CN113786843A - 纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用 - Google Patents

纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用 Download PDF

Info

Publication number
CN113786843A
CN113786843A CN202111176240.3A CN202111176240A CN113786843A CN 113786843 A CN113786843 A CN 113786843A CN 202111176240 A CN202111176240 A CN 202111176240A CN 113786843 A CN113786843 A CN 113786843A
Authority
CN
China
Prior art keywords
palladium
nano
iron
cluster
nanoenzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111176240.3A
Other languages
English (en)
Other versions
CN113786843B (zh
Inventor
杨黎妮
李涛
张迪
孟凡池
刘霄
夏立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202111176240.3A priority Critical patent/CN113786843B/zh
Publication of CN113786843A publication Critical patent/CN113786843A/zh
Application granted granted Critical
Publication of CN113786843B publication Critical patent/CN113786843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Catalysts (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用。本发明所述的纳米酶中,钯铁双金属以原子级分散的团簇形式存在,提高了原子利用率,同时钯铁双金属具有协同催化作用,对比钯铁单金属纳米酶具有明显提高的酶催化活性。本发明制备的钯铁双金属团簇纳米酶,其制备过程简单易行,反应过程易控,且所制备的纳米碳负载双金属钯铁团簇纳米酶,无需外加光、电等条件,在酸性条件下室温即可催化空气中的氧气分解产生羟基自由基·OH,从而有效杀灭细菌。钯铁双金属团簇纳米酶表现出优异的催化抗菌性能,在未来的抗菌领域具有广阔的应用前景。

Description

纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用
技术领域
本发明属于纳米酶催化抗菌技术领域,具体涉及一种纳米碳负载原子级分散钯铁双金属团簇纳米复合材料作为纳米酶催化抗菌的应用。
背景技术
由于过度使用抗生素引起了耐药性细菌的出现,细菌感染对人类的健康构成了日益增长的威胁,如何有效地杀灭细菌已经成为生物医学领域的重要挑战。为了减少抗生素的使用并应对细菌的侵袭,人们迫切需要设计并开发出新型的抗菌剂。纳米酶是一种既具有模拟天然酶催化活性,又具有纳米材料的独特性质的纳米复合材料。近来,具有氧化酶和过氧化物酶特性的纳米酶由于具有催化活性氧形成的能力已显示出作为有效抗菌剂的巨大潜力。
纳米酶具有强大和多样的酶催化活性,可以高效的催化氧气或过氧化氢分解产生活性氧物质,作用于细菌时会产生氧化应激,进而导致细菌死亡。氧化应激作用具有显著的杀灭细菌的效果,通过活性氧物质作用于细菌,破坏细菌结构和内部新陈代谢产生巨大损伤,从而有效杀灭细菌。在未来的生物材料和抗菌消毒等领域具有广阔的应用前景。
发明内容
本发明的目的是,致力于开发具有双金属协同作用的高效催化抗菌性能的纳米碳负载钯铁双金属团簇纳米酶,利用纳米碳作为载体,负载原子级分散的钯铁双金属团簇。该纳米酶应用于催化抗菌领域,可以催化空气中的氧气分解产生活性氧物质,达到完全灭活细菌。具有绿色高效,简易安全等特点。
为实现上述目的,本发明采用的技术方案如下:一种纳米碳负载钯铁双金属团簇纳米酶,是以纳米碳为载体,以原子级分散的钯铁双金属团簇为活性中心形成的纳米碳负载钯铁双金属团簇纳米酶。
进一步的,上述的一种纳米碳负载钯铁双金属团簇纳米酶,按质量百分比,钯的负载量为0.5%,铁的负载量为0.5%。
一种纳米碳负载钯铁双金属团簇纳米酶的制备方法,包括如下步骤:
1)将纳米金刚石@石墨烯复合材料均匀分散于水中得悬浮液,调节体系的pH为10,在搅拌下,将pH为4的钯盐和铁盐混合水溶液匀速滴入到悬浮液中,在100℃保持搅拌1小时,抽滤,洗涤,干燥,得前驱体;
2)将所得前驱体,在500℃、H2条件下还原2小时,得纳米碳负载钯铁双金属团簇纳米酶。
进一步的,上述的制备方法,步骤1)中,采用碳酸钠溶液调节体系的pH为10。
进一步的,上述的制备方法,步骤1)中,所述钯盐为硝酸钯,所述铁盐为硝酸铁;按质量比,钯:铁=1:1。
本发明提供的纳米碳负载钯铁双金属团簇纳米酶作为抗菌剂在抗菌中的应用。
进一步的,方法如下:于菌悬液中,加入纳米碳负载钯铁双金属团簇纳米酶。
进一步的,所述菌为细菌。
更进一步的,所述细菌为大肠杆菌。
与现有技术相比,本发明具有如下优点:
1、本发明,采用纳米碳作为载体负载原子级分散团簇状态的钯铁作为纳米酶,该材料具有优异的模拟氧化酶催化活性。将其应用于抗菌领域,该纳米酶表现出高效的抗菌性能,其抗菌率可以达到100%。
2、本发明,采用纳米碳作为载体负载原子级分散钯铁双金属团簇作为纳米酶,高分散的钯铁团簇作为活性中心,提高了原子利用率,增强材料的催化活性。
3、本发明,采用纳米碳作为载体负载原子级分散钯铁双金属团簇作为纳米酶,钯铁双金属的协同催化作用增强了纳米酶的催化活性,降低了成本。
4、本发明,采用纳米碳作为载体负载原子级分散钯铁双金属团簇作为纳米酶,该纳米酶通过沉积沉淀法制备,合成过程简单,适合工业化生产。
5、本发明,采用纳米碳作为载体负载原子级分散钯铁双金属团簇作为纳米酶,只需催化空气中的氧气分解产生羟基自由基即可有效杀灭细菌,绿色高效。
6、本发明,采用纳米碳作为载体负载原子级分散钯铁双金属团簇作为纳米酶,在生物医药、纳米酶催化以及抗菌等领域有巨大的发展潜力。
总之,本发明所述的纳米酶,钯铁双金属以原子级分散的团簇形式存在,提高了原子利用率,并且双金属协同作用显著的提高了钯的酶催化活性,使其可以高效催化氧气分解产生羟基自由基从而完全灭菌。本发明制备过程简单,反应绿色高效,且所制备的纳米碳负载钯铁双金属团簇纳米酶表现出优异的催化抗菌性能,在生物医药领域有广阔的应用前景。
附图说明
图1是纳米碳负载单原子铁纳米酶Fe/ND@G的相关AC-HAADF-STEM图;
其中,A:5nm;B:2nm。
图2是纳米碳负载原子级分散团簇钯纳米酶Pd/ND@G的相关AC-HAADF-STEM图;
其中,A:5nm;B:2nm。
图3是纳米碳负载钯铁双金属团簇纳米酶PdFe/ND@G的相关AC-HAADF-STEM图;
其中,A:5nm;B:2nm。
图4是PdFe/ND@G的相关元素映射图(element mapping图);
其中,A:STEM图;B:C元素;C:Fe元素;D:Pd元素。
图5是Fe/ND@G、Pd/ND@G和PdFe/ND@G的相关X射线衍射图(XRD图)。
图6是Fe/ND@G、Pd/ND@G和PdFe/ND@G的TMB氧化实验图。
图7是Fe/ND@G、Pd/ND@G和PdFe/ND@G的电子自旋共振光谱图(ESR图)。
图8是Fe/ND@G、Pd/ND@G和PdFe/ND@G的相关抗菌效果图;
其中,A:空白;B:Fe/ND@G抗菌效果图;C:Pd/ND@G抗菌效果图;D:PdFe/ND@G抗菌效果图。
具体实施方式
为了更好地理解本发明的技术方案,特以具体的实施例作进一步详细说明,但方案不限于此。
实施例1
纳米碳负载钯铁双金属团簇纳米酶(PdFe/ND@G)
(一)制备方法包括如下步骤:
1、首先,取200mg纳米金刚石@石墨烯(ND@G)于圆底烧瓶中,加入30mL去离子水,超声30min使其分散,使用0.25mol/L的碳酸钠溶液调节体系的pH值为10,得ND@G悬浮液。取7.27g九水硝酸铁加入去离子水定容至1L,得硝酸铁溶液。取0.201mL浓度为10.827mg/mL的硝酸钯溶液和1mL硝酸铁溶液于离心管中,加入去离子水至4mL,使用0.25mol/L的碳酸钠调节水溶液的pH值约为4,得硝酸钯和硝酸铁混合水溶液。在磁力搅拌下,将硝酸钯和硝酸铁混合水溶液滴加到ND@G悬浮液中,在油浴中于100℃保持搅拌1小时。最后,将反应液自然冷却至室温并抽滤、洗涤、干燥,得前驱体(按照钯和铁的担载量均为0.5wt%)。
2、将步骤1制得的前驱体置于石英管中,放于管式炉中,在500℃、H2条件下还原2小时,得纳米碳负载钯铁双金属团簇纳米酶,记为PdFe/ND@G。钯铁的质量百分比均为0.5%,负载量比为1:1。
同时做对比例,步骤1中,只添加硝酸钯或硝酸铁,分别制得纳米碳负载单原子铁纳米酶,记为Fe/ND@G;纳米碳负载原子级分散团簇钯纳米酶,记为Pd/ND@G。
(二)检测
图1为Fe/ND@G的相关AC-HAADF-STEM图。可以看出Fe为原子级分散的单原子态铁,分散良好,没有出现团聚现象。
图2为Pd/ND@G的相关AC-HAADF-STEM图。可以看出钯以原子级分散团簇状态存在,分散良好,且没有出现团聚现象。
图3为PdFe/ND@G的相关AC-HAADF-STEM图。可以看出钯铁以原子级分散双金属团簇状态存在,分散良好,且没有出现团聚现象。
图4为PdFe/ND@G的相关元素映射图。可以看出钯元素和铁元素均匀的分散在纳米碳上,证实钯铁以原子级分散双金属团簇状态存在。
图5为Fe/ND@G、Pd/ND@G和PdFe/ND@G的相关XRD图。由图5可见,钯铁的负载并没有破坏碳载体的结构,且在XRD图中没有出现钯和铁的特征峰,表明钯铁的粒径极小。
实施例2
纳米碳负载钯铁双金属团簇纳米酶PdFe/ND@G的氧化酶活性研究
(一)Fe/ND@G、Pd/ND@G和PdFe/ND@G的TMB实验
通过TMB实验测定Fe/ND@G、Pd/ND@G和PdFe/ND@G的模拟氧化酶活性。
方法:将0.5mL浓度为0.05mg/mL的PdFe/ND@G(或Fe/ND@G、Pd/ND@G)和3mL浓度为20mM的TMB(3,3',5,5'-四甲基联苯胺)加入到含有0.5mL乙酸钠-乙酸缓冲液[100mM(pH=4.5)]的离心管中。通过测量被氧化的oxTMB在波长652nm的紫外吸收变化来研究Fe/ND@G、Pd/ND@G和PdFe/ND@G对TMB的催化氧化能力,进而计算Fe/ND@G、Pd/ND@G和PdFe/ND@G的氧化酶活性。
图6为Fe/ND@G、Pd/ND@G和PdFe/ND@G纳米复合材料的TMB实验图。图6为Fe/ND@G、Pd/ND@G和PdFe/ND@G的典型Michaelis-Menten曲线,可以看出Fe/ND@G纳米复合材料的氧化酶活性极低,Pd/ND@G纳米复合材料的氧化酶活性稍高,PdFe/ND@G纳米复合材料作为纳米酶展现出优异的模拟氧化酶活性。
(二)Fe/ND@G、Pd/ND@G和PdFe/ND@G的ESR测试
图7是Fe/ND@G、Pd/ND@G和PdFe/ND@G的电子自旋共振光谱图。可以看出Fe/ND@G、Pd/ND@G和PdFe/ND@G电子自旋共振光谱中均有相对强度为1:2:2:1的四线信号说明催化产生羟基自由基·OH,并且PdFe/ND@G的信号强度明显大于Fe/ND@G和Pd/ND@G。验证了PdFe/ND@G纳米酶具有优异的模拟氧化酶活性,可以催化空气中氧气分解产生羟基自由基达到抗菌目的,从而使其具有抗菌领域应用。
实施例3
纳米碳负载钯铁双金属团簇纳米酶PdFe/ND@G在抗菌中的应用
抗菌实验,包括如下步骤:
1)LB培养基的配制:称取氯化钠1g,蛋白胨1g,酵母浸粉0.5g于锥形瓶中,加入100mL水,用NaOH溶液调节pH=7.2~7.4,得到LB液体培养基;称取营养琼脂8.25g于锥形瓶中,加入250mL水,用NaOH溶液调节pH=7.2~7.4,置于121℃压力蒸汽灭菌器中灭菌30min,倒入培养皿,得到固体培养基。
2)用接种环挑取大肠杆菌菌种(E.coli ATCC 15597),在固体培养基上划线,在37℃培养箱中培养12h,挑取单菌落于液体培养基中,在37℃恒温振荡器中培养10h,得到菌悬液。
3)取5mL菌悬液于离心管中,放入离心机8000r离心5min,用pH=4.5的乙酸钠-乙酸缓冲溶液(NaAc-HAc)洗涤两次后,加入NaAc-HAc缓冲溶液,得到NaAc-HAc菌悬液;用乙酸钠-乙酸缓冲溶液对菌悬液进行逐级稀释,使其最终稀释浓度为104cfu·mL-1
4)分别称取Fe/ND@G、Pd/ND@G和PdFe/ND@G于离心管中,分别加入4.5mL NaAc-HAc超声分散,材料浓度均为0.05mg/mL,然后分别加入0.5mL浓度为104cfu·mL-1的菌悬液,充分摇匀在恒温振荡器中反应20min,取100μL材料液涂布培养皿,将培养皿放于37℃恒温培养箱中培养12h,观察菌落生长情况,同时计数并计算抗菌率。
图8是Fe/ND@G、Pd/ND@G和PdFe/ND@G的相关抗菌性能图。图中A为空白;B为Fe/ND@G抗菌效果图;C为Pd/ND@G抗菌效果图;D为PdFe/ND@G抗菌效果图。通过抗菌实验发现PdFe/ND@G纳米酶具有更优异的抗菌性能,其抗菌率可以达到100%。这充分的说明本发明合成的PdFe/ND@G纳米酶具有优异的抗菌性能,在催化抗菌领域具有广阔的前景。

