CN113776560B - 一种基于高精度三轴转台的陀螺标度因数测试方法 - Google Patents

一种基于高精度三轴转台的陀螺标度因数测试方法 Download PDF

Info

Publication number
CN113776560B
CN113776560B CN202111092920.7A CN202111092920A CN113776560B CN 113776560 B CN113776560 B CN 113776560B CN 202111092920 A CN202111092920 A CN 202111092920A CN 113776560 B CN113776560 B CN 113776560B
Authority
CN
China
Prior art keywords
gyro
shaft
inner frame
scale factor
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111092920.7A
Other languages
English (en)
Other versions
CN113776560A (zh
Inventor
张金保
郅银周
马碧沛
何泽民
周晓娜
王晶
刘静
张辰
李建鹏
周益
周晶淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN202111092920.7A priority Critical patent/CN113776560B/zh
Publication of CN113776560A publication Critical patent/CN113776560A/zh
Application granted granted Critical
Publication of CN113776560B publication Critical patent/CN113776560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Abstract

一种基于高精度三轴转台的陀螺标度因数测试方法,先使用常规的速率测试方法测出初始粗标度因数,然后利用三轴转台精确的位置定位功能,通过位置对消简化误差模型的办法测出陀螺输入轴失准角(即陀螺安装误差),接着利用借助高精度三轴转台中、内框相互配合能够实现二维空间任意指向优势,在二次速率测试时对陀螺输入轴失准角进行一次校准,从而完成标度因数的二次精确测试,该方法能够显著降低由陀螺输入轴失准角引起的陀螺标度因数的非线性度误差。

Description

一种基于高精度三轴转台的陀螺标度因数测试方法
技术领域
本发明属于惯性测量技术领域,涉及一种惯性姿态敏感器的标度因数的测试方法。
背景技术
随着卫星成像技术的快速发展,卫星成像载荷对航天器控制分系统提出了较高的控制精度要求,不仅定姿要精确,卫星在机动过程中也要保证较高的控制水平。而控制分系统则对惯性姿态敏感器提出了较高的性能要求,标度因数和安装误差作为惯性产品的重要技术指标,将直接影响到卫星的定姿精度。
由于卫星姿态机动过程中,主要采用陀螺进行姿态确定。为了降低航天器姿态快速机动到位后的姿态确定误差从而缩短稳定时间,以及提高卫星运动中成像的姿态确定精度,对陀螺的误差模型提出了较高的要求,陀螺主要的误差源主要包括常值漂移、陀螺安装误差和陀螺标度因数的误差。
现有标度因数的测试方法,主要是以机械指向为准,由于陀螺实际的输入轴与机械指向的轴向存在误差,这个误差就是安装误差,目前使用单轴转台的国军标测试方法中由于无法对输入轴进行微调,所以在标度因数测试结果中,包含了安装误差角引起的标度因数误差。
发明内容
本发明解决的技术问题是:克服现有技术的不足,提供了一种基于高精度三轴转台的陀螺标度因数的测试方法,可以显著提高陀螺安装误差和标度因数的测量精度。
本发明的技术解决方案是:一种基于高精度三轴转台的陀螺标度因数测试方法,包括如下步骤:
(1)将三轴转台安装于水平面上,调整三轴转台的基座使三轴转台外框轴与水平面法线平行,然后调整中框,使内框轴与水平面法线平行,实现三轴转台的外框轴、中框轴和内框轴相互正交,并使得内框上固定的安装平板处于与水平面平行的位置上;
(2)调整三轴转台的外框,使中框轴指向正北方,内框轴指向正东方,使得三轴转台的外框轴、中框轴、内框轴分别与大地水平坐标系的天、正北、正东方向一致;
(3)调整安装平板上的基准靠面,使基准靠面法线方向与内框轴的方向平行或垂直,安装平板的安装面与水平面平行;
(4)将待测陀螺安装于所述安装平板上,待测陀螺的靠面与安装平板基准靠面紧密贴合;
(5)调整中框和内框的位置,使待测陀螺轴向与外框轴方向一致,保持中框和内框位置不动,对外框轴施加不同的速率对陀螺的标度因数进行测试,得出待测陀螺的初始标度因数K0
(6)调整中框和内框的位置,使待测陀螺的轴向指向正东,记录陀螺的输出模型为:
F1=F0+K0·ωv·sinβ0+K0·ωh·sinα0 (1)
其中,F0为陀螺零偏,ωv为地球自转在垂直方向上的分量,ωh为地球自转在水平方向上的分量,α0、β0分别为陀螺输入轴在水平和垂直方向的输入轴失准角,F1表示此时陀螺输出角速率;
(7)调整内框相对位置旋转180°,记录陀螺输出模型为:
F2=F0-K0·ωv·sinβ0-K0·ωh·sinα0 (2)
其中,F2表示此时陀螺输出角速率。
联立求解公式(1)、(2)得到陀螺零偏F0
(8)调整中框相对位置旋转180°,记录陀螺输出模型为:
F3=F0+K0·ωv·sinβ0-K0·ωh·sinα0 (3)
其中,F3表示此时陀螺输出角速率;
联立求解公式(1)、(2)、(3)以及初始标度因数K0,得到α0、β0的值作为陀螺输入轴失准角的初始值;
(9)调整中框、内框的位置,使待测陀螺输入轴指向天,回到速率测试的初始状态,利用测得的α0、β0对陀螺轴的指向进行调整,内框相对位置减小α0,中框相对位置减小β0
(10)对调整输入轴后的陀螺再次进行标度因数测试,所得出的标度因数K1即为消除了绝大部分安装误差的量值,然后将K1代入公式(1)、(2)、(3)得到α1、β1即为迭代测试后的单个陀螺安装角。
本发明与现有技术相比的优点在于:本发明方法通过三轴转台的特性,对陀螺的安装误差进行最大程度的消除,此时通过将实际的陀螺输入轴指天进行标度因数测试,所得到的标度因数为陀螺的实际标度因数,该测试方法能够最大程度的消除陀螺安装误差引起的标度因数误差。
附图说明
图1为本发明方法中采用的三轴转台示意图;
图2为本发明方法的流程框图;
图3为本发明陀螺安装误差示意图一;
图4为本发明陀螺安装误差示意图二;
图5为本发明陀螺安装误差示意图三。
具体实施方式
如图1所示,为本发明方法所使用的三轴转台的示意图。图中1表示三轴转台台体,2表示转台外框,3表示转台中框,4表示转台内框,5表示内框平板,用来安装陀螺产品。
本发明中,借助高精度三轴转台的任意指向性,在速率测试项目确定输入轴指向过程中,可以实现输入轴指向的微调以消除绝大部分的输入轴失准角,进而在低速速率测试中消除绝大部分由地球自转分量引起的误差,这部分误差在高精度陀螺中占据较大比重。
如图2所示,为本发明方法的流程框图,主要步骤如下:
(1)将三轴转台安装于试验室的隔离地基上,调整三轴转台的基座使三轴转台外框与大地水平面法线平行,完成三轴转台的外框轴的校准。
试验使用的三轴转台具有三个不同方向的旋转轴,由外向内分别记作外框轴即方位轴、中框轴即俯仰轴、内框轴即横滚轴。
校正外框轴后,调整中框轴,使内框轴与大地水平面法线平行,实现三轴转台的外框轴、中框轴和内框轴相互正交,即,外框轴与中框轴正交,中框轴和内框轴正交,内框上固定的安装平板处于与大地水平面平行的位置上。
(2)调整三轴转台的外框轴,使中框轴指向正北方,此时内框轴指向正东方,即实现三轴转台的外、中、内框轴分别与大地水平坐标系的天、正北、正东方向一致。
此处设水平正东为正X轴方向,水平正北为正Y轴方向,与地表水平面垂直指天为正Z轴方向。
(3)调整内框上安装平板上的基准靠面,使靠面法线方向与内框轴的方向平行或垂直,安装平板的安装面与大地水平面平行。
(4)将待测陀螺安装于三轴转台内框安装平板上,待测陀螺的靠面与安装平板靠面紧密贴合。
(5)调整中框和内框的位置,使待测陀螺轴向与外框轴方向一致,保持中框和内框位置不动,对外框轴施加不同的速率对陀螺的标度因数进行测试,得出待测陀螺的初始标度因数K0
(6)调整中框和内框的位置使待测陀螺的轴向指向正东,如图3所示,此时陀螺的输出模型为:
F1=F0+K0·ωv·sinβ0+K0·ωh·sinα0 (1)
其中,F0为陀螺零偏,ωv为地球自转在垂直方向上的分量,ωh为地球自转在水平方向上的分量,α0、β0分别为陀螺输入轴在水平和垂直方向的输入轴失准角(安装误差),F1表示此时陀螺输出角速率,以下F2、F3的含义类似。
此处水平指的是地球水平唯一的一个平面,垂直方向是水平面的法线方向。
(7)内框相对位置旋转180°(即转台内框绕X轴按照相对位置模式进行旋转),如图4所示,得到陀螺输出模型为:
F2=F0-K0·ωv·sinβ0-K0·ωh·sinα0 (2)
其中,F2表示此时陀螺输出角速率。
由式(1)、(2)可以得出陀螺零偏F0
(8)中框相对位置旋转180°(即转台中框绕Y轴按照相对位置模式进行旋转),如图5所示,得到陀螺输出模型为:
F3=F0+K0·ωv·sinβ0-K0·ωh·sinα0 (3)
其中,F3表示此时陀螺输出角速率。
由式(1)、(2)、(3)以及初始标度因数K0,可以得出α0、β0的值,该值即为陀螺输入轴失准角的初始值。
初始标度因数一般存在100ppm~1000ppm的非线性度误差,本发明中在计算初始输入轴失准角时,将该部分误差转移到了安装误差内,由于这两个角度本身就比较小,一般星用陀螺的安装误差在10′以内,100ppm~1000ppm的误差只有6″~0.6″,所以利用α0、β0对速率测试时陀螺的输入轴失准角进行修正完全可行。
(9)调整中框、内框位置,使待测陀螺输入轴指天,回到速率测试的初始状态,然后利用测得的输入轴初始失准角α0、β0,对陀螺轴的指向进行调整,内框相对位置减小α0,中框相对位置减小β0
(10)对调整输入轴后的陀螺再次进行标度因数测试,所得出的标度因数K1即为消除了绝大部分安装误差的量值,然后将K1代入式(1)、(2)、(3)得到α1、β1即为迭代测试后更为精确的陀螺安装角。
这里指的是同一只陀螺,实际上每只陀螺的测试均分为粗测和精测两个步骤,第一次粗测是为了先拿到一个包含安装误差的粗略的标度因数,然后用这个标度因数测出初步的安装误差,然后利用这个安装误差对陀螺输入轴的指向进行调整,然后再次进行标度因数的测量,这第二次测量就是消除了百分之九十以上的安装误差角引起的标度因数的误差,这是一个迭代的过程。
由于陀螺用于敏感惯性角速度,在地面进行陀螺标定时,陀螺的输出将受到地球自转的影响,并且在速率测试中,速率越低受到地球自转引起的误差就越大,对于空间应用的陀螺来说,卫星绝大多数时间卫星的角速度都比较低,但是对于陀螺单机所提的任务书指标余量比较足,无论光纤陀螺还是机械陀螺标度因数的非线性度均有不同形式的不足,本发明方法根据三轴转台可以实现指向的任意性,可以实现速率测试时对陀螺输入失准角的修正,从而降低小角速度标定时地球自转引起的误差,提高标度因数的精准度。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (4)

1.一种基于高精度三轴转台的陀螺标度因数测试方法,其特征在于包括如下步骤:
(1)将三轴转台安装于水平面上,调整三轴转台的基座使三轴转台外框轴与水平面法线平行,然后调整中框,使内框轴与水平面法线平行,实现三轴转台的外框轴、中框轴和内框轴相互正交,并使得内框上固定的安装平板处于与水平面平行的位置上;
(2)调整三轴转台的外框,使中框轴指向正北方,内框轴指向正东方,使得三轴转台的外框轴、中框轴、内框轴分别与大地水平坐标系的天、正北、正东方向一致;
(3)调整安装平板上的基准靠面,使基准靠面法线方向与内框轴的方向平行或垂直,安装平板的安装面与水平面平行;
(4)将待测陀螺安装于所述安装平板上,待测陀螺的靠面与安装平板基准靠面紧密贴合;
(5)调整中框和内框的位置,使待测陀螺轴向与外框轴方向一致,保持中框和内框位置不动,对外框轴施加不同的速率对陀螺的标度因数进行测试,得出待测陀螺的初始标度因数K0
(6)调整中框和内框的位置,使待测陀螺的轴向指向正东,记录陀螺的输出模型为:
F1=F0+K0·ωv·sinβ0+K0·ωh·sinα0 (1)
其中,F0为陀螺零偏,ωv为地球自转在垂直方向上的分量,ωh为地球自转在水平方向上的分量,α0、β0分别为陀螺输入轴在水平和垂直方向的输入轴失准角,F1表示此时陀螺输出角速率;
(7)调整内框相对位置旋转180°,记录陀螺输出模型为:
F2=F0-K0·ωv·sinβ0-K0·ωh·sinα0 (2)其中,F2表示此时陀螺输出角速率;
联立求解公式(1)、(2)得到陀螺零偏F0
(8)调整中框相对位置旋转180°,记录陀螺输出模型为:
F3=F0+K0·ωv·sinβ0-K0·ωh·sinα0 (3)
其中,F3表示此时陀螺输出角速率;
联立求解公式(1)、(2)、(3)以及初始标度因数K0,得到α0、β0的值作为陀螺输入轴失准角的初始值;
(9)调整中框、内框的位置,使待测陀螺输入轴指向天,回到速率测试的初始状态,利用测得的α0、β0对陀螺轴的指向进行调整,内框相对位置减小α0,中框相对位置减小β0
(10)对调整输入轴后的陀螺再次进行标度因数测试,所得出的标度因数K1即为消除了绝大部分安装误差的量值,然后将K1代入公式(1)、(2)、(3)得到α1、β1即为迭代测试后的单个陀螺安装角。
2.根据权利要求1所述的一种基于高精度三轴转台的陀螺标度因数测试方法,其特征在于:所述的外框轴为方位轴、中框轴为俯仰轴、内框轴为横滚轴。
3.根据权利要求1或2所述的一种基于高精度三轴转台的陀螺标度因数测试方法,其特征在于:所述的内框相对位置旋转180°,为内框绕X轴按照相对位置模式进行旋转,所述的X轴指向正东方向。
4.根据权利要求1或2所述的一种基于高精度三轴转台的陀螺标度因数测试方法,其特征在于:所述的中框相对位置旋转180°,为中框绕Y轴按照相对位置模式进行旋转,所述的Y轴指向正北方向。
CN202111092920.7A 2021-09-17 2021-09-17 一种基于高精度三轴转台的陀螺标度因数测试方法 Active CN113776560B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111092920.7A CN113776560B (zh) 2021-09-17 2021-09-17 一种基于高精度三轴转台的陀螺标度因数测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111092920.7A CN113776560B (zh) 2021-09-17 2021-09-17 一种基于高精度三轴转台的陀螺标度因数测试方法

Publications (2)

Publication Number Publication Date
CN113776560A CN113776560A (zh) 2021-12-10
CN113776560B true CN113776560B (zh) 2023-07-14

Family

ID=78851951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111092920.7A Active CN113776560B (zh) 2021-09-17 2021-09-17 一种基于高精度三轴转台的陀螺标度因数测试方法

Country Status (1)

Country Link
CN (1) CN113776560B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899323B (zh) * 2021-11-08 2023-08-25 中国计量科学研究院 基于单轴激光陀螺测角仪的多轴转台角定位误差检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264240A (ja) * 2003-03-04 2004-09-24 Japan Aviation Electronics Industry Ltd 慣性装置のミスアライメント計測方法
DE102016100618A1 (de) * 2015-01-16 2016-07-21 Beijing Aerospace Times Optical-Electronic Technology Co., Ltd. Verfahren zum Kalibrieren einer hochpräzisen FOG Trägheitsmesseinrichtung
CN106052714A (zh) * 2016-05-23 2016-10-26 浙江大学 多轴斜置光纤陀螺组合标度因数性能的测试方法
CN106525073A (zh) * 2016-09-27 2017-03-22 北京控制工程研究所 一种基于三轴转台的惯性空间陀螺标定试验方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904377B2 (en) * 2003-03-17 2005-06-07 Northrop Grumman Corporation Method for measuring force-dependent gyroscope sensitivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264240A (ja) * 2003-03-04 2004-09-24 Japan Aviation Electronics Industry Ltd 慣性装置のミスアライメント計測方法
DE102016100618A1 (de) * 2015-01-16 2016-07-21 Beijing Aerospace Times Optical-Electronic Technology Co., Ltd. Verfahren zum Kalibrieren einer hochpräzisen FOG Trägheitsmesseinrichtung
CN106052714A (zh) * 2016-05-23 2016-10-26 浙江大学 多轴斜置光纤陀螺组合标度因数性能的测试方法
CN106525073A (zh) * 2016-09-27 2017-03-22 北京控制工程研究所 一种基于三轴转台的惯性空间陀螺标定试验方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Scale factor model analysis of MEMS groscopes;Tang Q et al.;Microsyst Technol;全文 *
基于锯齿波偏频的谐振式光纤陀螺标度因数测试;雷明 等;光子学报;第49卷(第3期);全文 *
小型化光纤陀螺惯性测量单元设计与 实现;郅银周 等;惯性传感器技术与应用研讨会文集;全文 *

Also Published As

Publication number Publication date
CN113776560A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
US6876926B2 (en) Method and system for processing pulse signals within an inertial navigation system
CN108458725B (zh) 捷联惯导系统晃动基座上的系统级标定方法
CN110926468A (zh) 基于传递对准的动中通天线多平台航姿确定方法
CN104697521B (zh) 一种采用陀螺冗余斜交配置方式测量高速旋转体姿态和角速度的方法
WO2020164206A1 (zh) 一种旋转加速度计重力梯度仪标定方法
CN109631940B (zh) 一种四环惯性稳定平台框架零位标校方法
CN111561948B (zh) 四轴冗余捷联惯导的系统级标定方法
CN112129322B (zh) 一种捷联惯组与三轴转台的安装误差检测方法及校正方法
CN114061623B (zh) 一种基于双天线测向的惯性传感器零偏误差辨识方法
CN111664868A (zh) 一种单轴陀螺安装误差标定与补偿的方法
CN113551668A (zh) 一种航天器惯性/恒星星光矢量/星光折射组合导航方法
CN102679999A (zh) 星敏感器安装误差四位置标定与补偿方法
CN113776560B (zh) 一种基于高精度三轴转台的陀螺标度因数测试方法
CN106959100A (zh) 利用gnss天线中心坐标进行摄影测量绝对定向的方法
CN116448145A (zh) 一种基于偏振矢量空间差分的航姿确定方法
Zhang et al. A multi-position calibration algorithm for inertial measurement units
CN112097794B (zh) 遥感卫星载荷平台标定方法及系统
CN111141285B (zh) 一种航空重力测量装置
CN110514201B (zh) 一种惯性导航系统及适用于高转速旋转体的导航方法
CN110940357B (zh) 一种用于旋转惯导单轴自对准的内杆臂标定方法
CN109655080B (zh) 一种数字式太阳敏感器在轨标定方法
CN108593966B (zh) 一种两轴框架摆式加速度计自标定方法和系统
CN102183263A (zh) 一种光纤陀螺常值漂移的标定方法
CN114264304B (zh) 复杂动态环境高精度水平姿态测量方法与系统
CN113465570B (zh) 一种基于高精度imu的气浮台初始对准方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant