CN112206824A - 一种聚多巴胺介导的磁性双金属纳米酶的制备方法 - Google Patents

一种聚多巴胺介导的磁性双金属纳米酶的制备方法 Download PDF

Info

Publication number
CN112206824A
CN112206824A CN202011189976.XA CN202011189976A CN112206824A CN 112206824 A CN112206824 A CN 112206824A CN 202011189976 A CN202011189976 A CN 202011189976A CN 112206824 A CN112206824 A CN 112206824A
Authority
CN
China
Prior art keywords
polydopamine
pda
final concentration
bimetallic
nanoenzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011189976.XA
Other languages
English (en)
Inventor
赖卫华
熊勇华
章钢刚
彭娟
李响敏
刘文娟
伍燕华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Weibang Biotechnology Co ltd
Original Assignee
Jiangxi Weibang Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Weibang Biotechnology Co ltd filed Critical Jiangxi Weibang Biotechnology Co ltd
Priority to CN202011189976.XA priority Critical patent/CN112206824A/zh
Publication of CN112206824A publication Critical patent/CN112206824A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/003Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种聚多巴胺介导的磁性双金属纳米酶的制备方法。以三氯化铁为铁源,通过溶剂热法制备得四氧化三铁纳米粒子,在其表面包裹聚多巴胺薄层,介导氯钯酸钠和氯铂酸钾原位还原,钯/铂生长于聚多巴胺薄层表面,即制得本发明磁性双金属纳米酶。本发明通过采用四氧化三铁作为磁核,赋予纳米酶磁性,从而实现纳米酶的回收利用,通过聚多巴胺介导生长钯/铂,可提供丰富的钯/铂生长位点,且制得的纳米酶具有优良的稳定性和生物相容性,同时由于钯/铂双金属协同效应,制得的纳米酶具备优异的酶催化活性。