Claims (9)

1.一种纳米碳负载钯铁双金属团簇纳米酶,其特征在于:是以纳米碳为载体,以原子级分散的钯铁双金属团簇为活性中心形成的纳米碳负载钯铁双金属团簇纳米酶。
2.根据权利要求1所述的一种纳米碳负载钯铁双金属团簇纳米酶,其特征在于:按质量百分比,钯的负载量为0.5%,铁的负载量为0.5%。
3.一种纳米碳负载钯铁双金属团簇纳米酶的制备方法,其特征在于:制备方法包括如下步骤:
1)将纳米金刚石@石墨烯复合材料均匀分散于水中得悬浮液,调节体系的pH为10,在搅拌下,将pH为4的钯盐和铁盐混合水溶液匀速滴入到悬浮液中,在100℃保持搅拌1小时,抽滤,洗涤,干燥,得前驱体;
2)将所得前驱体,在500℃、H2条件下还原2小时,得纳米碳负载钯铁双金属团簇纳米酶。
4.根据权利要求3所述的制备方法,其特征在于:步骤1)中,采用碳酸钠溶液调节体系的pH为10。
5.根据权利要求3所述的制备方法,其特征在于:步骤1)中,所述钯盐为硝酸钯,所述铁盐为硝酸铁;按质量比,钯:铁=1:1。
6.权利要求1或2所述的纳米碳负载钯铁双金属团簇纳米酶作为抗菌剂在抗菌中的应用。
7.根据权利要求6所述的应用,其特征在于:方法如下:于菌悬液中,加入纳米碳负载钯铁双金属团簇纳米酶。
8.根据权利要求6或7所述的应用,其特征在于:所述菌为细菌。
9.根据权利要求8所述的应用,其特征在于:所述细菌为大肠杆菌。
CN202111176240.3A 2021-10-09 2021-10-09 纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用 Active CN113786843B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111176240.3A CN113786843B (zh) 2021-10-09 2021-10-09 纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111176240.3A CN113786843B (zh) 2021-10-09 2021-10-09 纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113786843A true CN113786843A (zh) 2021-12-14
CN113786843B CN113786843B (zh) 2024-03-22

Family

ID=79184696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111176240.3A Active CN113786843B (zh) 2021-10-09 2021-10-09 纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113786843B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608376A (zh) * 2022-10-14 2023-01-17 中南大学 一种基于酵母菌渣的钯-铁纳米材料及其制备方法和应用
CN115646486A (zh) * 2022-11-10 2023-01-31 辽宁大学 一种石墨烯负载钯纳米酶及其制备方法和应用
CN115845842A (zh) * 2022-12-09 2023-03-28 辽宁大学 一种纳米金刚石/石墨烯负载贵金属铱团簇纳米酶及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148916A (zh) * 2015-09-02 2015-12-16 湖南大学 负载钯铁双金属的磷杂化介孔碳及其制备方法与应用
CN106944095A (zh) * 2017-03-08 2017-07-14 天津大学 一种磁性石墨烯基金钯四氧化三铁复合物及其制备方法
AU2017101170A4 (en) * 2017-08-25 2017-11-02 Deng, Xinyi MISS A method for H2O2 detection with GO-PtNi hybrid nanoenzyme mimics
CN109174085A (zh) * 2018-09-06 2019-01-11 中国科学院金属研究所 原子级分散钯基纳米金刚石/石墨烯复合材料催化剂及其制备方法和应用
CN109806867A (zh) * 2019-02-27 2019-05-28 中国科学院金属研究所 纳米碳负载原子级分散铜基催化剂及其制备方法和应用
CN112206824A (zh) * 2020-10-30 2021-01-12 江西维邦生物科技有限公司 一种聚多巴胺介导的磁性双金属纳米酶的制备方法
CN112337466A (zh) * 2020-11-27 2021-02-09 辽宁大学 一种纳米碳负载团簇态铜纳米酶及其制备方法和应用
CN113457659A (zh) * 2021-06-24 2021-10-01 四川大学 过渡金属单原子纳米酶及其制备方法和用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148916A (zh) * 2015-09-02 2015-12-16 湖南大学 负载钯铁双金属的磷杂化介孔碳及其制备方法与应用
CN106944095A (zh) * 2017-03-08 2017-07-14 天津大学 一种磁性石墨烯基金钯四氧化三铁复合物及其制备方法
AU2017101170A4 (en) * 2017-08-25 2017-11-02 Deng, Xinyi MISS A method for H2O2 detection with GO-PtNi hybrid nanoenzyme mimics
CN109174085A (zh) * 2018-09-06 2019-01-11 中国科学院金属研究所 原子级分散钯基纳米金刚石/石墨烯复合材料催化剂及其制备方法和应用
CN109806867A (zh) * 2019-02-27 2019-05-28 中国科学院金属研究所 纳米碳负载原子级分散铜基催化剂及其制备方法和应用
CN112206824A (zh) * 2020-10-30 2021-01-12 江西维邦生物科技有限公司 一种聚多巴胺介导的磁性双金属纳米酶的制备方法
CN112337466A (zh) * 2020-11-27 2021-02-09 辽宁大学 一种纳米碳负载团簇态铜纳米酶及其制备方法和应用
CN113457659A (zh) * 2021-06-24 2021-10-01 四川大学 过渡金属单原子纳米酶及其制备方法和用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JUNYOUNG KWON ET AL.: "Iron–Palladium magnetic nanoparticles for decolorizing rhodamine B and scavenging reactive oxygen species" *
TAO WANG ET AL.: "Graphdiyne-supported palladium-iron nanosheets: A dual-functional peroxidase mimetic nanozyme for glutathione detection and antibacterial application" *
王磊: "基于金属载体强相互作用合成碳载金属催化剂及其催化性能研究" *
黄飞: "纳米碳负载原子级分散金属催化剂的精准制备及乙炔加氢催化性能研究" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608376A (zh) * 2022-10-14 2023-01-17 中南大学 一种基于酵母菌渣的钯-铁纳米材料及其制备方法和应用
CN115608376B (zh) * 2022-10-14 2024-02-20 中南大学 一种基于酵母菌渣的钯-铁纳米材料及其制备方法和应用
CN115646486A (zh) * 2022-11-10 2023-01-31 辽宁大学 一种石墨烯负载钯纳米酶及其制备方法和应用
CN115845842A (zh) * 2022-12-09 2023-03-28 辽宁大学 一种纳米金刚石/石墨烯负载贵金属铱团簇纳米酶及其制备方法和应用

Also Published As

Publication number Publication date
CN113786843B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN113786843B (zh) 纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用
Wang et al. Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer
Chen et al. Facile preparation and synergistic antibacterial effect of three-component Cu/TiO 2/CS nanoparticles
Venkatasubramanian et al. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants
CN102872889B (zh) 一种石墨烯/磷酸银/二氧化钛双功能复合材料及其制备方法
CN112337466B (zh) 一种纳米碳负载团簇态铜纳米酶及其制备方法和应用
CN106512941A (zh) 复合纳米二氧化钛活性炭吸附剂
CN103947675A (zh) 磁性氧化石墨烯纳米复合物及其制备方法和应用
CN115845842A (zh) 一种纳米金刚石/石墨烯负载贵金属铱团簇纳米酶及其制备方法和应用
CN112774664B (zh) 一种具有光热协同作用纳米TiO2@MnO2复合材料及其制备方法和应用
CN107243348B (zh) 一种抑菌性光催化剂的生物辅助合成方法
CN112471173B (zh) 石墨烯抗菌复合膜的制备方法、制得的抗菌复合膜
Batool et al. The construction of novel CuO/SnO2@ g-C3N4 photocatalyst for efficient degradation of ciprofloxacin, methylene blue and photoinhibition of bacteria through efficient production of reactive oxygen species
CN113499773A (zh) 一种纳米氧化锌负载钯纳米粒子的纳米酶及其制备方法和应用
Kumar et al. Photocatalytic disinfection of water with Ag–TiO 2 nanocrystalline composite
CN111744503A (zh) 一种Z型异质结MoS2/Bi2WO6复合光催化剂及其制备方法和应用
CN105457663A (zh) 一种Bi2WO6/Ag3PO4复合光催化杀菌剂及其制备方法
CN110882272A (zh) 一种基于Fe@BC结构的纳米酶杀菌材料及其制备方法和作为杀菌材料应用
CN113875771A (zh) 一种Zr-MOF纳米材料在制备光催化抗菌材料中的应用
CN109603906A (zh) 一种蒽醌-2-磺酸钠/氧化石墨烯复合光催化杀菌剂及其制备方法和应用
Yuan et al. Precisely modulated 2D PdCu alloy nanodendrites as highly active peroxidase mimics for the elimination of biofilms
Cui et al. Biological effects of PAS TiO2sol on disease control and photosynthesisin cucumber ('Cucumis sativus L.')
CN203447530U (zh) 医学档案纳米光催化杀毒灭菌装置
CN113841708B (zh) 一种硫化银/二硫化钼/酸化凹凸棒石纳米复合光驱动抗菌材料及其制备方法和应用
CN109964957A (zh) 一种Cu2O/Ag纳米抗菌材料的绿色制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant