CN113783550B - 一种用于k波段的高精度数控移相器及其移相方法 - Google Patents

一种用于k波段的高精度数控移相器及其移相方法 Download PDF

Info

Publication number
CN113783550B
CN113783550B CN202111338921.5A CN202111338921A CN113783550B CN 113783550 B CN113783550 B CN 113783550B CN 202111338921 A CN202111338921 A CN 202111338921A CN 113783550 B CN113783550 B CN 113783550B
Authority
CN
China
Prior art keywords
unit
stage
code
coupler
binary code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111338921.5A
Other languages
English (en)
Other versions
CN113783550A (zh
Inventor
袁小方
刘成鹏
姚静石
毛毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Mingyi Electronic Technology Co ltd
Original Assignee
Chengdu Mingyi Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Mingyi Electronic Technology Co ltd filed Critical Chengdu Mingyi Electronic Technology Co ltd
Priority to CN202111338921.5A priority Critical patent/CN113783550B/zh
Publication of CN113783550A publication Critical patent/CN113783550A/zh
Application granted granted Critical
Publication of CN113783550B publication Critical patent/CN113783550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/08Networks for phase shifting
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/16Networks for phase shifting

Landscapes

  • Networks Using Active Elements (AREA)

Abstract

本发明提出了一种用于K波段的高精度数控移相器及其移相方法,通过划分三级移相,通过第一级反射型移相单元和第二级反射型移相单元分别进行90°的移相,再由180°移相单元进行180°的移相控制,通过逻辑控制电路将二进制位的控制码转换为精确控制三级移相的控制码,从而实现高精度且连续性的移相控制,本发明通过上述设置解决了传统移相下K波段移相不连续,且移相步进大的缺陷,同时采用常规元器件即可实现本发明,在增加了移相稳定性的情况下还进一步地大大降低了成本。

Description

一种用于K波段的高精度数控移相器及其移相方法
技术领域
本发明属于应用于无线通信中的移相器技术领域,具体地说,涉及一种用于K波段的高精度数控移相器及其移相方法。
背景技术
移相器主要应用在电信、雷达、导弹姿态控制、加速器、通信、仪器仪表等领域。波在任意传导介质进行传输时都会产生相位的偏移,移相器是一种能够对波在传输过程中产生的相移进行调整的装置。由于不同的应用场景会存在不同的传输介质,进而导致波在其中传输而产生的相位偏移各不相同。常规的移相器移相精度较低,而且相位移动的档位比较有限。随着现代电子技术发展,现在主要利用A/D,D/A转换实现数字移相,这种移相器的优点就是移相精度高,缺点就是因为数字控制位有限造成相位移动的不连续且芯片面积较大。
传统的数字控制移相器移相不连续即移相步进较大,不利于使用的缺点,导致应用场景存在局限性。同时由于K波段所处的频段(18GHz-27GHz)较高,传统的移相器在该频段插损较大,幅度调制较差,且芯片面积偏大的弊端也会带来成本的增加。
发明内容
本发明针对现有技术的上述缺陷,提出了一种用于K波段的高精度数控移相器及其移相方法,通过划分三级移相,通过第一级反射型移相单元和第二级反射型移相单元分别进行90°的移相,再由180°移相单元进行180°的移相控制,通过逻辑控制电路将二进制位的控制码转换为精确控制三级移相的控制码,从而实现高精度且连续性的移相控制,本发明通过上述设置解决了传统移相下K波段移相不连续,且移相步进大的缺陷,同时采用常规元器件即可实现本发明,在增加了移相稳定性的情况下还进一步地大大降低了成本。
本发明具体实现内容如下:
本发明提出了一种用于K波段的高精度数控移相器,连接INN输入信号和INP输入信号,包括反射型移相模块、180°移相单元和逻辑控制电路;
所述反射型移相模块包括两个反射型移相单元,分别为第一级反射型移相单元和第二级反射型移相单元;
所述第一级反射型移相单元、第二级反射型移相单元和180°移相单元依次连接;所述第一级反射型移相单元分别连接INN输入信号和INP输入信号;
所述逻辑控制电路包括第一级控制单元、第二级控制单元和第三级控制单元;
所述第一级控制单元为二进制位控制码输出单元,分别与所述180°移相单元和第二级控制单元连接;
所述第二级控制单元为二进制码转温度码单元,所述第三级控制单元包括多个温度码转二进制码单元,每个温度码转二进制码单元分别与第二级控制单元的二进制码转温度码单元连接;
所有温度码转二进制码单元均分为两组,两组温度码转二进制码单元对应连接第一级反射型移相单元和第二级反射型移相单元。
为了更好地实现本发明,进一步地,所述180°移相单元包括MOS管M1、MOS管M2、MOS管M3、MOS管M4、电感L1、电感L2、电感L3、电感L4、电阻R1、电阻R2、电阻R3、电阻R4;
所述MOS管M1的源极和MOS管M3的源极共同连接所述电感L2后作为OUTP输出端,所述MOS管M2的源极和MOS管M4的源极共同连接所述电感L4后作为OUTN输出端;
所述MOS管M1的漏极与MOS管M2的漏极共同连接电感L1后与第二级反射型移相单元输出INP输入信号的一端连接,所述MOS管M4的漏极与MOS管M3的漏极共同连接电感L3后与第二级反射型移相单元输出INN输入信号的一端连接;
所述MOS管M1的栅极、MOS管M4的栅极、MOS管M2的栅极和MOS管M3的栅极分别连接第一级控制单元,且所述MOS管M1的栅极和MOS管M4的栅极分别连接第一级控制单元发送的控制电平
Figure DEST_PATH_IMAGE002
,所述MOS管M2的栅极和MOS管M3的栅极分别连接第一级控制单元发送的控制电平VG;
所述控制电平
Figure 797039DEST_PATH_IMAGE002
与控制电平VG幅度相等、相位相反。
为了更好地实现本发明,进一步地,所述第一级反射型移相单元包括第一耦合器、第二耦合器、第一电容开关阵列和第二电容开关阵列;所述第二级反射型移相单元包括第三耦合器、第四耦合器、第三电容开关阵列和第四电容开关阵列;所述第一耦合器、第二耦合器、第三耦合器、第四耦合器均为四口耦合器,所述第一电容开关阵列、第二电容开关阵列第三电容开关阵列和第四电容开关阵列均包含12个并联的开关电容;
所述第一耦合器的①接口连接INP输入信号,②接口连接第一电容开关阵列的P端,④接口连接第二电容开关阵列的P端;
所述第二耦合器的①接口连接INN输入信号,②接口连接第一电容开关阵列的N端,④接口连接第二电容开关阵列的N端;
所述第三耦合器的①接口与第一耦合器的③接口连接,②接口连接第三电容开关阵列的P端,④接口连接第四电容开关阵列的P端;
所述第四耦合器的①接口连接第二耦合器的③接口,②接口连接第三电容开关阵列的N端,④接口连接第四电容开关阵列的N端;
所述第三耦合器的③接口和第四耦合器的③接口分别与所述180°移相单元连接;
所述N端代表连接向INN输入信号的一端,所述P端代表连接INP输入信号的一端。
为了更好地实现本发明,进一步地,所述第一级反射型移相单元包括第一耦合器、第二耦合器、第一电容开关阵列和第二电容开关阵列;所述第二级反射型移相单元包括第三耦合器、第四耦合器、第三电容开关阵列和第四电容开关阵列;所述第一耦合器、第二耦合器、第三耦合器、第四耦合器均为四口耦合器,所述第一电容开关阵列、第二电容开关阵列第三电容开关阵列和第四电容开关阵列均包含12个并联的开关电容;
所述第一耦合器的①接口连接INP输入信号,②接口连接第一电容开关阵列的P端,④接口连接第二电容开关阵列的P端;
所述第二耦合器的①接口连接INN输入信号,②接口连接第一电容开关阵列的N端,④接口连接第二电容开关阵列的N端;
所述第三耦合器的①接口与第一耦合器的③接口连接,②接口连接第三电容开关阵列的P端,④接口连接第四电容开关阵列的P端;
所述第四耦合器的①接口连接第二耦合器的③接口,②接口连接第三电容开关阵列的N端,④接口连接第四电容开关阵列的N端;
所述第三耦合器的③接口与所述180°移相单元的电感L1连接,所述第四耦合器的③接口与所述180°移相单元的电感L3连接;
所述N端代表连接向INN输入信号的一端,所述P端代表连接INP输入信号的一端。
本发明还提出了一种用于K波段的高精度数控移相器的移相方法,基于上述的一种用于K波段的高精度数控移相器,包括以下步骤:
步骤1:将第一级控制单元输出的二进制位控制码分为两部分,一部分输出到180°移相单元进行移相控制,另一部分传输到第二级控制单元;
步骤2:在第二级控制单元将接收到的二进制位控制码转换为温度码,然后将转换后的温度码进行均分并对应发送到第三级控制单元的温度码转二进制码单元中;
步骤3:将第三级控制单元中的温度码转二进制码单元均分为两组,分别连接第一级反射型移相单元和第二级反射型移相单元;
步骤4:通过一组温度码转二进制码单元控制第一级反射型移相单元进行90°的移相,通过另一组温度码转二进制码单元控制第二级反射型移相单元进行90°的移相,通过第一级控制单元输出到180°移相单元的二进制位控制码进行180°的移相,综合进行360°范围的移相操作。
本发明还提出了一种用于K波段的高精度数控移相器的移相方法,基于上述的一种用于K波段的高精度数控移相器,具体包括以下步骤:
步骤1:将第一级控制单元输出7位二进制码VC<6:0>,并将7位二进制码VC<6:0>分为两部分,二进制码VC<5:0>和二进制码VC<6>;将二进制码VC<6>输出到180°移相单元,将二进制码VC<5:0>传输到第二级控制单元;
步骤2:首先,在第二级控制单元将接收到的二进制码VC<5:0>转换为64位的温度码Vc_int<63:0>,然后将转换后的64位的温度码Vc_int<63:0>均分为八组,分别为:Vc_int<7:0>、Vc_int<15:8>、Vc_int<23:16>、Vc_int<31:24>、Vc_int<39:32>、Vc_int<47:40>、Vc_int<55:48>、Vc_int<63:56>;
然后,将均分后的八组温度码对应发送到第三级控制单元的八个温度码转二进制码单元中转换为八组3位二进制码,转换关系分别为:Vc_int<7:0>转换为Vc<2:0>、Vc_int<15:8>转换为Vc<5:3>、Vc_int<23:16>转换为Vc<8:6>、Vc_int<31:24>转换为Vc<11:9>、Vc_int<39:32>转换为Vc<14:12>、Vc_int<47:40>转换为Vc<17:15>、Vc_int<55:48>转换为Vc<20:18>、Vc_int<63:56>转换为Vc<23:21>;
步骤3:首先,将第三级控制单元中的温度码转二进制码单元均分为两组12位的二进制码,分别为:二进制码Vc<11:0>和二进制码Vc<23:12>;所述二进制码Vc<11:0>即为Vc<2:0>、Vc<5:3>、Vc<8:6>、Vc<11:9>的集合;所述二进制码Vc<23:12>即为Vc<14:12>、Vc<17:15>、Vc<20:18>、Vc<23:21>的集合;
然后,将二进制码Vc<11:0>中的12位信号分别与第一级反射型移相单元中的第一开关电容阵列和第二开关电容阵列中的开关电容对应控制连接;将二进制码Vc<23:12>中的12位信号与第二级反射型移相单元中的第三开关电容阵列和第四开关电容阵列的开关电容对应控制连接;
步骤4:通过二进制码Vc<11:0>控制第一级反射型移相单元进行90°的移相,通过二进制码Vc<23:12>控制第二级反射型移相单元进行90°的移相,通过二进制码VC<6>控制码进行180°的移相,综合进行360°范围的移相操作。
本发明与现有技术相比具有以下优点及有益效果:
1、采用数字移相,移相准确,并且移相步进小(2.8125°),既保留了数字移相的准确性优点,又优化了数字移相不连续的缺点,实际应用场景更大;
2、本结构拥有低插损(IL=-7.3dB)的优点,其他类似结构IL为-15dB左右;幅度调制为-1.2dB;相比同频段产品拥有更小面积(500um*470um),利于实际应用布局;
3、该方案采用开关电容阵列作为RTPS单元的反射负载,并采用MOS管作为主体结构实现了180°移相功能,更易于集成化,降低系统成本;
4、该方案中采用差分输入、差分输出的结构结合控制信号由二进制码转换为温度码再转换回二进制码的方式,解决了信号在经过移相器过程中移相精度不精确的问题;
5、采用MOS管作为主体结构实现了0°和180°的移相功能,便于集成。
附图说明
图1为本发明系统的结构示意图;
图2为本发明系统的逻辑控制电路的第二级控制单元和第三级控制单元的结构示意图。
具体实施方式
为了更清楚地说明本发明实施例的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例,因此不应被看作是对保护范围的限定。基于本发明中的实施例,本领域普通技术工作人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;也可以是直接相连,也可以是通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1:
本实施例提出了一种用于K波段的高精度数控移相器,连接INN输入信号和INP输入信号,如图1、图2所示,包括反射型移相模块、180°移相单元和逻辑控制电路;
所述反射型移相模块包括两个反射型移相单元,分别为第一级反射型移相单元和第二级反射型移相单元;
所述第一级反射型移相单元、第二级反射型移相单元和180°移相单元依次连接;所述第一级反射型移相单元分别连接INN输入信号和INP输入信号;
所述逻辑控制电路包括第一级控制单元、第二级控制单元和第三级控制单元;
所述第一级控制单元为二进制位控制码输出单元,分别与所述180°移相单元和第二级控制单元连接;
所述第二级控制单元为二进制码转温度码单元,所述第三级控制单元包括多个温度码转二进制码单元,每个温度码转二进制码单元分别与第二级控制单元的二进制码转温度码单元连接;
所有温度码转二进制码单元均分为两组,两组温度码转二进制码单元对应连接第一级反射型移相单元和第二级反射型移相单元。
工作原理:反射型移相单元可以设置多组,组数越多,则移相步进越小,但同时控制位也会变多。在本实施例提出两组反射型移相单元的情况,但反射型移相单元组数的增加或减少,都落入本申请的保护范围中。
实施例2:
本实施例还提出了一种用于K波段的高精度数控移相器的移相方法,基于上述实施例1的一种用于K波段的高精度数控移相器,包括以下步骤:
步骤1:将第一级控制单元输出的二进制位控制码分为两部分,一部分输出到180°移相单元进行移相控制,另一部分传输到第二级控制单元;
步骤2:在第二级控制单元将接收到的二进制位控制码转换为温度码,然后将转换后的温度码进行均分并对应发送到第三级控制单元的温度码转二进制码单元中;
步骤3:将第三级控制单元中的温度码转二进制码单元均分为两组,分别连接第一级反射型移相单元和第二级反射型移相单元;
步骤4:通过一组温度码转二进制码单元控制第一级反射型移相单元进行90°的移相,通过另一组温度码转二进制码单元控制第二级反射型移相单元进行90°的移相,通过第一级控制单元输出到180°移相单元的二进制位控制码进行180°的移相,综合进行360°范围的移相操作。
本实施例的其他部分与上述实施例1相同,故不再赘述。
实施例3:
本实施例在上述实施例1的基础上,为了更好地实现本发明,进一步地,如图1、图2所示,所述第一级反射型移相单元包括第一耦合器、第二耦合器、第一电容开关阵列和第二电容开关阵列;所述第二级反射型移相单元包括第三耦合器、第四耦合器、第三电容开关阵列和第四电容开关阵列;所述第一耦合器、第二耦合器、第三耦合器、第四耦合器均为四口耦合器,所述第一电容开关阵列、第二电容开关阵列第三电容开关阵列和第四电容开关阵列均包含12个并联的开关电容;
所述第一耦合器的①接口连接INP输入信号,②接口连接第一电容开关阵列的P端,④接口连接第二电容开关阵列的P端;
所述第二耦合器的①接口连接INN输入信号,②接口连接第一电容开关阵列的N端,④接口连接第二电容开关阵列的N端;
所述第三耦合器的①接口与第一耦合器的③接口连接,②接口连接第三电容开关阵列的P端,④接口连接第四电容开关阵列的P端;
所述第四耦合器的①接口连接第二耦合器的③接口,②接口连接第三电容开关阵列的N端,④接口连接第四电容开关阵列的N端;
所述第三耦合器的③接口与所述180°移相单元的电感L1连接,所述第四耦合器的③接口与所述180°移相单元的电感L3连接;
所述N端代表连接向INN输入信号的一端,所述P端代表连接INP输入信号的一端。
注意:一组反射型移相单元中的电容开关阵列的数量也是可以适应性调节的,且电容开关阵列中的开关电容的数量同样是可以适应性调节的,凡是数量上的变化均落入本申请的保护范围中。
本实施例的其他部分与上述实施例1相同,故不再赘述。
实施例4:
本发明还提出了一种用于K波段的高精度数控移相器的移相方法,基于上述实施例3的一种用于K波段的高精度数控移相器,如图1、图2所示,具体包括以下步骤:
步骤1:将第一级控制单元输出7位二进制码VC<6:0>,并将7位二进制码VC<6:0>分为两部分,二进制码VC<5:0>和二进制码VC<6>;将二进制码VC<6>输出到180°移相单元,将二进制码VC<5:0>传输到第二级控制单元;
步骤2:首先,在第二级控制单元将接收到的二进制码VC<5:0>转换为64位的温度码Vc_int<63:0>,然后将转换后的64位的温度码Vc_int<63:0>均分为八组,分别为:Vc_int<7:0>、Vc_int<15:8>、Vc_int<23:16>、Vc_int<31:24>、Vc_int<39:32>、Vc_int<47:40>、Vc_int<55:48>、Vc_int<63:56>;
然后,将均分后的八组温度码对应发送到第三级控制单元的八个温度码转二进制码单元中转换为八组3位二进制码,转换关系分别为:Vc_int<7:0>转换为Vc<2:0>、Vc_int<15:8>转换为Vc<5:3>、Vc_int<23:16>转换为Vc<8:6>、Vc_int<31:24>转换为Vc<11:9>、Vc_int<39:32>转换为Vc<14:12>、Vc_int<47:40>转换为Vc<17:15>、Vc_int<55:48>转换为Vc<20:18>、Vc_int<63:56>转换为Vc<23:21>;
步骤3:首先,将第三级控制单元中的温度码转二进制码单元均分为两组12位的二进制码,分别为:二进制码Vc<11:0>和二进制码Vc<23:12>;所述二进制码Vc<11:0>即为Vc<2:0>、Vc<5:3>、Vc<8:6>、Vc<11:9>的集合;所述二进制码Vc<23:12>即为Vc<14:12>、Vc<17:15>、Vc<20:18>、Vc<23:21>的集合;
然后,将二进制码Vc<11:0>中的12位信号分别与第一级反射型移相单元中的第一开关电容阵列和第二开关电容阵列中的开关电容对应控制连接;将二进制码Vc<23:12>中的12位信号与第二级反射型移相单元中的第三开关电容阵列和第四开关电容阵列的开关电容对应控制连接;
步骤4:通过二进制码Vc<11:0>控制第一级反射型移相单元进行90°的移相,通过二进制码Vc<23:12>控制第二级反射型移相单元进行90°的移相,通过二进制码VC<6>控制码进行180°的移相,综合进行360°范围的移相操作。
工作原理:初始信号经过INP(相位φ=0°)输入到耦合器1的①端口,被分为相位相差90°的两路信号,分别到达直通端口②(相位φ=0°)和正交端口④(相位φ=90°)。由于#1和#2电容阵列P端处的负载相同,因此耦合器1端口②和④处的反射系数幅度相同,耦合器1端口②和端口④产生的反射信号在端口①呈现等幅反向的特性,相互抵消,而在端口③处会产生相位和幅度相同的叠加信号,此叠加信号的相位会根据耦合器1端口②和端口④处的负载的变化而变化。具体表现为:耦合器1端口②和端口④处的负载为纯电抗性的,端口阻抗可写为:
Figure DEST_PATH_IMAGE004
端口②和端口④处的反射系数为:
Figure DEST_PATH_IMAGE006
其中
Figure DEST_PATH_IMAGE008
为耦合器的特征阻抗;同时可以写为:
Figure DEST_PATH_IMAGE010
,因此输出信号的相位会随着反射负载的变化而改变。在本方案中,反射负载为开关电容阵列。在本方案中,开关电容阵列全打开时,两级RTPS移相器的相位调整为0°;开关电容阵列全关闭时,两级RTPS移相器的相位调整为180°。
上述方案中,180°移相单元包含4个MOS管、4个电感和4个电阻。具体实施方案为:RTPS2移相单元中的耦合器3的端口③的输出接电感L1的一端,L1的另一端接MOS管M1的漏极,M1的源极接电感L2的一端,L2的另一端接移相器的输出端OUTP;MOS管M1的栅极经过一大电阻R1(数十KΩ量级)与控制电平
Figure DEST_PATH_IMAGE012
相连接。RTPS2移相单元中的耦合器4的端口③的输出接电感L3的一端,L3的另一端接MOS管M4的漏极,M4的源极接电感L4的一端,L4的另一端接移相器的输出端OUTN;MOS管M4的栅极经过一大电阻R4(数十KΩ量级)与控制电平
Figure 543541DEST_PATH_IMAGE012
相连接。MOS管M2的漏极接M1的漏极,M2的源极接M4的源极,M2的栅极经过电阻R2与控制电平VG相连接。MOS管M3的漏极接M4的漏极,M3的源极接M1的源极,M3的栅极经过电阻R3与控制电平VG相连接。其中,4个电阻的阻值相同,控制电平
Figure 57699DEST_PATH_IMAGE012
与VG为幅度相同,相位相反的关系。工作原理为:当VG为高电平时,
Figure 171017DEST_PATH_IMAGE012
为低电平,此时MOS管M2和M3导通,M1和M4关断,流经电感L1的信号经M2和L4到达OUTN,同时,流经电感L3的信号经M3和L2到达OUTP,因为流经电感L1和L3的信号为幅度相同,相位相反的差分信号,因此在端口OUTP和OUTN处实现了对原信号180°的移相;当VG为低电平时,
Figure 719810DEST_PATH_IMAGE012
为高电平,此时MOS管M1和M4导通,M2和M3关断,流经电感L1的信号经M1和L2到达OUTP,同时,流经电感L3的信号经M4和L4到达OUTN,原信号相位不变,即相位移动为0°。进而可以通过切换控制信号VC<6>的高低,实现0°和180°的移相功能。
本实施例的其他部分与上述实施例1-3任一项相同,故不再赘述。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (5)

1.一种用于K波段的高精度数控移相器,连接INN输入信号和INP输入信号,其特征在于,包括反射型移相模块、180°移相单元和逻辑控制电路;
所述反射型移相模块包括多个反射型移相单元,多个反射型移相单元之间依次连接后还与所述180°移相单元连接;第一个反射型移相单元的输入端分别连接INN输入信号和INP输入信号;
所述逻辑控制电路包括第一级控制单元、第二级控制单元和第三级控制单元;
所述第一级控制单元为二进制位控制码输出单元,分别与所述180°移相单元和第二级控制单元连接;
所述第二级控制单元为二进制码转温度码单元,所述第三级控制单元包括多个温度码转二进制码单元,每个温度码转二进制码单元分别与第二级控制单元的二进制码转温度码单元连接;
所有温度码转二进制码单元均分为多组,多组温度码转二进制码单元对应连接多个反射型移相单元;
所述反射型移相模块包括两个反射型移相单元,分别为第一级反射型移相单元和第二级反射型移相单元;
所述第一级反射型移相单元、第二级反射型移相单元和180°移相单元依次连接;所述第一级反射型移相单元分别连接INN输入信号和INP输入信号;
所述逻辑控制电路包括第一级控制单元、第二级控制单元和第三级控制单元;
所述第一级控制单元为二进制位控制码输出单元,分别与所述180°移相单元和第二级控制单元连接;
所述第二级控制单元为二进制码转温度码单元,所述第三级控制单元包括多个温度码转二进制码单元,每个温度码转二进制码单元分别与第二级控制单元的二进制码转温度码单元连接;
所有温度码转二进制码单元均分为两组,两组温度码转二进制码单元对应连接第一级反射型移相单元和第二级反射型移相单元;
所述第一级反射型移相单元包括第一耦合器、第二耦合器、第一电容开关阵列和第二电容开关阵列;所述第二级反射型移相单元包括第三耦合器、第四耦合器、第三电容开关阵列和第四电容开关阵列;所述第一耦合器、第二耦合器、第三耦合器、第四耦合器均为四口耦合器,所述第一电容开关阵列、第二电容开关阵列第三电容开关阵列和第四电容开关阵列均包含12个并联的开关电容;
所述第一耦合器的①接口连接INP输入信号,②接口连接第一电容开关阵列的P端,④接口连接第二电容开关阵列的P端;
所述第二耦合器的①接口连接INN输入信号,②接口连接第一电容开关阵列的N端,④接口连接第二电容开关阵列的N端;
所述第三耦合器的①接口与第一耦合器的③接口连接,②接口连接第三电容开关阵列的P端,④接口连接第四电容开关阵列的P端;
所述第四耦合器的①接口连接第二耦合器的③接口,②接口连接第三电容开关阵列的N端,④接口连接第四电容开关阵列的N端;
所述第三耦合器的③接口和第四耦合器的③接口分别与所述180°移相单元连接;
所述N端代表连接向INN输入信号的一端,所述P端代表连接INP输入信号的一端。
2.如权利要求1所述的一种用于K波段的高精度数控移相器,其特征在于,所述180°移相单元包括MOS管M1、MOS管M2、MOS管M3、MOS管M4、电感L1、电感L2、电感L3、电感L4、电阻R1、电阻R2、电阻R3、电阻R4;
所述MOS管M1的源极和MOS管M3的源极共同连接所述电感L2后作为OUTP输出端,所述MOS管M2的源极和MOS管M4的源极共同连接所述电感L4后作为OUTN输出端;
所述MOS管M1的漏极与MOS管M2的漏极共同连接电感L1后与第二级反射型移相单元输出INP输入信号的一端连接,所述MOS管M4的漏极与MOS管M3的漏极共同连接电感L3后与第二级反射型移相单元输出INN输入信号的一端连接;
所述MOS管M1的栅极、MOS管M4的栅极、MOS管M2的栅极和MOS管M3的栅极分别连接第一级控制单元,且所述MOS管M1的栅极和MOS管M4的栅极分别连接第一级控制单元发送的控制电平
Figure DEST_PATH_IMAGE001
,所述MOS管M2的栅极和MOS管M3的栅极分别连接第一级控制单元发送的控制电平VG;
所述控制电平
Figure 111706DEST_PATH_IMAGE001
与控制电平VG幅度相等、相位相反。
3.如权利要求2所述的一种用于K波段的高精度数控移相器,其特征在于,所述第三耦合器的③接口与所述180°移相单元的电感L1连接,所述第四耦合器的③接口与所述180°移相单元的电感L3连接。
4.一种用于K波段的高精度数控移相器的移相方法,基于权利要求1所述的一种用于K波段的高精度数控移相器,其特征在于,包括以下步骤:
步骤1:将第一级控制单元输出的二进制位控制码分为两部分,一部分输出到180°移相单元进行移相控制,另一部分传输到第二级控制单元;
步骤2:在第二级控制单元将接收到的二进制位控制码转换为温度码,然后将转换后的温度码进行均分并对应发送到第三级控制单元的温度码转二进制码单元中;
步骤3:将第三级控制单元中的温度码转二进制码单元均分为两组,分别连接第一级反射型移相单元和第二级反射型移相单元;
步骤4:通过一组温度码转二进制码单元控制第一级反射型移相单元进行90°的移相,通过另一组温度码转二进制码单元控制第二级反射型移相单元进行90°的移相,通过第一级控制单元输出到180°移相单元的二进制位控制码进行180°的移相,综合进行360°范围的移相操作。
5.一种用于K波段的高精度数控移相器的移相方法,基于权利要求1或2或3所述的一种用于K波段的高精度数控移相器,具体包括以下步骤:
步骤1:将第一级控制单元输出7位二进制码VC<6:0>,并将7位二进制码VC<6:0>分为两部分,二进制码VC<5:0>和二进制码VC<6>;将二进制码VC<6>输出到180°移相单元,将二进制码VC<5:0>传输到第二级控制单元;
步骤2:首先,在第二级控制单元将接收到的二进制码VC<5:0>转换为64位的温度码Vc_int<63:0>,然后将转换后的64位的温度码Vc_int<63:0>均分为八组,分别为:Vc_int<7:0>、Vc_int<15:8>、Vc_int<23:16>、Vc_int<31:24>、Vc_int<39:32>、Vc_int<47:40>、Vc_int<55:48>、Vc_int<63:56>;
然后,将均分后的八组温度码对应发送到第三级控制单元的八个温度码转二进制码单元中转换为八组3位二进制码,转换关系分别为:Vc_int<7:0>转换为Vc<2:0>、Vc_int<15:8>转换为Vc<5:3>、Vc_int<23:16>转换为Vc<8:6>、Vc_int<31:24>转换为Vc<11:9>、Vc_int<39:32>转换为Vc<14:12>、Vc_int<47:40>转换为Vc<17:15>、Vc_int<55:48>转换为Vc<20:18>、Vc_int<63:56>转换为Vc<23:21>;
步骤3:首先,将第三级控制单元中的温度码转二进制码单元均分为两组12位的二进制码,分别为:二进制码Vc<11:0>和二进制码Vc<23:12>;所述二进制码Vc<11:0>即为Vc<2:0>、Vc<5:3>、Vc<8:6>、Vc<11:9>的集合;所述二进制码Vc<23:12>即为Vc<14:12>、Vc<17:15>、Vc<20:18>、Vc<23:21>的集合;
然后,将二进制码Vc<11:0>中的12位信号分别与第一级反射型移相单元中的第一开关电容阵列和第二开关电容阵列中的开关电容对应控制连接;将二进制码Vc<23:12>中的12位信号与第二级反射型移相单元中的第三开关电容阵列和第四开关电容阵列的开关电容对应控制连接;
步骤4:通过二进制码Vc<11:0>控制第一级反射型移相单元进行90°的移相,通过二进制码Vc<23:12>控制第二级反射型移相单元进行90°的移相,通过二进制码VC<6>控制码进行180°的移相,综合进行360°范围的移相操作。
CN202111338921.5A 2021-11-12 2021-11-12 一种用于k波段的高精度数控移相器及其移相方法 Active CN113783550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111338921.5A CN113783550B (zh) 2021-11-12 2021-11-12 一种用于k波段的高精度数控移相器及其移相方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111338921.5A CN113783550B (zh) 2021-11-12 2021-11-12 一种用于k波段的高精度数控移相器及其移相方法

Publications (2)

Publication Number Publication Date
CN113783550A CN113783550A (zh) 2021-12-10
CN113783550B true CN113783550B (zh) 2022-01-28

Family

ID=78873880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111338921.5A Active CN113783550B (zh) 2021-11-12 2021-11-12 一种用于k波段的高精度数控移相器及其移相方法

Country Status (1)

Country Link
CN (1) CN113783550B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116032248A (zh) * 2023-01-10 2023-04-28 成都仕芯半导体有限公司 一种高精度数控移相电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104338A (zh) * 2020-07-22 2020-12-18 西安交通大学 射频/毫米波频段用7位高精度宽带有源移相器及应用
CN113193851A (zh) * 2021-04-16 2021-07-30 天津大学 一种用于x波段的数控移相器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1186396B (it) * 1985-11-26 1987-11-26 Sgs Microelettronica Spa Sistema per la creazione di un effetto pseudostereo nella riproduzione di suone monofonico
US5136265A (en) * 1989-07-11 1992-08-04 Texas Instruments Incorporated Discrete increment signal processing system using parallel branched n-state networks
JP3508620B2 (ja) * 1998-11-26 2004-03-22 三菱電機株式会社 位相補償回路、周波数変換装置およびアクティブフェーズドアレーアンテナ
JP2001345677A (ja) * 2000-03-31 2001-12-14 Sanyo Electric Co Ltd 移相回路およびfm検波回路
CN100555860C (zh) * 2006-11-29 2009-10-28 南京理工大学 微波毫米波宽频带低损耗数字模拟兼容移相器
US7642831B2 (en) * 2007-07-23 2010-01-05 Altera Corporation Phase shift circuit with lower intrinsic delay
CN102263542B (zh) * 2010-05-31 2015-11-25 Ge医疗系统环球技术有限公司 移相器及其功率放大器和核磁共振成像设备
CN102270977A (zh) * 2011-04-18 2011-12-07 中国科学院上海微系统与信息技术研究所 数字模拟混合移相电路
US20150035619A1 (en) * 2013-08-02 2015-02-05 Electronics And Telecommunications Research Institute Phase shifter and method of shifting phase of signal
CN106656099B (zh) * 2016-11-18 2020-01-03 华为技术有限公司 数字移相器
US10727587B2 (en) * 2017-04-26 2020-07-28 Gilat Satellite Networks Ltd. High-resolution phase shifter
CN110957993B (zh) * 2018-09-27 2023-07-14 天津大学青岛海洋技术研究院 一种基于SiGe工艺的太赫兹全360°反射型移相器
CN110971211B (zh) * 2018-09-28 2024-02-09 天津大学青岛海洋技术研究院 一种太赫兹全360°反射型移相器
CN109687839B (zh) * 2018-12-17 2022-08-19 中国电子科技集团公司第五十五研究所 有源无源混合型微波移相器
CN110212887B (zh) * 2019-04-28 2020-04-07 南京汇君半导体科技有限公司 一种射频有源移相器结构
CN110798171B (zh) * 2019-10-15 2021-08-24 浙江大学 一种混合型宽带高精度移相器集成电路
CN213846637U (zh) * 2020-12-11 2021-07-30 思诺威科技(无锡)有限公司 一种矢量合成开关移相器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104338A (zh) * 2020-07-22 2020-12-18 西安交通大学 射频/毫米波频段用7位高精度宽带有源移相器及应用
CN113193851A (zh) * 2021-04-16 2021-07-30 天津大学 一种用于x波段的数控移相器

Also Published As

Publication number Publication date
CN113783550A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
US8248302B2 (en) Reflection-type phase shifter having reflection loads implemented using transmission lines and phased-array receiver/transmitter utilizing the same
CN109687839B (zh) 有源无源混合型微波移相器
CN111082765B (zh) 一种超宽带两位移相器
CN114665908B (zh) 一种幅相精度可调节的衰减移相系统
CN113783550B (zh) 一种用于k波段的高精度数控移相器及其移相方法
WO2017128678A1 (zh) 基于容性负载的超宽带定值移相器
CN110957987A (zh) 加载扇形线反射负载的超宽带可调移相单元及移相器
CN103618519A (zh) 超宽带高线性度有源移相器
CN112039449B (zh) 一种超高频可变增益放大器结构
WO2021135409A1 (zh) 加载扇形线反射负载的超宽带可调移相器
CN210839500U (zh) 加载扇形线反射负载的超宽带可调移相单元
US11777187B2 (en) Reconfigurable quadrature coupler
CN104617948A (zh) 有源幅相控制电路
CN116598733A (zh) 毫米波移相器
CN115765669A (zh) 一种120~160GHz宽带紧凑型6比特无源矢量调制型移相器
CN213846637U (zh) 一种矢量合成开关移相器
CN110112515B (zh) 一种基于mems开关的混合移相器
KR20040043291A (ko) 직교신호 발생기를 이용한 선택적 결합기형 디지털위상변위기
CN113541718A (zh) 四通道多功能芯片
CN111064441A (zh) 可变增益放大器、矢量调制移相器及通信装置
CN113328728B (zh) 一种基于时变矢量合成的高精度有源移相器
CN117856762B (zh) 一种基于功分器架构的双向有源中和移相器
CN115396048B (zh) 一种无源宽带正交信号校准电路和系统
CN110971211A (zh) 一种太赫兹全360°反射型移相器
CN218570207U (zh) 定向耦合器电路、定向耦合器及微波器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: Floor 9, block a, Xiewei center, No. 333 Dehua Road, hi tech Zone, Chengdu, Sichuan 610000

Patentee after: Chengdu Mingyi Electronic Technology Co.,Ltd.

Country or region after: China

Address before: Floor 9, block a, Xiewei center, No. 333 Dehua Road, hi tech Zone, Chengdu, Sichuan 610000

Patentee before: Chengdu Mingyi Electronic Technology Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address