Description

一种聚多巴胺介导的磁性双金属纳米酶的制备方法
技术领域
本发明属于化学合成、纳米材料领域,具体涉及一种聚多巴胺介导的磁性双金属(钯/铂)纳米酶(Fe3O4@PDA@Pd/Pt)的制备方法。
背景技术
酶是具备强效催化活性、对底物具有高度特异性的蛋白质或RNA。酶催化反应是通过酶的参与降低反应能,从而使反应正常进行的一类化学反应。该反应的特点是仅需要极少量的酶参与,即可产生大量的反应产物,从而广泛应用于医学、生物和化学领域。然而,传统的酶(蛋白质类和RNA类)因其结构特性,往往稳定性不够、催化条件严格,纳米酶因其稳定性高、耐受极端环境等优点越来越受业界的关注。
纳米酶是一类微纳米尺寸的具有催化活性的纳米粒子,一般分为金属纳米酶和非金属纳米酶。与传统的有机物酶具备对底物的高特异性不同,纳米酶往往针对不同底物也能表现出催化活性,更具有普适性。同时,纳米酶结构简单,因而合成简便,结构设计更容易实现;纳米酶尺寸小,比表面积巨大,保证了其较高的催化活性;组成成分为金属或者碳类无机物,可在极端环境下仍不发生传统酶的变性。常见的纳米酶有二氧化钛纳米粒子、氧化石墨烯、钯纳米粒子、铂纳米粒子等,此外,一些双组分纳米酶例如金/铂、钯/铂等因其双组分之间的协同效应,可大大提高纳米酶的催化活性而成为研究热点。
随着社会的发展,资源越来越枯竭,物质的回收与再利用是可持续发展的重要举措。传统酶的回收较难实现,结构简单的纳米酶通过设计添加磁性组件即可实现。四氧化三铁(Fe3O4)是最为普遍应用的磁性纳米粒子,其具备超高的顺磁性,放置于外加磁场下即可实现纳米粒子的回收,撤去外加磁场实现纳米粒子的退磁从而分散。同时四氧化三铁纳米粒子因其粗糙表面具备大量的羟基而具备较好的可修饰性,易于与纳米酶其它组件装配。基于上述情况,发明人研究开发了一种聚多巴胺介导的磁性双金属(钯/铂)纳米酶(Fe3O4@PDA@Pd/Pt),目前,尚未有Fe3O4@PDA@Pd/Pt的制备并应用的相关报道。
发明内容
本发明旨在提供一种聚多巴胺介导的磁性双金属纳米酶Fe3O4@PDA@Pd/Pt的制备方法,该制备方法具有高效和易于制备的优点,制备得到的Fe3O4@PDA@Pd/Pt的磁响应强、分散性良好,且酶催化活性优异。
为了实现上述目的,本发明采取的技术方案如下:
本发明提供了一种Fe3O4@PDA@Pd/Pt的制备方法,包括如下步骤:
首先将三氯化铁、聚乙二醇和醋酸钠溶于乙二醇中,密封高温反应,磁分离洗涤所得纳米粒子制备得Fe3O4,然后取一定量Fe3O4分散于Tris-HCl缓冲溶液中,加入盐酸多巴胺,机械搅拌下避光反应,磁分离洗涤所得纳米粒子即得到聚多巴胺包四氧化三铁纳米粒子(Fe3O4@PDA),最后取一定量Fe3O4@PDA分散于聚乙烯吡咯烷酮溶液中,加入抗坏血酸、氯钯酸钠和氯铂酸钾,加热反应,磁分离洗涤所得纳米粒子,即制得本发明磁性双金属纳米酶。
进一步的,所述Fe3O4@PDA@Pd/Pt的制备方法中,所述三氯化铁的终浓度为10~100mg/mL。所述聚乙二醇的相对分子量为2000~20000,终浓度为10~100mg/mL。所述醋酸钠的终浓度为30~300mg/mL。
进一步的,所述Fe3O4@PDA@Pd/Pt的制备方法中,制备Fe3O4的高温反应温度为150~300℃,反应时间为12~36h。
进一步的,所述Fe3O4@PDA@Pd/Pt的制备方法中,所述Tris-HCl缓冲溶液的浓度为0.01~0.1M,pH为7~10。
进一步的,所述Fe3O4@PDA@Pd/Pt的制备方法中,Fe3O4的终浓度为10~200μg/mL,直径为50~500nm。所述盐酸多巴胺的终浓度为20~400μg/mL。
进一步的,所述Fe3O4@PDA@Pd/Pt的制备方法中,制备Fe3O4@PDA的避光反应时间为12~36h,机械搅拌转速为200~400r/min。
进一步的,所述Fe3O4@PDA@Pd/Pt的制备方法中,Fe3O4@PDA的终浓度为100~500μg/mL,PDA薄层厚度为5~50nm。
进一步的,所述Fe3O4@PDA@Pd/Pt的制备方法中,所述聚乙烯吡咯烷酮溶液的浓度为0.5~5%(w/v)。所述抗坏血酸的终浓度为0.1~10mg/mL。所述氯钯酸钠的终浓度为0.1~10mM。所述氯铂酸钾的终浓度为0.1~10mM。
进一步的,所述Fe3O4@PDA@Pd/Pt的制备方法中,制备Fe3O4@PDA@Pd/Pt的加热反应温度为50~90℃,反应时间为15~45min。
进一步的,所述Fe3O4@PDA@Pd/Pt的制备方法中,制得的Fe3O4@PDA@Pd/Pt的直径为60~1000nm。
本发明的有益效果是:
本发明通过采用四氧化三铁作为磁核,赋予纳米酶磁性,从而实现纳米酶的回收利用,通过聚多巴胺介导生长钯/铂,可提供丰富的钯/铂生长位点,且制得的纳米酶具有优良的稳定性和生物相容性,同时由于钯/铂双金属协同效应,制得的纳米酶具有稳定性和生物相容性好、催化活性高、可回收利用的优点。
附图说明
图1是本发明制备Fe3O4@PDA@Pd/Pt的原理图。
图2是本发明制备的Fe3O4@PDA@Pd/Pt的模拟结构图。
图3是本发明制备的Fe3O4@PDA@Pd/Pt透射电镜微观表征图。
图4是本发明制备的Fe3O4@PDA@Pd/Pt磁性表征图。其中a为Fe3O4,b为Fe3O4@PDA,c为Fe3O4@PDA@Pd/Pt。
图5是本发明制备的Fe3O4@PDA@Pd/Pt与传统辣根过氧化物酶(HRP)的酶催化活性对比图。其中a为TMB+H2O2,b为2×10-10M HRP+TMB+H2O2,c为2×10-11M HRP+TMB+H2O2,d为2×10-11M Fe3O4@PDA@Pd/Pt+TMB+H2O2,e为2×10-12M Fe3O4@PDA@Pd/Pt+TMB+H2O2
具体实施方式
实施例1:100nm粒径Fe3O4@PDA@Pd/Pt的制备
一、制备Fe3O4:称取三氯化铁、聚乙二醇-3000和醋酸钠溶于乙二醇中,使之终浓度分别为10、15、60mg/mL,高压釜密封200℃反应12h,反应结束后磁分离水洗3次,烘干得Fe3O4
二、制备Fe3O4@PDA:取Fe3O4分散于Tris-HCl缓冲溶液(0.05M,pH=8.5)中,使之终浓度分别为50μg/mL,加入盐酸多巴胺(10mg/mL)使之终浓度为50μg/mL,避光搅拌反应(250r/min)15h,反应结束后磁分离,水洗三遍后用水复溶即得Fe3O4@PDA;
三、制备Fe3O4@PDA@Pd/Pt:取一定量的Fe3O4@PDA分散于聚乙烯吡咯烷酮溶液(1%)中,使之终浓度为50μg/mL。加入抗坏血酸、氯钯酸钠和氯铂酸钾,使之终浓度分别为0.5mg/mL、0.25mM和0.5mM,65℃反应10min。反应结束后磁分离,水洗三次后水复溶即得Fe3O4@PDA@Pd/Pt。
实施例2:200nm粒径Fe3O4@PDA@Pd/Pt的制备
一、制备Fe3O4:称取三氯化铁、聚乙二醇-4000和醋酸钠溶于乙二醇中,使之终浓度分别为20、15、60mg/mL,高压釜密封200℃反应16h,反应结束后磁分离水洗3次,烘干得Fe3O4
二、制备Fe3O4@PDA:取Fe3O4分散于Tris-HCl缓冲溶液(0.05M,pH=8.5)中,使之终浓度分别为50μg/mL,加入盐酸多巴胺(10mg/mL)使之终浓度为100μg/mL,避光搅拌反应(250r/min)20h,反应结束后磁分离,水洗三遍后用水复溶即得Fe3O4@PDA;
三、制备Fe3O4@PDA@Pd/Pt:取一定量的Fe3O4@PDA分散于聚乙烯吡咯烷酮溶液(1%)中,使之终浓度为50μg/mL。加入抗坏血酸、氯钯酸钠和氯铂酸钾,使之终浓度分别为0.5mg/mL、0.25mM和0.5mM,65℃反应15min。反应结束后磁分离,水洗三次后水复溶即得Fe3O4@PDA@Pd/Pt。
实施例3:1μm粒径Fe3O4@PDA@Pd/Pt的制备
一、制备Fe3O4:称取三氯化铁、聚乙二醇-10000和醋酸钠溶于乙二醇中,使之终浓度分别为40、35、80mg/mL,高压釜密封200℃反应20h,反应结束后磁分离水洗3次,烘干得Fe3O4
二、制备Fe3O4@PDA:取Fe3O4分散于Tris-HCl缓冲溶液(0.05M,pH=8.5)中,使之终浓度分别为200μg/mL,加入盐酸多巴胺(50mg/mL)使之终浓度为500μg/mL,避光搅拌反应(250r/min)30h,反应结束后磁分离,水洗三遍后用水复溶即得Fe3O4@PDA;
三、制备Fe3O4@PDA@Pd/Pt:取一定量的Fe3O4@PDA分散于聚乙烯吡咯烷酮溶液(1%)中,使之终浓度为200μg/mL。加入抗坏血酸、氯钯酸钠和氯铂酸钾,使之终浓度分别为2mg/mL、1mM和2mM,65℃反应25min。反应结束后磁分离,水洗三次后水复溶即得Fe3O4@PDA@Pd/Pt。
如图4所示,三种纳米粒子在外加磁场下1min内即可实现较好的磁分离,3min可完全磁分离。
如图5所示,本发明制备的Fe3O4@PDA@Pd/Pt在2×10-12M浓度下即可达到较好的催化性能,而HRP需要2×10-10M方可达到。在同等物质的量浓度下。Fe3O4@PDA@Pd/Pt的酶催化活性约为HRP的100倍。
以上所述仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种聚多巴胺介导的磁性双金属纳米酶的制备方法,其特征在于,首先将三氯化铁、聚乙二醇和醋酸钠溶于乙二醇中,密封高温反应,磁分离洗涤所得纳米粒子制备得四氧化三铁纳米粒子,然后取一定量四氧化三铁纳米粒子分散于Tris-HCl缓冲溶液中,加入盐酸多巴胺,机械搅拌下避光反应,磁分离洗涤所得纳米粒子即得到聚多巴胺包四氧化三铁纳米粒子,最后取一定量聚多巴胺包四氧化三铁纳米粒子分散于聚乙烯吡咯烷酮溶液中,加入抗坏血酸、氯钯酸钠和氯铂酸钾,加热反应,磁分离洗涤所得纳米粒子,即制得磁性双金属纳米酶。
2.根据权利要求1所述的一种聚多巴胺介导的磁性双金属纳米酶制备方法,其特征在于,所述三氯化铁的终浓度为10~100mg/mL;所述聚乙二醇的相对分子量为2000~20000,终浓度为10~100mg/mL。
3.根据权利要求1所述的一种聚多巴胺介导的磁性双金属纳米酶制备方法,其特征在于,所述醋酸钠的终浓度为30~300mg/mL;所述Fe3O4的终浓度为20~200μg/mL,直径为50~500nm;所述盐酸多巴胺的终浓度为20~400μg/mL。
4.根据权利要求1所述的一种聚多巴胺介导的磁性双金属纳米酶制备方法,其特征在于,所述制备Fe3O4的高温反应温度为150~300℃,反应时间为12~36h。
5.根据权利要求1所述的一种聚多巴胺介导的磁性双金属纳米酶制备方法,其特征在于,所述Tris-HCl缓冲溶液的浓度为0.01~0.1M,pH为7~10。
6.根据权利要求1所述的一种聚多巴胺介导的磁性双金属纳米酶制备方法,其特征在于,所述制备Fe3O4@PDA的避光反应时间为12~36h,机械搅拌转速为200~400r/min。
7.根据权利要求1所述的一种聚多巴胺介导的磁性双金属纳米酶制备方法,其特征在于,所述Fe3O4@PDA的终浓度为100~500μg/mL,PDA薄层厚度为5~50nm。
8.根据权利要求1所述的一种聚多巴胺介导的磁性双金属纳米酶制备方法,其特征在于,所述聚乙烯吡咯烷酮溶液的浓度为0.5~5%(w/v);所述抗坏血酸的终浓度为0.1~10mg/mL;所述氯钯酸钠的终浓度为0.1~10mM;所述氯铂酸钾的终浓度为0.1~10mM。
9.根据权利要求1所述的一种聚多巴胺介导的磁性双金属纳米酶制备方法,其特征在于,所述制备Fe3O4@PDA@Pd/Pt的加热反应温度为50~90℃,反应时间为15~45min。
10.根据权利要求1所述的一种聚多巴胺介导的磁性双金属纳米酶制备方法,其特征在于,所述制得的Fe3O4@PDA@Pd/Pt的直径为60~1000nm。
CN202011189976.XA 2020-10-30 2020-10-30 一种聚多巴胺介导的磁性双金属纳米酶的制备方法 Pending CN112206824A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011189976.XA CN112206824A (zh) 2020-10-30 2020-10-30 一种聚多巴胺介导的磁性双金属纳米酶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011189976.XA CN112206824A (zh) 2020-10-30 2020-10-30 一种聚多巴胺介导的磁性双金属纳米酶的制备方法

Publications (1)

Publication Number Publication Date
CN112206824A true CN112206824A (zh) 2021-01-12

Family

ID=74057703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011189976.XA Pending CN112206824A (zh) 2020-10-30 2020-10-30 一种聚多巴胺介导的磁性双金属纳米酶的制备方法

Country Status (1)

Country Link
CN (1) CN112206824A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113786843A (zh) * 2021-10-09 2021-12-14 辽宁大学 纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097194A (zh) * 2010-12-10 2011-06-15 北京化工大学 壳核结构SiO2/Fe3O4复合磁性粒子的制备方法
CN102974314A (zh) * 2012-12-04 2013-03-20 天津大学 一种磁性金纳米粒子复合材料及其制备方法和应用
CN103645315A (zh) * 2013-12-18 2014-03-19 国家纳米科学中心 一种铂基合金结构的纳米棒模拟酶溶液及在elisa中的应用
US20140336040A1 (en) * 2012-01-05 2014-11-13 Nanyang Technological University Methods of preparing monodispersed polydopamine nano- or microspheres, and methods of preparing nano- or microstructures based on the polydopamine nano- or microspheres
CN104258909A (zh) * 2014-08-01 2015-01-07 曲阜师范大学 一种Fe3O4-聚多巴胺-Au纳米复合材料及其制备方法和应用
CN104551000A (zh) * 2014-12-23 2015-04-29 国家纳米科学中心 一种铂钴纳米合金模拟酶及其制备方法和用途
CN104655848A (zh) * 2015-01-15 2015-05-27 宁波大学 检测莱克多巴胺的酶联免疫检测试剂盒及其制备方法和应用
CN105044341A (zh) * 2015-07-03 2015-11-11 济南大学 一种电沉积金及金复合物的胃癌标志物ca724生物传感器的制备方法及应用
CN105738457A (zh) * 2016-03-07 2016-07-06 济南大学 一种基于金属基标记同时检测两种肿瘤标志物的磁性电化学免疫传感器的制备方法及应用
CN105879881A (zh) * 2016-04-29 2016-08-24 盐城师范学院 PtPd/Fe3O4纳米催化剂的制备及其在HECK反应中的应用
CN106040277A (zh) * 2016-06-08 2016-10-26 复旦大学 一种负载Pt的“囊泡串”结构碳纤维复合材料及其制备方法
CN106111131A (zh) * 2016-06-24 2016-11-16 许昌学院 一种树枝状金铂合金纳米颗粒模拟酶及其制备方法和应用
CN107375952A (zh) * 2017-07-24 2017-11-24 吉林大学 T1/t2双弛豫铂‑氧化铁‑金纳米颗粒及制备方法
CN109692972A (zh) * 2019-03-01 2019-04-30 河北工业大学 PtPd纳米花制备方法及利用PtPd纳米花催化反应的过氧化氢浓度检测方法
CN110624609A (zh) * 2019-10-16 2019-12-31 台州学院 一种磁性纳米催化剂的制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097194A (zh) * 2010-12-10 2011-06-15 北京化工大学 壳核结构SiO2/Fe3O4复合磁性粒子的制备方法
US20140336040A1 (en) * 2012-01-05 2014-11-13 Nanyang Technological University Methods of preparing monodispersed polydopamine nano- or microspheres, and methods of preparing nano- or microstructures based on the polydopamine nano- or microspheres
CN102974314A (zh) * 2012-12-04 2013-03-20 天津大学 一种磁性金纳米粒子复合材料及其制备方法和应用
CN103645315A (zh) * 2013-12-18 2014-03-19 国家纳米科学中心 一种铂基合金结构的纳米棒模拟酶溶液及在elisa中的应用
CN104258909A (zh) * 2014-08-01 2015-01-07 曲阜师范大学 一种Fe3O4-聚多巴胺-Au纳米复合材料及其制备方法和应用
CN104551000A (zh) * 2014-12-23 2015-04-29 国家纳米科学中心 一种铂钴纳米合金模拟酶及其制备方法和用途
CN104655848A (zh) * 2015-01-15 2015-05-27 宁波大学 检测莱克多巴胺的酶联免疫检测试剂盒及其制备方法和应用
CN105044341A (zh) * 2015-07-03 2015-11-11 济南大学 一种电沉积金及金复合物的胃癌标志物ca724生物传感器的制备方法及应用
CN105738457A (zh) * 2016-03-07 2016-07-06 济南大学 一种基于金属基标记同时检测两种肿瘤标志物的磁性电化学免疫传感器的制备方法及应用
CN105879881A (zh) * 2016-04-29 2016-08-24 盐城师范学院 PtPd/Fe3O4纳米催化剂的制备及其在HECK反应中的应用
CN106040277A (zh) * 2016-06-08 2016-10-26 复旦大学 一种负载Pt的“囊泡串”结构碳纤维复合材料及其制备方法
CN106111131A (zh) * 2016-06-24 2016-11-16 许昌学院 一种树枝状金铂合金纳米颗粒模拟酶及其制备方法和应用
CN107375952A (zh) * 2017-07-24 2017-11-24 吉林大学 T1/t2双弛豫铂‑氧化铁‑金纳米颗粒及制备方法
CN109692972A (zh) * 2019-03-01 2019-04-30 河北工业大学 PtPd纳米花制备方法及利用PtPd纳米花催化反应的过氧化氢浓度检测方法
CN110624609A (zh) * 2019-10-16 2019-12-31 台州学院 一种磁性纳米催化剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HOJAT VEISI ET AL.: "Facile in-situ synthesis and deposition of monodisperse palladium nanoparticles on polydopamine-functionalized silica gel as a heterogeneous and recyclable nanocatalyst for aerobic oxidation of alcohols", 《CHINESE JOURNAL OF CATALYSIS》 *
SANGMOON BYUN ET AL.: "Heterogenized Bimetallic Pd−Pt−Fe3O4 Nanoflakes as Extremely Robust, Magnetically Recyclable Catalysts for Chemoselective Nitroarene Reduction", 《ACS APPL. MATER. INTERFACES》 *
王艳薇等,: "聚多巴胺活化的纤维素材料用于贵金属离子的回收及有机染料催化", 《齐鲁工业大学学报》 *
郭海昌等: "空气下Fe3O4@PDA-Pd NPs催化Heck反应制备3-苯基丙烯酸酯", 《高校化学工程学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113786843A (zh) * 2021-10-09 2021-12-14 辽宁大学 纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用
CN113786843B (zh) * 2021-10-09 2024-03-22 辽宁大学 纳米碳负载钯铁双金属团簇纳米酶及其制备方法和应用

Similar Documents

Publication Publication Date Title
Patel et al. Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization
Yang et al. Preparation of immobilized lipase on magnetic nanoparticles dialdehyde starch
Zhang et al. Assembly of graphene oxide–enzyme conjugates through hydrophobic interaction
Hartmann et al. Saccharide‐modified nanodiamond conjugates for the efficient detection and removal of pathogenic bacteria
Ocsoy et al. A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity
Zheng et al. Biomimetic synthesis of magnetic composite particles for laccase immobilization
CN109182327B (zh) 磁性纳米粒子在核酸提取中的应用及其制备方法
CN109055359B (zh) 一种核酸提取试剂盒及核酸提取方法
Orfanakis et al. Hybrid nanomaterials of magnetic iron nanoparticles and graphene oxide as matrices for the immobilization of β-glucosidase: synthesis, characterization, and biocatalytic properties
Song et al. Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion
Li et al. An enzyme–copper nanoparticle hybrid catalyst prepared from disassembly of an enzyme–inorganic nanocrystal three-dimensional nanostructure
Yang et al. Contrasting modulation of enzyme activity exhibited by graphene oxide and reduced graphene
Lin et al. Magnetic enzyme nanogel (MENG): a universal synthetic route for biocatalysts
Zhuang et al. Interfacial microenvironment for lipase immobilization: Regulating the heterogeneity of graphene oxide
CN109576256B (zh) 一种磁性dna水凝胶封装双酶的方法
Zhou et al. Magnetic nanoparticles for the affinity adsorption of maltose binding protein (MBP) fusion enzymes
Mariño et al. Magnetic nanomaterials as biocatalyst carriers for biomass processing: Immobilization strategies, reusability, and applications
Ibrahim et al. Stabilization and improved properties of Salipaludibacillus agaradhaerens alkaline protease by immobilization onto double mesoporous core-shell nanospheres
Singh et al. Functionalization of multiwalled carbon nanotubes for enzyme immobilization
Thakur et al. Nanocarriers-based immobilization of enzymes for industrial application
CN112206824A (zh) 一种聚多巴胺介导的磁性双金属纳米酶的制备方法
Li et al. Nano-sized mesoporous hydrogen-bonded organic frameworks for in situ enzyme immobilization
Vojdanitalab et al. Instantaneous synthesis and full characterization of organic–inorganic laccase-cobalt phosphate hybrid nanoflowers
Ibrahim et al. Immobilization of cyclodextrin glucanotransferase on aminopropyl-functionalized silica-coated superparamagnetic nanoparticles
Ibrahim et al. Development of novel robust nanobiocatalyst for detergents formulations and the other applications of alkaline protease

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210112

RJ01 Rejection of invention patent application after publication