下:1H NMR(400MHz,DMSO)δ8.21(s,1H),8.00–7.87(m,1H),7.76–7.64(m,1H),7.41(dd,J=10.9,4.4Hz,1H),7.23(d,J=8.1Hz,1H),6.07(d,J=10.4Hz,1H),5.52–5.40(m,2H),5.40–5.34(m,3H),4.93(s,1H),4.66(d,J=8.7Hz,1H),4.31(dd,J=15.5,7.4Hz,1H),4.00(s,1H),2.98–2.82(m,1H),2.28(ddd,J=23.3,10.7,5.0Hz,2H),2.16(s,3H),2.11–1.95(m,2H),1.94–1.79(m,2H),1.72–1.61(m,1H),1.55(d,J=9.0Hz,3H),1.53–1.46(m,1H),1.46–1.36(m,1H),1.20–1.11(m,4H),1.11–1.03(m,3H),0.99(d,J=6.7Hz,2H),0.91–0.81(m,2H)。
对本实施例制备的千金二萜烷分子拼合衍生物1进行核磁共振碳谱检测,其谱图见图2,具体分析如下:13C NMR(151MHz,DMSO)δ200.78,169.60,167.46,164.35,150.39,145.09,141.89,134.96,133.78,131.77,126.92,126.80,124.57,123.33,115.29,89.04,78.40,58.44,53.35,50.84,49.05,48.50,38.09,35.81,28.99,28.69,25.36,21.70,21.02,16.59,14.89,12.84。
实施例2
本实施例为千金二萜烷分子拼合衍生物2的制备,千金二萜烷分子拼合衍生物2的结构式为:
千金二萜烷分子拼合衍生物2的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物1的制备,不同之处在于:
采用的原料为靛红代替乙酰水杨酸。
得到的千金二萜烷分子拼合衍生物2为橙色固体,收率42%。
对本实施例制备的千金二萜烷分子拼合衍生物2进行核磁共振氢谱检测,其谱图见图3,具体分析如下:1H NMR(400MHz,DMSO)δ8.12(s,1H),7.64(t,J=7.8Hz,1H),7.57(d,J=7.4Hz,1H),7.19(dd,J=7.9,5.3Hz,1H),7.14(t,J=7.5Hz,1H),6.03(d,J=10.2Hz,1H),5.39(d,J=6.9Hz,2H),5.30(s,1H),5.00(s,2H),4.91(s,1H),4.67(s,1H),4.64(d,J=4.1Hz,1H),4.31–4.25(m,1H),3.95–3.89(m,1H),2.24(dd,J=10.3,3.3Hz,2H),2.01(d,J=12.4Hz,1H),1.87(s,2H),1.56(d,J=9.1Hz,3H),1.48(dd,J=17.2,7.2Hz,1H),1.41(dd,J=11.8,8.4Hz,1H),1.16(dd,J=13.9,5.1Hz,3H),1.06(t,J=8.7Hz,3H),0.97(d,J=6.7Hz,2H),0.84(d,J=6.7Hz,1H)。
对本实施例制备的千金二萜烷分子拼合衍生物2进行核磁共振碳谱检测,其谱图见图4,具体分析如下:13C NMR(151MHz,DMSO)δ168.21,167.56,154.18,145.11,143.33,133.34,126.24,120.89,115.13,99.99,78.40,61.58,55.37,50.82,48.50,38.10,35.81,31.16,29.00,28.70,25.35,24.27,21.75,16.60,14.90,12.84.
实施例3
本实施例为千金二萜烷分子拼合衍生物3的制备,千金二萜烷分子拼合衍生物3的结构式为:
千金二萜烷分子拼合衍生物3的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物1的制备,不同之处在于:
采用的原料为对乙酰氨基酚代替乙酰水杨酸。
得到的千金二萜烷分子拼合衍生物3为白色固体,收率45%。
对本实施例制备的千金二萜烷分子拼合衍生物3进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ9.80(s,1H),8.16(s,1H),7.48(d,J=9.0Hz,2H),6.97(d,J=9.0Hz,2H),6.08(s,1H),5.42(dd,J=5.8,3.7Hz,1H),5.35(s,1H),5.12(d,J=3.7Hz,1H),4.94(s,1H),4.66(d,J=11.2Hz,1H),4.32(d,J=6.9Hz,0H),2.90(d,J=12.3Hz,1H),2.30(d,J=3.7Hz,1H),2.00(s,1H),1.94–1.78(m,1H),1.65(dd,J=26.6,12.6Hz,0H),1.53–1.37(m,1H),1.23(s,1H),1.14(d,J=3.9Hz,1H),1.07(d,J=3.6Hz,1H),1.00(d,J=6.7Hz,1H),0.87(d,J=6.7Hz,1H)。
对本实施例制备的千金二萜烷分子拼合衍生物3进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,CDCl3)δ162.83,155.00,134.92,131.68,131.52,124.84,122.83,122.32,115.20,111.85,78.97,72.52,61.99,56.62,53.33,51.08,49.05,37.82,36.75,35.38,31.66,29.02,28.75,26.00,24.28,16.30,14.61,13.14.
实施例4
本实施例为千金二萜烷分子拼合衍生物4的制备,千金二萜烷分子拼合衍生物4的结构式为:
千金二萜烷分子拼合衍生物4的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物1的制备,不同之处在于:
采用的原料为吲哚乙酸代替乙酰水杨酸。
得到的千金二萜烷分子拼合衍生物4为白色固体,收率38%。
对本实施例制备的千金二萜烷分子拼合衍生物4进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ10.95(s,1H),8.11(s,0H),7.46(d,J=7.9Hz,1H),7.35(d,J=8.1Hz,1H),7.24(d,J=2.2Hz,1H),7.07(t,J=7.5Hz,1H),6.97(t,J=7.4Hz,1H),6.08(d,J=10.2Hz,0H),5.76(s,1H),5.45–5.40(m,1H),5.34(s,1H),5.18(d,J=3.1Hz,2H),4.94(s,1H),4.68(d,J=4.5Hz,1H),4.35(d,J=6.8Hz,0H),3.77(s,2H),2.91(d,J=11.8Hz,1H),2.31(dd,J=10.1,3.0Hz,1H),2.24(s,1H),2.02(d,J=10.2Hz,1H),1.84(d,J=15.2Hz,1H),1.56(s,3H),1.50(d,J=11.9Hz,1H),1.42(ddd,J=12.1,7.5,3.4Hz,1H),1.23(s,1H),1.14(d,J=3.3Hz,3H),1.07(t,J=5.1Hz,3H),1.00(d,J=6.7Hz,2H),0.87(d,J=6.7Hz,2H)。
对本实施例制备的千金二萜烷分子拼合衍生物4进行核磁共振碳谱检测,其具体分析如下:13C NMR(151MHz,DMSO)δ200.74,171.81,167.54,145.12,142.34,136.53,133.77,127.50,126.70,124.58,121.52,118.97,115.29,111.87,107.18,88.99,78.42,60.22,57.73,55.37,53.35,50.77,48.52,38.12,35.81,31.05,29.00,28.70,25.36,21.23,16.61,14.92,14.55,12.85。
实施例5
本实施例为千金二萜烷分子拼合衍生物5的制备,千金二萜烷分子拼合衍生物5的结构式为:
千金二萜烷分子拼合衍生物5的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物1的制备,不同之处在于:
采用的原料为4'-羟基查耳酮代替乙酰水杨酸。
得到的千金二萜烷分子拼合衍生物5为白色固体,收率43%。
对本实施例制备的千金二萜烷分子拼合衍生物5进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.17(s,1H),7.64(dd,J=8.3,4.9Hz,2H),7.61–7.51(m,4H),7.46–7.38(m,4H),7.09(t,J=7.4Hz,1H),6.05(d,J=10.2Hz,1H),5.44–5.39(m,1H),5.37(d,J=5.2Hz,3H),5.33–5.27(m,1H),4.91(s,1H),4.65(dd,J=10.6,6.6Hz,1H),4.27(d,J=7.0Hz,1H),4.00–3.90(m,1H),2.91(t,J=11.4Hz,1H),2.33–2.17(m,2H),2.04–1.95(m,1H),1.90(s,1H),1.78(s,1H),1.69–1.60(m,1H),1.57(d,J=8.1Hz,3H),1.53–1.45(m,1H),1.40(dd,J=12.6,7.5Hz,1H),1.23(s,1H),1.16(dd,J=17.5,4.0Hz,4H),1.05(t,J=5.3Hz,4H),0.97(t,J=5.9Hz,3H),0.84(q,J=7.6Hz,2H)。
对本实施例制备的千金二萜烷分子拼合衍生物5进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ175.10,167.15,162.84,159.50,157.80,154.01,142.33,130.55,127.49,126.97,124.52,123.88,118.29,115.65,114.10,102.01,62.24,55.63,53.05,51.11,49.39,37.29,35.28,29.00,26.81,25.90,20.54,16.75,14.50,12.64。
实施例6
本实施例为千金二萜烷分子拼合衍生物6的制备,千金二萜烷分子拼合衍生物6的结构式为:
千金二萜烷分子拼合衍生物6的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物1的制备,不同之处在于:
采用的原料为肉桂酸代替乙酰水杨酸。
得到的千金二萜烷分子拼合衍生物6为白色固体,收率35%。
对本实施例制备的千金二萜烷分子拼合衍生物6进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.17(s,1H),7.79–7.63(m,3H),7.42(d,J=4.7Hz,3H),6.68(dd,J=16.0,1.2Hz,1H),6.07(d,J=10.3Hz,1H),5.47–5.40(m,1H),5.37(d,J=6.1Hz,1H),5.33–5.27(m,2H),4.94(s,1H),4.68(s,1H),4.35(d,J=6.7Hz,1H),4.00(dd,J=6.7,3.3Hz,1H),2.92(dd,J=13.0,8.8Hz,1H),2.34–2.19(m,2H),2.01(d,J=12.2Hz,1H),1.94(dd,J=17.0,7.2Hz,1H),1.84(d,J=20.0Hz,1H),1.65(d,J=13.2Hz,1H),1.56(s,3H),1.53–1.45(m,1H),1.45–1.37(m,1H),1.23(s,1H),1.18(d,J=7.8Hz,1H),1.14(d,J=6.1Hz,3H),1.07(d,J=9.1Hz,3H),1.00(d,J=6.7Hz,2H),0.87(d,J=6.7Hz,1H)。
对本实施例制备的千金二萜烷分子拼合衍生物6进行核磁共振碳谱检测,其具体分析如下:13C NMR(151MHz,DMSO)δ200.71,167.54,166.41,145.58,145.11,142.39,134.37,133.78,131.08,129.39,128.91,126.75,118.08,115.29,89.02,78.41,69.54,60.21,57.66,53.36,50.81,48.50,38.11,35.80,28.99,28.69,25.34,21.73,16.59,14.91,12.84。
实施例7
本实施例为千金二萜烷分子拼合衍生物7的制备,千金二萜烷分子拼合衍生物7的结构式为:
千金二萜烷分子拼合衍生物7的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物1的制备,不同之处在于:
采用的原料为3-羟基黄酮代替乙酰水杨酸。
得到的千金二萜烷分子拼合衍生物7为白色固体,收率46%。
对本实施例制备的千金二萜烷分子拼合衍生物7进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.16(dd,J=8.0,1.2Hz,1H),8.07(s,1H),7.99(dd,J=5.2,2.7Hz,2H),7.89–7.81(m,1H),7.77(d,J=8.3Hz,1H),7.57–7.49(m,4H),5.48(d,J=3.4Hz,1H),5.36(d,J=5.6Hz,2H),5.28(d,J=6.3Hz,2H),4.71–4.56(m,2H),4.42(s,1H),4.35–4.20(m,1H),2.99–2.84(m,1H),2.34–2.18(m,1H),2.15–2.04(m,1H),2.00(dd,J=15.6,8.8Hz,1H),1.93–1.77(m,1H),1.56(s,3H),1.49(d,J=12.4Hz,1H),1.45–1.35(m,1H),1.23(s,2H),1.20–1.11(m,4H),1.06(t,J=4.8Hz,3H),0.98(t,J=8.2Hz,1H),0.84(t,J=11.9Hz,3H)。
对本实施例制备的千金二萜烷分子拼合衍生物7进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ204.88,175.37,165.61,156.76,156.76,155.54,147.07,147.07,139.96,133.87,131.04,130.85,128.93,128.69,126.03,125.09,124.25,118.27,111.92,86.99,79.75,68.46,65.58,60.61,53.50,51.55,47.17,37.33,35.34,28.79,26.44,24.47,21.30,21.26,15.75,14.17,13.62。
实施例8
本实施例为千金二萜烷分子拼合衍生物8的制备,千金二萜烷分子拼合衍生物8的结构式为:
千金二萜烷分子拼合衍生物8的制备方法,包括以下步骤:
环氧续随子醇的合成:将在KOH的质量百分含量为5%氢氧化钾/甲醇溶液(100mL)中的大戟因子L1(5g,9.6mmol)在室温搅拌6小时。完成后,减压除去溶剂,并将残余物用乙酸乙酯溶解,分别用饱和食盐水和饱和碳酸钾溶液洗涤3次,水相用乙酸乙酯洗一次。有机相干燥,旋干,即可得到环氧续随子醇粗产物,为白色固体(82%收率)。对环氧续随子醇产物核磁共振氢谱分析如下:1H NMR(400MHz,CDCl3)δ6.66(d,J=10.7Hz,1H),4.40(s,1H),4.28(dd,J=6.3,3.1Hz,1H),3.81(s,1H),3.31(s,1H),3.01(dd,J=14.4,9.6Hz,1H),2.68(d,J=3.8Hz,1H),2.62(d,J=4.1Hz,1H),2.56(d,J=7.3Hz,1H),2.24(dd,J=14.0,6.4Hz,1H),2.12–2.02(m,1H),2.00–1.87(m,4H),1.82(s,1H),1.74–1.68(m,1H),1.44(dd,J=11.0,8.5Hz,1H),1.30(dd,J=15.7,10.2Hz,1H),1.17(d,J=3.0Hz,6H),1.14(d,J=6.8Hz,3H),1.07(ddd,J=12.1,8.5,3.3Hz,1H)。对环氧续随子醇产物核磁共振碳谱分析如下:13C NMR(101MHz,CDCl3)δ202.98,144.37,136.38,88.42,78.89,66.67,60.77,54.31,53.43,48.23,37.66,34.70,32.15,28.76,27.46,25.09,19.71,15.86,13.90,13.09。
中间体4的合成方法与中间体2的合成方法相同。
中间体5的合成方法与中间体3的合成方法相同。1H NMR(400MHz,CDCl3)δ5.94(d,J=26.2Hz,1H),5.63(t,J=3.4Hz,1H),4.94(d,J=13.6Hz,2H),4.20–4.07(m,2H),3.97(d,J=1.0Hz,2H),2.76(dd,J=10.7,3.2Hz,1H),2.37(dd,J=6.6,3.4Hz,1H),2.17(s,1H),1.93(s,2H),1.73(dd,J=14.4,7.4Hz,2H),1.56(s,5H),1.48–1.39(m,2H),1.25(dt,J=7.0,6.4Hz,1H),1.20(s,3H),1.16(d,J=6.7Hz,3H),1.02(d,J=6.7Hz,3H).
在中间体5(50mg,0.12mmol,1.0eq)和中间体1(27mg,0.14mmol,1.2eq)的THF(1mL)和水(0.3mL)的混合体系中加入维生素C钠(23mg,0.36mmol,3.0eq)和无水硫酸铜(19mg,0.12mmol,1.0eq)。反应体系在室温条件下过夜反应。待反应结束后,过滤除去固体,滤液减压蒸干后经柱层析分离得到目标千金二萜烷分子拼合衍生物8。
对本实施例制备的千金二萜烷分子拼合衍生物8进行核磁共振氢谱检测,其具体分析如下:1H NMR(600MHz,DMSO)δ8.27(s,1H),7.94(dd,J=7.8,1.3Hz,1H),7.69(d,J=1.5Hz,1H),7.42(s,1H),7.23(d,J=8.0Hz,1H),7.01(d,J=7.3Hz,1H),6.60(d,J=11.6Hz,1H),6.33(d,J=4.8Hz,1H),5.86(s,1H),5.34(t,J=14.2Hz,3H),4.58(s,2H),4.49(s,1H),4.34(s,1H),4.29(d,J=5.1Hz,1H),2.40(dd,J=10.6,4.2Hz,1H),2.32(d,J=6.4Hz,1H),2.12(s,3H),1.76(s,3H),1.56–1.38(m,6H),1.24(s,2H),1.15(d,J=7.2Hz,3H),1.09(d,J=16.0Hz,8H),0.88(d,J=6.5Hz,4H)。
对本实施例制备的千金二萜烷分子拼合衍生物8进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,CDCl3)δ205.46,164.54,150.80,140.73,134.32,132.15,126.26,123.94,123.17,87.83,78.57,75.88,72.55,60.60,58.40,48.47,44.32,38.63,33.85,29.88,28.59,25.29,21.15,15.52,14.38,14.15,13.88。
实施例9
本实施例为千金二萜烷分子拼合衍生物9的制备,千金二萜烷分子拼合衍生物9的结构式为:
千金二萜烷分子拼合衍生物9的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物8的制备,不同之处在于:
采用的原料为靛红代替乙酰水杨酸。
得到的千金二萜烷分子拼合衍生物9为橙色固体,收率42%。
对本实施例制备的千金二萜烷分子拼合衍生物9进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.19(s,1H),7.65(dd,J=11.1,4.4Hz,1H),7.58(d,J=7.3Hz,1H),7.23–7.06(m,2H),7.00(d,J=7.2Hz,1H),6.58(d,J=11.5Hz,1H),6.28(d,J=4.6Hz,1H),5.86(s,1H),4.98(q,J=15.9Hz,2H),4.58–4.46(m,2H),4.39(d,J=13.8Hz,1H),4.23(s,2H),2.38(d,J=6.6Hz,1H),2.29(d,J=6.4Hz,1H),1.74(s,3H),1.59–1.35(m,6H),1.23(s,1H),1.10(s,3H),1.07(s,3H),0.86(d,J=6.1Hz,4H)。
对本实施例制备的千金二萜烷分子拼合衍生物9进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ201.42,183.60,158.26,150.74,143.23,141.10,138.55,132.05,126.17,124.94,123.84,118.05,111.73,85.05,78.45,75.21,70.96,60.22,54.09,45.30,42.58,36.68,35.66,34.05,30.53,29.06,27.39,26.68,21.23,16.38,13.47,13.36。
实施例10
本实施例为千金二萜烷分子拼合衍生物10的制备,千金二萜烷分子拼合衍生物10的结构式为:
千金二萜烷分子拼合衍生物10的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物8的制备,不同之处在于:
采用的原料为对乙酰氨基酚代替乙酰水杨酸。
得到的千金二萜烷分子拼合衍生物10为白色固体,收率45%。
对本实施例制备的千金二萜烷分子拼合衍生物10进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ9.80(s,1H),8.22(s,1H),7.49(d,J=9.0Hz,2H),7.03(d,J=7.3Hz,1H),6.97(d,J=9.0Hz,2H),6.60(d,J=11.5Hz,1H),6.34(d,J=4.7Hz,1H),5.10(s,2H),4.61–4.52(m,2H),4.46(d,J=13.8Hz,1H),4.34(s,1H),4.29(d,J=4.3Hz,1H),2.40(dd,J=10.1,3.5Hz,1H),2.32(d,J=6.3Hz,1H),2.00(s,3H),1.76(s,3H),1.46(dt,J=21.0,7.1Hz,5H),1.23(s,1H),1.17(dd,J=8.8,5.4Hz,2H),1.09(d,J=11.2Hz,8H),0.88(d,J=6.2Hz,4H)。
对本实施例制备的千金二萜烷分子拼合衍生物10进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ201.45,168.21,154.22,143.30,142.47,133.33,132.03,126.89,120.90,115.26,85.07,78.45,75.33,71.03,61.88,55.38,54.01,45.39,42.59,36.71,34.06,30.50,29.07,27.40,26.69,24.28,19.10,16.40,13.50,13.37。
实施例11
本实施例为千金二萜烷分子拼合衍生物11的制备,千金二萜烷分子拼合衍生物11的结构式为:
千金二萜烷分子拼合衍生物11的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物8的制备,不同之处在于:
采用的原料为4'-羟基查尔酮代替乙酰水杨酸。
得到的千金二萜烷分子拼合衍生物11为白色固体,收率38%。
对本实施例制备的千金二萜烷分子拼合衍生物11进行核磁共振氢谱检测,其具体分析如下:1H NMR(600MHz,DMSO)δ8.20(s,1H),7.69–7.64(m,2H),7.61–7.55(m,3H),7.45–7.38(m,4H),7.10(s,1H),6.97(d,J=7.3Hz,1H),6.56(d,J=11.7Hz,1H),6.29(s,1H),5.85(s,1H),5.35(d,J=3.3Hz,2H),4.53(d,J=14.2Hz,1H),4.41(s,1H),4.26(d,J=4.8Hz,1H),4.22(s,1H),2.40(dd,J=10.5,3.9Hz,1H),2.28(d,J=6.4Hz,1H),1.76(s,3H),1.53–1.45(m,2H),1.44–1.35(m,3H),1.23(s,2H),1.08(s,3H),1.05(s,2H),0.99–0.91(m,3H),0.89(d,J=6.4Hz,3H)。
对本实施例制备的千金二萜烷分子拼合衍生物11进行核磁共振碳谱检测,其具体分析如下:13C NMR(151MHz,DMSO)δ201.43,191.60,157.30,143.21,142.53,141.98,135.06,133.85,132.06,130.82,130.52,129.68,129.41,129.27,128.98,128.40,127.20,126.90,121.50,114.27,85.08,78.47,75.28,70.96,62.30,54.11,45.38,36.74,33.95,30.41,29.47,29.03,27.37,26.61,19.01,16.34,13.49,13.37。
实施例12
本实施例为千金二萜烷分子拼合衍生物12的制备,千金二萜烷分子拼合衍生物12的结构式为:
千金二萜烷分子拼合衍生物12的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物8的制备,不同之处在于:
采用的原料为肉桂酸代替乙酰水杨酸。
得到的千金二萜烷分子拼合衍生物12为白色固体,收率38%。
对本实施例制备的千金二萜烷分子拼合衍生物12进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.20(d,J=5.5Hz,1H),7.71(dd,J=14.2,10.1Hz,4H),7.57(d,J=31.3Hz,1H),7.51–7.34(m,4H),6.68(d,J=16.0Hz,1H),5.50(d,J=13.0Hz,1H),5.44(d,J=5.3Hz,2H),5.37–5.27(m,3H),4.73(d,J=8.3Hz,1H),4.44(s,1H),2.92(s,1H),2.08(s,1H),1.99(s,2H),1.74(s,3H),1.49(ddd,J=38.3,18.4,10.6Hz,4H),1.21–1.09(m,7H),0.86(t,J=13.6Hz,4H)。
对本实施例制备的千金二萜烷分子拼合衍生物12进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ202.14,167.10,166.42,150.33,145.53,142.33,134.66,134.40,131.06,129.39,128.90,126.90,118.13,87.35,83.28,62.85,61.19,57.73,55.40,53.06,51.06,49.51,37.26,35.29,34.25,29.33,29.00,25.89,20.59,16.75,14.50,12.62。
实施例13
本实施例为千金二萜烷分子拼合衍生物13的制备,千金二萜烷分子拼合衍生物13的结构式为:
千金二萜烷分子拼合衍生物13的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物8的制备,不同之处在于:
采用的原料为3-羟基黄酮代替乙酰水杨酸。
得到的千金二萜烷分子拼合衍生物13为白色固体,收率46%。
对本实施例制备的千金二萜烷分子拼合衍生物13进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,CDCl3)δ8.22(dd,J=8.0,1.3Hz,1H),8.07–7.96(m,2H),7.80(d,J=13.0Hz,1H),7.71–7.61(m,1H),7.54–7.42(m,5H),7.38(t,J=7.5Hz,1H),5.93(d,J=10.4Hz,1H),5.24(q,J=11.9Hz,2H),4.55–4.35(m,4H),3.98(s,1H),3.47(d,J=16.8Hz,1H),2.61(dd,J=14.0,8.8Hz,1H),2.18(s,1H),2.07(s,1H),1.91(s,3H),1.67–1.59(m,1H),1.47–1.37(m,2H),1.14–1.04(m,10H)。
对本实施例制备的千金二萜烷分子拼合衍生物13进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,CDCl3)δ204.86,175.29,155.49,143.69,141.19,139.72,133.86,131.03,128.93,128.70,126.48,125.99,125.07,124.20,118.26,87.64,78.53,77.55,77.23,76.91,75.77,72.45,65.34,60.62,58.64,54.70,48.10,44.24,38.36,33.98,29.82,28.69,24.59,21.26,19.13,15.63,14.38,14.02。
实施例14
本实施例为千金二萜烷分子拼合衍生物14的制备,千金二萜烷分子拼合衍生物14的结构式为:
千金二萜烷分子拼合衍生物14的制备方法,包括以下步骤:
中间体6的合成:用DCM溶解续随子醇,依次加入1.1eq的丁二酸酐、1.1eq的三乙胺和0.1eq的DMAP,室温反应2-3小时。结束后,用DCM稀释反应体系,用饱和氯化铵溶液洗3次,有机相干燥旋干,直接用于下一步反应。
终产物的合成:用DCM溶解中间体6,依次加入1.1eq的3-羟基黄酮、1.2eq的EDCI、0.1eq的DMAP,室温过夜反应。结束后,用DCM稀释反应体系,用饱和氯化铵溶液洗3次,有机相干燥旋干后柱色谱纯化,得到终产物千金二萜烷分子拼合衍生物14,产率47%。
对本实施例制备的千金二萜烷分子拼合衍生物14进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.11(dd,J=8.0,1.5Hz,1H),7.91(ddd,J=8.1,6.2,1.7Hz,3H),7.82(d,J=8.2Hz,1H),7.65–7.53(m,5H),6.03(d,J=10.4Hz,1H),5.50(s,1H),4.87(s,1H),4.62(s,1H),4.04(d,J=7.4Hz,1H),4.01–3.95(m,1H),2.95(dd,J=13.2,9.4Hz,1H),2.68(t,J=7.4Hz,2H),2.38(td,J=7.3,4.2Hz,2H),2.31(dd,J=10.5,3.3Hz,1H),2.20(dd,J=14.3,5.6Hz,1H),2.06–1.91(m,2H),1.91–1.81(m,3H),1.72(d,J=13.3Hz,1H),1.57(s,3H),1.53–1.37(m,3H),1.24–1.18(m,1H),1.15(s,3H),1.11(s,3H),0.97(d,J=6.8Hz,3H)。
对本实施例制备的千金二萜烷分子拼合衍生物14进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ200.73,172.31,171.60,170.72,156.21,155.58,145.85,135.28,133.38,132.11,129.77,129.46,128.61,126.27,125.57,123.22,119.21,114.32,89.19,78.81,67.18,53.81,48.80,37.94,36.00,32.88,32.78,29.02,28.75,25.48,21.82,20.33,16.68,15.04,12.88.
实施例15
本实施例为千金二萜烷分子拼合衍生物15的制备,千金二萜烷分子拼合衍生物15的结构式为:
千金二萜烷分子拼合衍生物15的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物14的制备,中间体7的合成方法与中间体6相同,不同之处在于:
将实施例14的续随子醇替换为环氧续随子醇。
得到的千金二萜烷分子拼合衍生物15为白色固体,收率46%。
对本实施例制备的千金二萜烷分子拼合衍生物15进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.11(dd,J=8.0,1.5Hz,1H),7.99–7.88(m,3H),7.83(d,J=8.2Hz,1H),7.67–7.54(m,5H),6.20(d,J=9.2Hz,1H),5.36(s,1H),4.21(d,J=5.3Hz,1H),3.87(s,1H),3.02–2.85(m,3H),2.83–2.65(m,2H),2.44(d,J=3.2Hz,1H),2.08(d,J=11.5Hz,2H),1.86–1.66(m,6H),1.59–1.43(m,2H),1.41–1.32(m,1H),1.15(d,J=5.2Hz,6H),1.12–1.05(m,1H),0.94(d,J=6.6Hz,3H),0.87–0.72(m,2H)。
对本实施例制备的千金二萜烷分子拼合衍生物15进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ200.79,172.00,171.53,170.56,156.16,155.57,149.99,135.29,135.00,133.41,132.06,129.68,129.43,128.75,126.27,125.55,123.20,119.22,88.74,78.76,67.01,59.31,54.53,51.76,48.30,38.27,35.34,33.55,29.51,29.00,26.81,25.85,20.46,16.73,14.73,12.75。
实施例16
本实施例为千金二萜烷分子拼合衍生物16的制备,千金二萜烷分子拼合衍生物16的结构式为:
千金二萜烷分子拼合衍生物16的制备方法,包括以下步骤:
中间体8的合成:用DMF溶解3-羟基黄酮,加入1.5eq的1,3-二溴丙烷和2eq的无水碳酸钾,60℃反应5小时。结束后,用乙酸乙酯稀释反应体系,用饱和氯化铵溶液洗3次,有机相干燥旋干后柱色谱纯化,得到终产物。1H NMR(400MHz,CDCl3)δ8.27(dd,J=8.0,1.5Hz,1H),8.09–8.01(m,2H),7.69(tt,J=9.4,2.0Hz,1H),7.59–7.49(m,4H),7.46–7.37(m,1H),4.18(t,J=5.8Hz,2H),3.51(t,J=6.6Hz,2H),2.33–2.15(m,2H).
中间体9的合成:在中间体8(1.23mmol,1.0eq)的DMF(1.5mL)溶液中室温条件下加入叠氮化钠(1.48mmol,1.2eq),反应体系加热至60℃后反应8个小时。待体系冷却至室温后加入乙酸乙酯,合并有机层后水洗几次除去DMF,无水硫酸钠干燥,过滤,蒸干,即可得到中间体9。
中间体10的合成:用无水DMF溶解续随子醇,冰浴20分钟后加入1.0eq的氢化钠,继续冰浴10分钟后加入1.2eq的溴丙炔,然后撤下冰浴,室温反应5小时。结束后,用乙酸乙酯稀释反应体系,用饱和氯化钠溶液洗3次,有机相干燥旋干后柱色谱纯化,得到终产物。
在中间体10(1.0eq)和中间体9(1.2eq)的THF和水的混合体系中加入维生素C钠(3.0eq)和无水硫酸铜(1.0eq)。反应体系在室温条件下过夜反应。待反应结束后,过滤除去固体,滤液减压蒸干后经柱层析分离得到目标千金二萜烷分子拼合衍生物16。
对本实施例制备的千金二萜烷分子拼合衍生物16进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.12(d,J=7.9Hz,1H),8.06(dd,J=7.4,2.1Hz,2H),8.02(s,1H),7.88–7.82(m,1H),7.76(d,J=8.3Hz,1H),7.65–7.58(m,3H),7.51(t,J=7.5Hz,1H),7.41(d,J=10.3Hz,1H),4.80–4.75(m,1H),4.71(d,J=15.2Hz,1H),4.65(d,J=11.6Hz,2H),4.44(t,J=7.1Hz,3H),4.34(s,1H),4.15(t,J=3.2Hz,1H),4.03(dd,J=6.6,3.5Hz,2H),2.91–2.72(m,1H),2.56(dd,J=13.0,6.6Hz,1H),2.17(dd,J=11.9,5.2Hz,3H),1.97–1.77(m,3H),1.56(s,2H),1.51–1.35(m,3H),1.23(s,2H),1.17(dd,J=9.3,4.9Hz,1H),1.12(s,3H),1.07–0.98(m,3H),0.91(dd,J=9.0,5.5Hz,3H)。
对本实施例制备的千金二萜烷分子拼合衍生物16进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ202.13,174.44,156.07,155.30,150.21,145.43,140.08,134.65,133.90,131.47,130.91,129.17,128.98,125.61,125.48,124.04,124.00,118.96,110.22,88.23,69.44,65.64,56.31,50.10,46.86,38.00,35.94,30.86,29.00,28.46,25.36,22.12,16.65,15.05,12.94。
实施例17
本实施例为千金二萜烷分子拼合衍生物17的制备,千金二萜烷分子拼合衍生物17的结构式为:
千金二萜烷分子拼合衍生物17的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物16的制备,中间体11的合成方法与中间体10的相同,不同之处在于:
将实施例16的续随子醇替换为环氧续随子醇。
得到的千金二萜烷分子拼合衍生物17为白色固体,收率46%。对本实施例制备的千金二萜烷分子拼合衍生物17进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.11(s,1H),8.07(dd,J=9.3,3.7Hz,2H),8.04–7.99(m,4H),7.93(s,1H),7.85–7.76(m,2H),7.71(dd,J=7.9,5.2Hz,2H),7.63–7.52(m,7H),7.50–7.43(m,2H),6.90(d,J=11.2Hz,1H),4.89(d,J=3.0Hz,1H),4.68–4.59(m,3H),4.54(d,J=11.1Hz,1H),4.30(d,J=11.3Hz,1H),4.07–3.91(m,6H),2.68(dd,J=11.3,5.5Hz,1H),2.14(tt,J=12.1,6.2Hz,4H),1.92(s,1H),1.79(d,J=7.3Hz,4H),1.77–1.70(m,2H),1.59–1.45(m,3H),1.32–1.12(m,6H),1.07(s,4H),0.92(t,J=6.9Hz,4H),0.84(s,4H)。
对本实施例制备的千金二萜烷分子拼合衍生物17进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ200.14,174.36,155.91,155.83,155.22,144.14,140.05,134.54,131.38,130.84,129.09,128.91,125.50,125.41,124.46,123.95,118.85,91.62,76.39,73.15,69.44,65.65,60.52,59.58,51.15,46.92,38.07,34.67,32.17,30.83,28.93,28.69,26.23,20.06,15.88,13.75,13.51。
实施例18
本实施例为千金二萜烷分子拼合衍生物18的制备,千金二萜烷分子拼合衍生物18的结构式为:
千金二萜烷分子拼合衍生物18的制备方法,包括以下步骤:
中间体12的合成:用DMF溶解3-羟基黄酮,加入1.5eq的溴乙酸甲酯和2eq的无水碳酸钾,60℃反应5小时。结束后,用乙酸乙酯稀释反应体系,用饱和氯化铵溶液洗3次,有机相干燥旋干,用四氢呋喃溶解,加入2eq的氢氧化锂50%水溶液,室温反应3小时。结束后,用用乙酸乙酯稀释反应体系,用饱和氯化铵溶液洗3次,有机相干燥旋干,得到中间体12,直接用于合成终产物。
终产物的合成:用DCM溶解续随子醇,依次加入1.1eq的中间体12、1.2eq的EDCI和0.1eq的DMAP,室温过夜反应。结束后,用DCM稀释反应体系,用饱和氯化铵溶液洗3次,有机相干燥旋干后柱色谱纯化,得到终产物千金二萜烷分子拼合衍生物18,产率24%。
对本实施例制备的千金二萜烷分子拼合衍生物18进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.18–8.12(m,2H),8.09(dd,J=8.0,1.3Hz,1H),7.88–7.81(m,1H),7.78(d,J=8.1Hz,1H),7.61–7.48(m,5H),6.01(d,J=10.2Hz,1H),5.39(s,1H),5.01–4.84(m,2H),4.79(s,1H),4.54(s,1H),4.12(d,J=6.8Hz,1H),3.72(d,J=3.3Hz,1H),2.96–2.81(m,1H),2.14(dd,J=10.4,3.2Hz,2H),1.92–1.72(m,3H),1.71–1.60(m,1H),1.55(s,3H),1.43(dt,J=20.1,10.4Hz,3H),1.18–1.10(m,5H),1.08(s,3H),0.90(d,J=6.7Hz,3H),0.84(d,J=6.6Hz,1H)。
对本实施例制备的千金二萜烷分子拼合衍生物18进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ200.70,174.18,168.64,155.07,154.65,145.20,139.54,134.64,133.90,131.34,130.96,129.15,128.91,125.60,125.36,123.79,118.84,114.77,89.06,78.39,68.37,53.58,48.67,37.92,35.90,34.66,28.98,28.67,26.81,25.43,21.71,16.66,14.84,12.87。
实施例19
本实施例为千金二萜烷分子拼合衍生物19的制备,千金二萜烷分子拼合衍生物19的结构式为:
千金二萜烷分子拼合衍生物19的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物18的制备,不同之处在于:
将实施例18的续随子醇替换为环氧续随子醇。
对本实施例制备的千金二萜烷分子拼合衍生物19进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.18(dt,J=7.5,3.2Hz,2H),8.10(dd,J=8.0,1.4Hz,1H),7.85(ddd,J=8.5,7.0,1.6Hz,1H),7.78(d,J=7.9Hz,1H),7.60–7.48(m,5H),6.19(d,J=9.3Hz,1H),5.42(s,1H),4.97(dt,J=31.0,9.7Hz,2H),4.11(d,J=6.8Hz,1H),3.62(dd,J=6.3,2.9Hz,1H),2.91(dd,J=13.0,9.0Hz,1H),2.46(d,J=3.0Hz,1H),2.08(d,J=7.9Hz,2H),1.95–1.84(m,2H),1.77–1.62(m,5H),1.59–1.37(m,4H),1.33–1.21(m,2H),1.17(s,4H),1.12(d,J=5.7Hz,5H),0.87(t,J=6.4Hz,3H)。
对本实施例制备的千金二萜烷分子拼合衍生物19进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ200.76,174.24,168.85,155.13,154.72,150.00,139.53,134.99,134.64,131.33,130.97,129.73,129.20,128.95,125.61,125.36,123.82,118.89,88.62,78.56,68.44,67.40,59.13,54.62,51.66,48.20,38.24,35.32,34.66,33.56,29.48,29.00,26.81,25.89,20.35,16.71,14.59,12.74。
实施例20
本实施例为千金二萜烷分子拼合衍生物20的制备,千金二萜烷分子拼合衍生物20的结构式为:
千金二萜烷分子拼合衍生物20的制备方法,包括以下过程:
中间体13的合成:用DCM溶解3-羟基黄酮(100mg),依次加入1.1eq的Boc-甘氨酸、1.2eq的EDCI、0.1eq的DMAP和1.2eq的DIPEA,室温过夜反应。结束后,用DCM稀释反应体系,用饱和氯化铵溶液洗3次,有机相干燥旋干后柱色谱纯化,得到中间体13终产物140mg。中间体13的核磁氢谱分析为:1H NMR(400MHz,CDCl3)δ8.26(dd,J=8.0,1.5Hz,1H),7.88(dd,J=6.6,2.9Hz,2H),7.78–7.69(m,1H),7.62–7.51(m,4H),7.45(t,J=7.6Hz,1H),5.10(s,1H),4.29(d,J=5.5Hz,2H),1.45(s,9H).
中间体14的合成:用DCM溶解中间体13,冰浴20分钟后加入三氟乙酸(每100毫克中间体13加入1mL),撤去冰浴,室温反应30分钟。反应结束后,蒸干反应体系得到黄色固体为中间体14。
终产物的合成:用DCM溶解中间体6,依次加入1.1eq的中间体14、1.2eq的EDCI、0.1eq的DMAP和2.1eq的二异丙基乙胺,室温过夜反应。结束后,用DCM稀释反应体系,用饱和氯化铵溶液洗3次,有机相干燥旋干后柱色谱纯化,得到终产物千金二萜烷分子拼合衍生物20,产率47%。
对本实施例制备的千金二萜烷分子拼合衍生物20进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.11(d,J=7.1Hz,1H),8.00–7.87(m,3H),7.83(d,J=8.4Hz,1H),7.61(dt,J=14.8,6.1Hz,5H),6.20(d,J=9.2Hz,1H),5.37(s,1H),4.22(d,J=6.5Hz,1H),3.94–3.76(m,1H),2.94(dd,J=10.9,6.6Hz,3H),2.74(dd,J=15.5,7.1Hz,2H),2.44(d,J=3.0Hz,1H),2.07(d,J=12.4Hz,2H),1.79(s,2H),1.73(s,4H),1.59–1.42(m,2H),1.41–1.31(m,1H),1.20–1.05(m,8H),0.94(d,J=6.6Hz,3H),0.89–0.72(m,2H)。
对本实施例制备的千金二萜烷分子拼合衍生物20进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ200.80,172.00,171.53,170.57,156.17,155.57,150.00,135.30,134.99,133.40,132.07,129.68,129.43,128.76,126.28,125.54,123.20,119.23,88.73,78.76,67.00,59.31,54.53,51.75,48.30,38.27,35.33,33.55,29.50,29.00,26.81,25.85,20.45,16.73,14.73,12.75。
实施例21
本实施例为千金二萜烷分子拼合衍生物21的制备,千金二萜烷分子拼合衍生物21的结构式为:
千金二萜烷分子拼合衍生物21的制备方法,具体操作及配比参考千金二萜烷分子拼合衍生物20的制备,不同之处在于:
将实施例20的续随子醇替换为环氧续随子醇。
对本实施例制备的千金二萜烷分子拼合衍生物21进行核磁共振氢谱检测,其具体分析如下:1H NMR(400MHz,DMSO)δ8.14–8.06(m,1H),7.97–7.87(m,3H),7.83(d,J=8.4Hz,1H),7.60(dt,J=22.6,7.5Hz,4H),6.06(d,J=10.3Hz,1H),5.38(s,1H),4.83(s,1H),4.58(s,1H),4.23(d,J=6.4Hz,1H),4.00(s,1H),3.03–2.83(m,3H),2.63(qd,J=17.2,9.4Hz,2H),2.29(dd,J=10.2,3.1Hz,1H),2.18(d,J=10.7Hz,1H),1.95(dd,J=18.1,11.5Hz,2H),1.73(s,2H),1.56(s,3H),1.44(ddd,J=16.3,11.8,9.4Hz,3H),1.18–1.05(m,7H),0.96(t,J=8.8Hz,3H),0.83(dd,J=9.5,7.2Hz,1H)。
对本实施例制备的千金二萜烷分子拼合衍生物21进行核磁共振碳谱检测,其具体分析如下:13C NMR(101MHz,DMSO)δ200.65,171.69,171.52,170.49,156.13,155.56,145.72,135.30,133.39,132.10,129.67,129.42,128.73,126.28,125.53,123.19,119.22,114.34,89.22,78.67,67.60,53.64,48.78,40.62,40.41,40.20,39.99,39.78,39.57,39.36,37.93,35.98,29.01,28.76,26.81,25.45,21.81,16.68,15.03,12.86。
应用例
本发明部分产物对RAW264.7细胞生成NO的影响研究
将RAW264.7细胞接种在96孔板中,并用不同浓度(0-100μM)的千金二萜烷分子拼合衍生物处理3小时,然后与LPS(1μg/mL)一起温育24小时。将具有或不具有LPS的DMSO作为媒介物对照或模型对照处理。使用Griess试剂在540nm下用酶标仪测量培养基中的亚硝酸盐积累。计算千金二萜烷分子拼合衍生物处理组的抑制率(%)并测定IC50值以评价NO抑制活性。以地塞米松为阳性对照药。
表1.千金二萜烷分子拼合衍生物抑制RAW264.7细胞NO生成IC50值表
/>
从表中可以发现,水解后的续随子醇和环氧续随子醇的抗炎活性弱于对应的大戟因子,大部分衍生物的抗炎活性有明显提高,其中续随子醇的衍生物活性大部分都比对应的环氧续随子醇的活性好一些。千金二萜烷分子拼合衍生物13具有最好的抑制活性,其活性强度是阳性对照地塞米松的9倍。两个连接了3-羟基黄酮的衍生物7和13都表现出良好的活性,而3-羟基黄酮本身的活性并不是很好(IC50>20μM)。所以我们改变了千金二萜烷化合物和3-羟基黄酮之间的连接子(linker),合成出衍生物14-21并测定了抗炎活性。结果发现这些衍生物的抗炎活性不如7和13,有的甚至活性减弱很多。说明不同的活性分子和linker都会影响分子拼合衍生物的活性。
表2.千金二萜烷分子拼合衍生物抑制RAW264.7细胞NO生成IC50值表
/>
以上具体实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (6)

1.千金二萜烷分子拼合衍生物、或其药学上可接受的盐,其特征在于,选自以下结构式中的一种:
2.根据权利要求1所述的千金二萜烷分子拼合衍生物、或其药学上可接受的盐,其特征在于,所述的千金二萜烷分子拼合衍生物的药学上可接受的盐为千金二萜烷分子拼合衍生物和盐类的混合物,其中,盐类为有机酸盐、无机酸盐、有机碱盐或无机碱盐中的一种。
3.一种药物组合物,其特征在于,包括权利要求1所述的千金二萜烷分子拼合衍生物、或其药学上可接受的盐作为活性成分。
4.一种药物组合物,其特征在于,包括权利要求1所述的千金二萜烷分子拼合衍生物、或其药学上可接受的盐,与药学上可接受的稀释剂、辅助剂、载体中的一种或几种混合,制成临床上需要的药用组合物。
5.权利要求1所述的千金二萜烷分子拼合衍生物、或其药学上可接受的盐在制备治疗和/或预防炎症药物中的应用。
6.权利要求3或4所述的药用组合物在制备治疗和/或预防炎症药物中的应用。
CN202111239445.1A 2021-10-25 2021-10-25 千金二萜烷分子拼合衍生物及其制备方法和用途 Active CN113788796B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111239445.1A CN113788796B (zh) 2021-10-25 2021-10-25 千金二萜烷分子拼合衍生物及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111239445.1A CN113788796B (zh) 2021-10-25 2021-10-25 千金二萜烷分子拼合衍生物及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN113788796A CN113788796A (zh) 2021-12-14
CN113788796B true CN113788796B (zh) 2023-07-18

Family

ID=79185286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111239445.1A Active CN113788796B (zh) 2021-10-25 2021-10-25 千金二萜烷分子拼合衍生物及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN113788796B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116396259B (zh) * 2023-04-25 2024-02-06 山东中腾生物科技有限公司 一种苯并吡喃类衍生物、制备方法及其在制备治疗慢性结肠炎药物中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303058B (zh) * 2020-03-13 2022-03-29 沈阳药科大学 续随子醇衍生物及其制备方法和用途

Also Published As

Publication number Publication date
CN113788796A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
Deutsch et al. Synthesis of congeners and prodrugs. 3. Water-soluble prodrugs of taxol with potent antitumor activity
DE69433715T2 (de) Delta 6,7-Taxol Derivate antineoplastische Verwendung und diese enthaltende pharmazeutische Zusammenstellungen
CN111303058B (zh) 续随子醇衍生物及其制备方法和用途
FR2458544A1 (fr) Nouveaux amides d'acide pyrrolidin-(2)-on-(1)-ylalcoyl-carboxylique, leur procede de preparation et leur application comme medicaments
CN113788796B (zh) 千金二萜烷分子拼合衍生物及其制备方法和用途
JPH02104587A (ja) N‐〔N‐(テトラヒドロピリド〔2,3‐d〕ピリミジニルメチル)アミノメチルベンゾイル〕グルタミン酸誘導体
CN114846008B (zh) 具有果糖激酶(khk)抑制作用的嘧啶类化合物
CN115703748B (zh) 千金二萜烷噻唑衍生物及其制备方法和用途
CN113773272B (zh) 千金二萜烷no供体衍生物及其制备方法和用途
CN113773255B (zh) 千金二萜烷吡唑衍生物及其制备方法和用途
AU2020103289A4 (en) Preparation and Application of Alkaloid Derivatives for Reversing Human Tumor Drug Resistance and Anti-canine Breast Cancer
CN113698415A (zh) 一种新型的冬凌草甲素类似物及衍生物、其制备方法及医药用途
US5043324A (en) Macrolide compounds
RU2045523C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ПРОИЗВОДНЫХ 6β -(3-АМИНОЗАМЕЩЕННЫХ ПРОПИОНИЛОКСИ)-ФОРСКОЛИНА ИЛИ ИХ ФАРМАЦЕВТИЧЕСКИ ПРИЕМЛЕМЫХ СОЛЕЙ
HIGASHIYAMA et al. Spiro Heterocyclic Compounds. IV. Synthesis of Spiro [oxindole-3, 4'-(2', 3'-dihydro-4'H-pyran)] and Spiro [oxindole-3, 4'-(1', 4'-dihydropyridine)] Compounds
SE445223B (sv) Sett att framstella 4"-amino-erytomylin-a-derivat
CN111808040B (zh) 多构型2-氧代噁唑烷-4-羧酸类化合物的合成方法
CN116869993A (zh) 3,19位含胺基的穿心莲内酯衍生物在制备抗炎药物中的应用
CN109503674B (zh) 2-氟代洋地黄毒糖及其制备方法和应用
RU2799639C1 (ru) 4-(3,4-дибромтиофенкарбонил)-10-изоникотинил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекан в качестве анальгетического средства и способ его получения
CN110981838B (zh) 5-亚胺-四氢呋喃基甲胺衍生物及其制备方法和应用
CN109503681B (zh) 2-Fluoro-L-ristosamine化合物及其合成方法和应用
CN110963894B (zh) 穿心莲内酯化合物及其制备方法和用途
HU225989B1 (en) 20-(s)-camptothecin derivatives substituted at position 5, process for their preparation, their use and pharmaceutical compositions containing the same compounds
CN110551170B (zh) 一种c-19位单酰基化雷公藤内酯醇衍生物的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant